Timing-Driven HW /SW Codesign
Based on Task Structuring and Process Timing Simulation*

Dinesh Ramanathan’
Dept. of Info. & Computer Sci.
University of California
Irvine, CA 92697
dinesh@ics.uci.edu

Abstract

Task structuring is the process of determining the individual
tasks of a system, leading to the system’s description as a
task graph. This paper shows that RADHA-RATAN, our rate
derivation algorithms, can be used to validate various tradeoffs
made during task structuring, making this step timing aware.
We show how RADHA-RATAN enables construction of a high-
level timing model of the system leading to a process timing
simulation of the entire system. An interesting aspect of pro-
cess timing simulation is that it provides the ability to observe
system level timing behavior based on timing requirements and
analysis before an implementation of the tasks has been carried
out. Based on task structuring and process timing simulation
we propose a codesign methodology by which a system designer
can gain insight into the system’s timing performance. This ap-
proach enables the designer to reduce expensive timing driven
design iterations. We have implemented this methodology in
the RADHA-RATAN framework. We illustrate its application
by an example.

1 Introduction

Timing plays an important role in the design of embedded sys-
tems. Unfortunately, the problem of designing a temporally
correct system is a difficult one, and the current practice for
this problem is ad hoc; it is based on trial and error, guided
by engineering experience [7]. Moreover, the emphasis is usu-
ally on designing a functionally correct system [8]. The tempo-
ral correctness of the system will usually be checked after the
system’s components are integrated and the resulting system’s
functional correctness is ensured. This approach usually results
in expensive re-design iterations in order to satisfy temporal
constraints.

This paper proposes a methodology by which a designer can
gain insight into the system’s timing performance by simulat-
ing and validating timing tradeoffs at very high levels of ab-
straction. This enables the designer to reduce expensive timing
driven design iterations. This methodology is based on the no-
tion of process timing simulation that involves simulation of

*The authors would like to acknowledge support from NSF award
numbers MIP 95-01615 (CAREER) and CCR-9806898, from DARPA
DABT63-98-C-0045, and the UC’s MICRO program.

TThis work was done while this author was at Synopsys Inc. He is
presently with C2 Design Automation Inc.

Ali Dasdan
Dept. of Computer Sci.
University of Illinois
Urbana, IL 61801
dasdan@cs.uiuc.edu

Rajesh Gupta
Dept. of Info. & Computer Sci.
University of California
Irvine, CA 92697
rgupta@ics.uci.edu

the system’s timing behavior. This simulation is based on rate
derivation and task structuring. Rate derivation and related
problems have been discussed in detail in [4, 5, 6]. In this pa-
per, we focus on task structuring and process timing simulation.

1 System decomposjtio_n intotasky Eocus of this paper
(Task structuring)
Y

RADHA - RATAN

l Generalized Task Graph and External constrai nts‘

D
2 Rate/Period derivation

l Internal constraint derivation ‘ lExtemaI constraint validation ‘

<—261| Process Timing Simulati OnI Focus of this paper
Y

6 3

D

Task internals design
HW/SW partitioning
HW/SW delay estimation

v

4 | RADHA-RATAN

5
B
B
<}
3
5
5
g
£
2

Rate/Period derivation
Internal constraint derivation

4—%| Process Timing Simulation I Focus of this paper

[Hw/swiinterface synthess |

Figure 1: Timing-driven HW/SW codesign methodology.

Figure 1 shows the timing-driven HW /SW codesign method-
ology which builds upon earlier work in the area, e.g., POLIS [1].
We begin with task structuring (Step 1).

Task structuring is the phase where we define the system’s
tasks and communication between them. The resulting group
of interrelated functionalities (modeled as tasks) are then sub-
ject to timing constraint analysis in Step 2 using RADHA-
RATAN [4, 5]. The objective of RADHA-RATAN analysis is
to validate external user imposed rates and user imposed in-
ternal rate constraints, thereby deriving timing budgets for the
tasks. While the scope of this analysis is large, there are cases
when this analysis needs to be augmented by a simulation of
the timing behavior. To enable the simulation, in step 2a, our
tool automatically emits the individual tasks in a hardware de-
scription language (HDL) or a programming language, both at
the behavioral level. Each task has been transformed into its
equivalent form in the HDL. The HDL form does not have the
internal functionality of the task described, since this is not
known to our tool at this stage. Instead, the HDL form cap-
tures the tasks’ interactions with its environment based on the

task graph model, and the internal functionality is modeled by
an empty function. We then perform a process timing simula-
tion of the system and observe its timing behavior, using the
HDL as a vehicle to perform simulation.

