
1. ABSTRACT
A new algorithm based on Krylov subspace
methods is proposed for model-reduction of
large nonlinear circuits. Reduction is obtained
by projecting the original system described by
nonlinear differential equations into a subspace
of a lower dimension. The reduced model can
be simulated using conventional numerical inte-
gration techniques. Significant reduction in
computational expense is achieved as the size of
the reduced equations is much less than that of
the original system.
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2.  INTRODUCTION
The tendency towards ever larger circuits and more complex
devices is stretching the limits of current simulation methods. Large
nonlinear circuits pose a particular problem for the time domain
simulation as most commonly used simulators are based on implicit
numerical integration methods which require solution of large set of
nonlinear algebraic equations at each time point. Hence, it is clear
that some way must be found to increase computational efficiency
without sacrificing the analysis accuracy. Several attempts to
achieve this goal have been reported previously in the literature [1]-
[8].

On the other hand, in the case oflinear circuits, several efficient
model-reduction techniques have been reported recently [9]-[13].
Most of these techniques have been based on projecting the linear
system into a subspace of lower dimension. Significant reduction in
computational complexity was obtained using Krylov subspace
methods. It was also shown that projection into a Krylov subspace
is equivalent to matching the frequency domain moments.

In this paper, we present a method based on Krylov subspace to
obtain reduced-order models for large nonlinear circuits. An
algorithm is described for projecting the fullnonlinear circuit

equations into a Krylov subspace of lower dimension. As a result,
the original set of nonlinear time-domain equations is replaced by a
smaller set of nonlinear equations such that the first ‘q’ derivatives
of the time-response of the original system and the response
obtained using the reduced system are identical. The reduced
system can be solved using any of the conventional numerical
integration techniques, resulting in significant reduction in the CPU
time due to the fact that at each time point, a much smaller set of
nonlinear algebraic equations need to be solved.

This paper is organized as follows. Section 2 presents a systematic
approach to form the Krylov subspace and derive the reduced-order
nonlinear model. Section 3 presents a proof that the proposed
model-reduction algorithm preserves the first ‘q’ derivatives of the
time-domain response. Sections 4 and 5 present numerical results
and conclusions, respectively.

3.  MODEL-REDUCTION OF NONLINEAR
CIRCUITS
The main idea of the new algorithm presented in this paper is
centered around the replacement of the original nonlinear circuit
equations by a smaller set of nonlinear equations such that the first
‘q’ derivatives of the time-response of the original system and the
response obtained from the reduced system are identical. Details of
the algorithm are discussed briefly in the following sections.

3.1  Computation of Time Domain Derivatives
of the Original System

Consider a general network  containing an arbitrary number of
linear and nonlinear components. Without loss of generality, the
MNA formulation for the network  can be written as [15]

(1)

where,  is the vector of node voltage waveforms appended
by independent voltage source currents, linear inductor currents,
nonlinear capacitor charges, nonlinear inductor flux waveforms and

currents and voltages due to nonlinear components,

and  are constant matrices describing the lumped
memory and memoryless elements of the network, respectively.

 is a vector with entries determined by the independent

voltage/current sources,  is a function describing the
nonlinear elements of the circuit and  is the total number of

variables in the MNA formulation.

x(t) in (1) is expanded in a Taylor series as
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(2)

where  are the normalized time

domain derivatives ofx and are computed using

(3)

wherebi andfi denote theith derivatives ofb(t) andF(x) evaluated
at t = t0 respectively anda0 is assigned the initial conditionsx0.
Assuming for the moment that the matrixC is invertible, the
coefficients  can be computed recursively using (3).

The first derivative ofF(x) is computed as

(4)

where .

Using (4) and for simplicity assigningt0 = 0, themth derivative of
F(x) at t = 0 can be computed as [16]

(5)

Using (5), (3) becomes

(6)

In the case whereC is not invertible, (3) may be separated into

(7)

whereak has been divided into the two disjoint differential and
algebraic setsuk and wk such that there are no empty rows or
columns inC11. The first row of (7) is an explicit equation foruk+1
in terms ofuk andwk requiringC11 to be invertible. The second

row of (7) is an explicit equation for  in terms of  and

requiring G22 to be invertible. The required invertible conditions
are usually met by the modified nodal analysis formulation used to
develop circuit equations. Special formulation methods can be
used to ensure thatC11 andG22 are invertible without the need for
state space formulation [17].

