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1. ABSTRACT

A new algorithm based on Krylosr subspace
methods is poposed ér model-reduction of
large nonlinear circuits. Reduction is obtained
by projecting the original system described by
nonlinear differ ential equations into a subspace
of a lower dimension. The educed model can
be simulated using comentional numerical inte-
gration techniques. Significant eduction in
computational expense is achieed as the size of
the reduced equations is much less than that of
the original system.
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2. INTRODUCTION

The tendeng towards eer lager circuits and more comple
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equations into a Kryl subspace of i@er dimension. As a result,

the original set of nonlinear time-domain equations is replaced by a
smaller set of nonlinear equations such that the firsterivatives

of the time-response of the original system and the response
obtained using the reduced system are identical. The reduced
system can be sadd using ap of the comentional numerical
integration techniques, resulting in significant reduction in the CPU
time due to thedct that at each time point, a much smaller set of
nonlinear algebraic equations need to beesblv

This paper is @anized as follas. Section 2 presents a systematic
approach to form the Krylosubspace and deei the reduced-order
nonlinear model. Section 3 presents a proof that the proposed
model-reduction algorithm presexvthe firstq derivatives of the
time-domain response. Sections 4 and 5 present numerical results
and conclusions, respectly.

3. MODEL-REDUCTION OF NONLINEAR
CIRCUITS

The main idea of the mealgorithm presented in this paper is
centered around the replacement of the original nonlinear circuit
equations by a smaller set of nonlinear equations such that the first

devices is stretching the limits of current simulation methodsyéar ‘g derivatives of the time-response of the original system and the
nonlinear circuits pose a particular problem for the time domainresponse obtained from the reduced system are identical. Details of
simulation as most commonly used simulators are based on impliafie algorithm are discussed briefly in the faflog sections.

numerical intgration methods which require solution ofjarset of

nonlinear algebraic equations at each time point. Hence, it is cled.1 Computation of Time Domain Derivatives

that some wy must be found to increase computationfitiehcy
without sacrificing the analysis accuyacSeveral attempts to
achieve this goal hee been reported priously in the literature [1]-
[8].

On the other hand, in the caseliokar circuits, seeral eficient
model-reduction techniques\abeen reported recently [9]-[13].

Most of these techniques\vebeen based on projecting the linear

system into a subspace ofer dimension. Significant reduction in
computational compléty was obtained using Kryo subspace
methods. It s also shan that projection into a Krylosubspace
is equvalent to matching the frequgndomain moments.

In this paperwe present a method based on Kvylubspace to
obtain reduced-order models for dar nonlinear circuits. An
algorithm is described for projecting the fulbnlinear circuit

of the Original System
Consider a general netwvk ¢ containing an arbitrary number of
linear and nonlinear componentsitiMdut loss of generalitythe
MNA formulation for the netark ¢ can be written as [15]

Cx+Gx+F(x) = b(t) (1)

Ny .

where,x0 0 “ is the \ector of node ®ltage vaveforms appended
by independent altage source currents, linear inductor currents,
nonlinear capacitor chges, nonlinear inductor fluxaweforms and

. Nyx Ny
currents and eltages due to nonlinear components,) 0

N, x N . .
and GODO ° ° are constant matrices describing the lumped
memory and memoryless elements of the pétwrespectiely.

N, . . . . .
b(t) OO * is a \ector with entries determined by the independent

N, . . -
voltage/current sources;(x) 00 * is a function describing the
nonlinear elements of the circuit am«qp is the total number of

variables in the MW formulation.
X(t) in (1) is xpanded in a dylor series as



x(t) Z a(t —to)k )

where a, = x(k)(to)/k!,kzo, 1,2, ... are the normalized time

domain dematives ofx and are computed using

(k+1)Cay, +Ga +f, = by 3)

whereb; andf; denote the™ derivatives ofb(t) andF(x) evaluated
att = ty respectiely andag is assigned the initial conditions,
Assuming for the moment that the mat@ is invertible, the
coeficientsa,, k = 1,2, ... can be computed recwsly using (3).