In Step 3, the system’s tasks are refined to include the func-
tionality of the task in the HDL form obtained from Step 2a.
This step actually corresponds to the first step in many exist-
ing codesign methodologies. In Step 3, the task’s implemen-
tation platforms are also determined by partitioning them into
hardware and software tasks. In Step 4, RADHA-RATAN is
performed again on the generalized task graph, since we now
know more about the delays within the system. In Step 4a, we
again emit the individual tasks in HDL and validate the timing
behavior of the system by performing another process timing
simulation. This time the simulation provides a more timing
accurate behavior of the system, since the tasks’ functionality
and delays have been refined by Step 4. In Step 5, all the tasks
are synthesized in their respective implementation platforms to-
gether with the interfaces between these platforms. This step
is explained well in [1, 2, 11]. Finally, Step 6 is needed to per-
form modifications on the system in case there are functional
or temporal constraint violations.

This paper is organized as follows. We present a brief re-
view of our task graph model and rate derivation in section 2. In
section 3, we present task structuring and illustrate it with the
dashboard controller example taken from [1]. In section 4, we
introduce process timing simulation and illustrate it with two
simulation scenarios applied to the example. Section 5 con-
cludes with a summary of our contributions.

2 Generalized Task Graph Model and RADHA-RATAN

We model an embedded system using a directed graph called
a generalized task graph [3, 4, 5] (the task graph for short). It
corresponds to the system’s data/control flow diagram. Each
node represents a task, and each edge represents a unidirec-
tional communication channel between its producer and con-
sumer. The sensors and actuators of the system are also in-
cluded in its task graph, in which they are referred to as input
and output tasks, respectively. We assume that each task is
periodic or sporadic, i.e., each task has a bounded rate inter-
val. The rate of a task is equal to the number of its executions
per unit time such that it executes only once during its period.
There have been other approaches to model embedded systems,
e.g. the SPI model [13].

Task types

AND

[Unskipped] [Skipped] [Skipped] [Unskipped]
AND/u AND/s OR/u
Digjoint
ORIs] OR/5/d

Figure 2: Task classification.

Both data and control flow through a channel are modeled
using token flow. The granularity of every token is channel-
specific, and once fixed, the tokens are indistinguishable within
and across channels for timing analysis purposes. A task is en-
abled when it is ready to run. We classify the tasks in the task
graph as depicted in Figure 2. We use the following criteria:
(i) An AND task waits for all its predecessors to get enabled,
whereas an OR task needs only one predecessor. An AND/OR
task has both AND and OR behavior. (ii) A skipped task may

sometimes allow intentional loss of input tokens whereas an un-
skipped task does not. Both AND and OR tasks can have these
behavior. (iii) An OR/unskipped task reads from all its pre-
decessors before completion whereas an OR/skipped task may
skip some or all of the predecessors other than the enabling
one. In particular, an OR/skipped/joint (OR/s/d) task skips
all of the predecessors other than the enabling one whereas an
OR/skipped/disjoint task uses all of the tokens to start a new
execution after every reading.

The user inputs a generalized task graph along with the
token consumption and production rates for the actuators of the
system being modeled using our tool’s GUI. RADHA-RATAN
first derives the internal rate constraints of a system using its
external rate constraints. It then uses these rate constraints to
derive and validate the remaining timing constraints (provided
by the user) of the system. Thus, RADHA-RATAN contains
both derivation and validation algorithms for both rate and
separation constraints. Our earlier works in [4, 3, 12, 5, 6]
explain these algorithms in detail. Note that the rate of a task
is its frequency of its execution, and its period is the reciprocal
of its rate. Due to this relationship between the rate and the
period, we will use them interchangeably in the sequel. We will
use T for a given period, RT for a required period, and DT for
a derived period.

3 Timing-driven Task Structuring

Task structuring is the phase where we define the system’s tasks
and communication between them. It changes the granularity
of the data flow/control flow diagram by successive refinement
into smaller tasks.

Task structuring reduces the complexity of the system’s de-
scription by grouping “related” functions into the same task us-
ing structuring criteria which are very well explained in [8, 9].
They also address whether and how transformations should be
grouped into concurrent tasks, e.g., grouping functionally re-
lated transformations into the same task or those that execute
sequentially into the same task. Task structuring criteria typi-
cally address how transformations for physical device I/0, e.g.,
defining a task to poll a passive I/O device, and those for inter-
nal transformations, e.g., defining a task for a periodic trans-
formation or a task for user interaction, are mapped to tasks.