3.2  Reduced Model via Congruent Transfor-
mation

The original system (1) is reduced to a smaller set of unknowns
through a congruent transformation obtained from the Krylov
subspaceK. This subspace, formed by the derivatives computed in

(6) is defined as

(8)

where q is the order of reduction and . Performing an

orthogonal decomposition [14] onK we have

(9)

where  and  is an identity matrix. Using the

matrixQ obtained from (9) we perform a congruent transformation
on the original system (1) given by

(10)

where . This change of variable  reduces the
original system (1) to a system with a smaller set of unknowns,
given by

(11)

where

(12)

The reduced set of equations (11) can be solved using any of the
conventional numerical integration techniques [17] to get. The
solution for the original system (1) is obtained using the
transformation given in (10). It is to be noted that the
computational cost involved in solving (11) is drastically reduced
when compared to (1) as the order of the reduced model is
significantly less than the order of the original system.

4.  PROOF OF PRESERVATION OF DERE-
VATIVES
Proof that the reduced-order system (11) preserves the firstq
derivatives of the original system (1) is given by Mathematical
Induction. First it shall be proved that the first derivative obtained
from the reduced-order model is equivalent to that obtained from
the original system (1). Next, we will show that the (k+1)th

derivative is conserved if the previousk derivatives are conserved.

 in (11) is expanded in a Taylor series as

(13)

The coefficients  are computed using the recursive relationship

(14)

where  represents the initial conditions of the reduced system

and is chosen such that it satisfies

(15)

From (14), it is seen that  is given by
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i.e.,

(17)

Using (9) and (15), (17) can be written as

(18)

Substituting , where  is the rth column of the

identity matrix  and simplifying (18) using (3), we have

(19)

Hence,  is a solution of (18). Therefore the first

derivative of the original system obtained from the reduced system
is

(20)

From (20) it can be seen that the first derivative of the system is
conserved.

We now proceed to prove that if the hypothesis holds good for alll
from l=0  to l=k, i.e.  for , then it also holds good

for l = k+1, i.e. .

The first derivative of  is computed as

(21)

Using (21), themth derivative of  at t = 0 is computed to be

(22)

Using (22), (14) becomes

(23)

Using (9) and (12), (23) can be written as

(24)

Since  for , (24) is reduced to

(25)

Substituting  in (25), and simplifying using (6)

we have

(26)

Hence  is a solution of (25). Therefore the

(k+1)th derivative of the original system obtained from the reduced
system is

(27)

From (27) it can be seen that the(k+1)th derivative of the system is
conserved if all it’s previous derivatives are conserved. Thus by
Mathematical Induction we can conclude that the firstq derivatives
are conserved for the system.

5.  NUMERICAL RESULTS

5.1  Example 1
A lumped nonlinear circuit with all it’s capacitors initially charged
to a unit voltage was considered for this example. The size of the
MNA matrix was 100 x 100. The proposed algorithm was used to
find the reduced-order model of the system by considering the
derivatives of the nonlinear network to form the Krylov subspace.
The response of the network was computed using the reduced-
order model. As a sample of the results, comparison with the
output across one of the nonlinear components, obtained from the
original system is shown in Figures 1 and 2. As expected, it is
observed that the accuracy of the response increases as we increase
the number of derivatives considered in the formulation of the
Krylov subspace.

Figure 1.  Response of the Reduced Model for q=13
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Qâl al= 0 l k≤ ≤

K
T

k 1+( )C a0 a1 … aq[ ]R
1–
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Figure 2.  Response of the Reduced Model for q=15

5.2  Example 2
Another lumped network consisting of exponentially behaved
nonlinear resistors was considered for this example. The size of the
MNA matrix of the original circuit was 1000 x 1000. The proposed
algorithm was used to find the reduced-order model of the system
by considering 25 derivatives of the nonlinear network to form the
Krylov subspace. It was observed that using the proposed
algorithm, the size of the reduced model was approximately 2.5%
of the size of the original circuit. The response of the original
circuit was computed using the reduced-order model. As a sample
of the results, comparison with an output across one of the nodes,
obtained from the original system is shown in Figure 3 and as seen
both the responses match accurately.

Figure 3.   Transient response comparison
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