The first dewative of F(x) is computed as

d _ 0 KO k-1 k-1
mF(x) = JDKZOakt |:lkzlkakt

= (1) ka, t 4)
2,

whereJ(x) = aF
Using (4) and for simplicity assignirtg = 0, them™ derivative of
F(x) att = 0 can be computed as [16]

Z ((m s+ oy 5)

Using (5), (3) becomes

k-1

(k+1)Ca,, ,+Gay + Z (k(J;l)[Zk_j_

1
ik (0121

= by; k=1

(6)

In the case wher€ is not irvertible, (3) may be separated into
(k+1) {Cuo} Uk+1|, |C1a Crzf | U], {Fu(uk’ Wk)}
0 0 [Wirq |Ga21 Gogl W 0

&
Wl g

wherea, has been dided into the tw disjoint diferential and
algebraic sets, andwy such that there are no emptywso or
columns inCq;. The first rav of (7) is an &plicit equation foru,
in terms ofu, andw, requiringCy4 to be ivertible. The second
row of (7) is an gplicit equation forw, in terms ofu, and b,

requiring G,, to be ivertible. The required irertible conditions

are usually met by the modified nodal analysis formulation used to
develop circuit equations. Special formulation methods can be

used to ensure th&l; andG,, are ivertible without the need for
state space formulation [17].

3.2 Reduced Model via Congruent mansfor-

mation
The original system (1) is reduced to a smaller set of wmhkso

through a congruent transformation obtained from the Krylo

subspac&. This subspace, formed by the gatives computed in

(6) is defined as

K=T[ay a; ... a] (8)

where q is the order of reduction anq«N(p. Performing an

orthogonal decomposition [14] ¢hwe hae

K = QR 9)

whereQ'Q = U, andu, 0 0% is an identity matrix. Using the

matrix Q obtained from (9) we perform a congruent transformation
on the original system (1)\@g@n by

X = QX (10)

where x00%. This change of ariable (x - X) reduces the
original system (1) to a system with a smaller set of wvkisp
given by

Ex+Gx+FE(%) = b(t) (11)
where
&=Q'cQ; ¢=Q'cq
F(®) = QF(QY: B = Q'b(y (12)

The reduced set of equations (11) can beesblwsing ay of the
corventional numerical ingration techniques [17] to g&t. The
solution for the original system (1) is obtained using the
transformation gien in (10). It is to be noted that the
computational cost uwolved in solving (11) is drastically reduced
when compared to (1) as the order of the reduced model is
significantly less than the order of the original system.

4. PROOF OF PRESER/ATION OF DERE-

VATIVES

Proof that the reduced-order system (11) presemhe firstq
derivatives of the original system (1) isvgn by Mathematical
Induction First it shall be pneed that the first derative obtained
from the reduced-order model is eealent to that obtained from

the original system (1). M& we will shav that the k+1)
derivative is conserad if the preiousk derivatives are conseed.

%(t) in (11) is &panded in adylor series as

K=y at" (13)

k=0
The coeficients &, are computed using the recuesielationship
(k+1)Cay, ; +Ga + = by

(14)

where &, represents the initial conditions of the reduced system
and is chosen such that it satisfies

Q3 = a, (15)
From (14), it is seen tha, is given by
Ca, +Gay+F(ay) = by (16)



i.e.,
Q'cQa, +Q'GQa, + QT F(Q3y) = Q' bo 17)
Using (9) and (15), (17) can be written as
K'(Clag a; ... a,] R, +Gag+F(ap)-by) =0 (18)

Substituting R_lal =e,, Where e is the " column of the

identity matrixu, O 0%9 and simplifying (18) using (3), we &

K'(Ca, +Gag + F(ag) ~bg) = 0 (19)

Hence, R™ a1 = e, is a solution of (18). Therefore the first

SubstitutingR_lék+l = e, , in (25), and simplifying using (6)
we hae

KT((k+1)Cak+1+Gak
(J+1) c-i-t B
Z K==Lkl O13j41-0Z=10
(26)

Hence R_lék+l = g, IS a solution of (25). Therefore the

(k+1)th derivative of the original system obtained from the reduced
system is

lay a; .. aq]ekJr2 =a,, 27)

s e ls
Qg = KR &,y =

th
derivative of the original system obtained from the reduced system From (27) it can be seen that (ke 1)™ deriative of the system is

is

Qa; = KR™ a1 [ag a; .. agle, = &y (20)
From (20) it can be seen that the first dive of the system is

consered.
We naw proceed to pnee that if the lipothesis holds good for all
from|=0 tol=k, i.e. Q4 = a for 0<I<k, then it also holds good

forl =k+1,i.e.Q& ,; = a -

The first denative of F(%) is computed as

de oy _ 0 T A k=1
g =Q f(F(X))Qa— Z(t)kalkakt (21)