Unfortunately, the current practice for task structuring is
not timing-driven: timing decisions during task structuring are
made in an ad hoc manner. Moreover, the timing decisions
are not validated as task structuring decisions are being made.
While task structuring itself seems difficult to automate due
to large number of design decisions, timing analysis during task
structuring can be made more systematic and rigorous. One re-
lated approach is given by Hou and Wolf in [10]. Their approach
presents a heuristic algorithm to partition the real-time software
system’s data flow graph into a task graph under deadline and
size constraints. This approach assumes that it is possible to
determine the cost of a process in terms of its execution time
and monetary value before partitioning. It is not useful at the
level where task structuring is performed since task structuring
is performed before the internals of tasks are designed.

In our methodology, task structuring can be made timing
driven by performing analysis and validation of timing trade-
offs made by system designers. Consider task a that needs
refinement by the system designer. The designer is presented
with two choices: (a) to break a into two sequential tasks b
and c or (b) into two parallel tasks b and c. In the first case,
the designer increases the latency and decreases the throughput
of the system. In the second case, the designer decreases the
latency and increases the throughput of the system. However,
the designer does not have a quantitative measure of change in
latency and throughput of the entire system since task a could
have been interacting with several other tasks of the system.

Ta=[228, 11880
a=l] bcd RT <= 1000

RTef ghij = [138000, 7200000] @

DT = [456, 23760] DT = [19, 990]

bc
Process pulses 1)9 (Speedometer] d

Lifetime | .
Odometer
efgh
Resettable Trip| j
| Odometer
\I\/ DTefgh = DT; = DT; = [138168, 7199280]

DT}, = DT= [456, 23760]

[Wheel HRead Filter
Pulses Speed Speed
b c

Speedometer

Lifetime
Odometer

©

LCD Display
Driver

Resettable Trip|
Odometer

J

Compute
Partial km
9
DTg=DT =DTg=DT,= [138168, 7199280]

Figure 3: Task structuring for the dashboard controller in three
phases (labeled a-c). The labels for the period intervals are T
for given, RT for required, and DT for derived period intervals.

This is crucial to the designer since it effects design decisions
further down the design process. Using RADHA-RATAN on
the transformed task graph, the designer can make quantita-
tive assessments about the timing behavior of the system. If
task a was not along the critical path the designer may choose
to split task a as in case (a) as this may ease the implementa-
tion of tasks b and c. On the other hand, if task a was timing
critical, the designer may choose the parallel route for tasks b
and c. In either case, RADHA-RATAN allows the designer to
make high level timing driven decisions during task structur-
ing by providing timing tradeoff information for various system
design choices.

3.1 Example of Task Structuring

Consider the design of a dashboard controller also used in [1].
The controller contains two parts: the speedometer part and the
odometers’ part. There is one speedometer and two odometers:
the lifetime odometer and the trip odometer. The speedometer
registers vehicle speed in the range of 0-260 km/h where any
speed value less than 5 km/h is regarded as zero. The odome-
ters register distance traveled at increments of 0.1 km starting
from 0 km. The trip odometer can sometimes be reset by the
driver. The dashboard controller gets four pulses from the sen-
sors placed on one of the wheel shafts so that every rotation
of the corresponding tire produces four pulses, each of which
corresponds to 1/4 of a rotation. The tire travels 0.66 meter
per rotation.

The timing constraints on the dashboard controller are all in
the form of rate constraints. The speedometer consists of two
coils and a magnetized needle. It must get its inputs at a rate
of at least 100 Hz to drive these coils. The odometers must be
so fast that the time it takes to display an distance increment of
0.1 km must be less than the time it takes for the car to travel
0.1 km.

We now illustrate timing-driven task structuring as shown
in Figure 3. These graphs represent a functional structuring of

the system that a designer would create.

3.2 Initial task structuring phase

Consider Figure 3(a). RADHA-RATAN requires that the rate
of task a be provided since this rate is an input to the sys-
tem. Task a generates a pulse for every 1/4 rotation of the
tire, which means a pulse for every 0.66/4 m. As the speed of
the car ranges between 5 km/h and 260 km/h, the separation
between the times of two consecutive pulses ranges from 2.28
ms to 118.80 ms. Hence, the integral period interval for task a
is T, = [228,11880], the unit of which is 100 ms. This unit will
be used for all the period intervals in the sequel.