Using (21), then " derivative of F(x) att=0is computed to be

Z A0 1" o108y, (22)
Using (22), (14) becomes
(k+1)Cay, , +Ga +
k-1
(+1) ATik-i-1 5 -0
Z mQ [C (0)1Q&;, 1 = by; k=1
1=0 (23)
Using (9) and (12), (23) can be written as
QT((k+1)C[a0 a .. aq]R_lék+1+GQék+
(J+1) k=j-1 A u_
2 XC= “ole (0103, ,-b=0
(24)

Since Q& = a for 0<l<k, (24) is reduced to

KT((k+ 1)Clag a; -

(+3) k—j-
Z k- K==Lkl

-1,
aq]R R CE N

Loya bH= 0
i+17 %5 "
(25)

consered if all it's previous dervatives are conseed. Thus by
Mathematical Inductionve can conclude that the ficgtlerivatives
are conserd for the system.

5. NUMERICAL RESULTS
5.1 Example 1

A lumped nonlinear circuit with all B’ capacitors initially chged

to a unit wltage vas considered for thiskample. The size of the

MNA matrix was 100 x 100. The proposed algorithmswised to

find the reduced-order model of the system by considering the

derivatives of the nonlinear netwk to form the Kryle subspace.

The response of the neivk was computed using the reduced-

order model. As a sample of the results, comparison with the

output across one of the nonlinear components, obtained from the

original system is shn in Figures 1 and 2. Asxpected, it is

obsered that the accurgof the response increases as we increase

the number of deratives considered in the formulation of the

Krylov subspace.
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Figure 1. Response of the Reduced Model for q=13
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Figure 2. Response of the Reduced Model for g=15

5.2 Example 2
Another lumped netark consisting of xponentially beheed

nonlinear resistors as considered for thisxample. The size of the
MNA matrix of the original circuit @ws 1000 x 1000. The proposed

[3] A.S.Mncentelli, “Circuit Simulatiori,in Computer
Design Aids for VLSI Gauits,P. Antognetti, D. O. Ped-
erson and H. De Man (editors). Martinus NijhBtib-
lishers, 1986, pp. 19-112.

[4] J. K. Ousterhout, “CRSTAL: A timing analyzer for
NMOS VLSI Circuits; in Proc. 3d Caltet. Conf on
VLSI,Mar. 1983, pp. 57-69

[5] Norman PJouppi, “Iming analysis and performance
improvement of MOS VLSI desigh|EEE Trans. Com-
puterAided Designyol. 6, no 4, pp. 650-665, Jul.
1987.

[6] S.Lin, M. M. Sadwska, and E. S. #h,“ SWEC: A
step wise equalent conductance timing simulator for
CMOS VLSI circuits; in Proc. Electon. Design Ato-
mation Conf, 1991, pp. 142-148.

[7] A.S. Mncetelli, E. Lelarasmee, and A. Ruehli, “The

waveform relaxation method for the time-domain anal-

ysis of lage scale intgrated circuit$, IEEE Tans.
ComputerAided Designyol. 1, no. 3, pp. 131-145,
Aug. 1982.

[8] A.Devgan and R. A. RohefAdaptively controlled
explicit simulation; IEEE Trans. on Computefided
Design,vol. 13, no. 6, Jun. 1994,

algorithm vas used to find the reduced-order model of the system[9] E. Chiprout and M. S. NakhlaAhalysis of Intercon-

by considering 25 deratives of the nonlinear netwk to form the

Krylov subspace. It &s obsered that using the proposed
algorithm, the size of the reduced modelsvapproximately 2.5%
of the size of the original circuit. The response of the original

nect Netvarks Using Compbe Frequeng Hopping
(CFH); IEEE Trans. on CAD of Ingrated Circuits
and Systemsol. 14 no. 2, pp. 186-200, Feb 1995.

circuit was computed using the reduced-order model. As a sampld10]l. M. Elfadel and D. D. Ling,A block rational Arnoldi

of the results, comparison with an output across one of the nodes,
obtained from the original system is shoin Figure 3 and as seen

both the responses match accurately
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Figure 3. Transient response comparison
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