The period intervals for the other tasks in Figure 3(a) are
as follows. The speedometer part must read at least two pulses
from task a to compute the speed of the car; so we derive the
period interval of DTycq = 2 % T, = [456, 23760]. The odometer
part needs at least |0.1km/(0.66/4m)| = 606 pulses to register
a distance increment of 0.1 km that the car travels. Hence, for
the odometer part, we derive a period interval of DTc¢gni; =
606 * T, = [138168, 7199280].

When we validate the resulting period intervals, we see that
the odometer part satisfies its rate requirement because it takes
at least (0.1 km)/(260 km/h)=1.38 s and at most (0.1 km)/(5
km/h)= 72 s for the car to travel 0.1 km, i.e., the rate require-
ment is RTefgni; = [138000, 7200000]. We see, however, that
the speedometer part violates its rate requirement of 100 Hz,
which means that RTpc.q < 1000.

3.3 Refinement phase

We go from (a) to (b) in Figure 3 for two reasons: (1) there
is a rate violation in the speedometer part, and (2) each part
of the system has a rather large granularity. The refinement
consists of exposing the speedometer and the odometers. They
are connected to task a, the input task of the system, by two
generic tasks called “process pulses”.

We know the rate of task a and the rate requirements on
the output tasks, the speedometer and the odometers. We use
them to derive a period interval for all the tasks in the task
graph as follows. The period interval for the “process pulses
2” task is the same as the one we derived for task efghij, i.e.,
DT.tqn = [138168,7199280], because the same reasoning ap-
plies. Similarly, the period interval for the “process pulses 1”
task is DTy, = [456,23760]. However, the rate requirement on
the speedometer leads to a period interval of DT, = [19, 990] for
the speedometer so that it can satisfy its rate requirement. This
period interval means that task bc must produce 24 speed values
for the speedometer for every change in the car’s speed. Later,
we will see that this in fact enables a smoother movement of
the speedometer’s needle. Finally, the period interval for each
odometer is the same as that of task efgh because each odome-
ter displays every distance value sent by task efgh as soon as
they arrive. We now see that the output tasks, thereby the
system, satisfy their rate requirements.

3.4 Final structuring phase

The task graph in (b) is not the final one since we should further
refine the rather generic “process pulses” tasks. This leads to
the task graph (c) in Figure 3. This task graph is actually the
one given for the dashboard controller in [1]. The structuring of
the “process pulses” tasks is the choice of the original designers
of the dashboard controller, so we will not question it; we will
however derive the rates of all the tasks in the task graph and
check to see if the rate requirements are still satisfied.

In the speedometer part, the “process pulses 1”7 task is struc-
tured into tasks b and c. Task b reads the pulses and computes
the speed of the car whereas task ¢ reads one speed value and

produces 24 speed values between the current one and the pre-
vious one. For example, if the speed changes from 30 to 54,
the speedometer will get 24 values, 31, 32, ..., 54. This is done
to smooth out the movement of the speedometer’s needle. We
now see that the derived period intervals for tasks b and c are
the same as that of the “process pulses 1”7 task.

In the odometer part, the “process pulses 2” task is struc-
tured into tasks e, f, g, and h. This is done in such a way that
the distance traveled to display on the odometers is computed
by different tasks, one task for each odometer. Task h com-
bines the distances computed and sends them to the respective
odometers. Since each of these tasks gets one value and pro-
duces one value, the derived period intervals for each task is the
same and is equal to that of the “process pulses 2” task.

In [1], the period interval of task b is fixed at 250 ms. Fixing
the period interval means that task b will read different number
of pulses from task a to compute the speed. This does not
violate the functionality; it may, however, lead to average rather
than instantaneous speed values in short intervals. Using this
fixed value, we can see that the new derived period (interval)
for task c is also 250 ms. The period intervals for the other
tasks do not change.

We can now validate the rate requirements of the system.
Since the rates of the output tasks have not been changed by the
final structuring phase, the rate requirements are still satisfied.
The system does not have any response time requirements, but
if it had, we could also validate them. The importance of vali-
dations in this particular example stems from the fact that each
structuring phase increases the response time of the system.
always @(aor b) begin

if (al= old_a) begin
e oot] 5
end

if (b 1= old_b) begin
count_b = count_b +1;

(@)
° e mem_blcount_b] = b;
0 T(0) end

Cisan OR/g/d task if (count_a >=T(a)) begin

reg [n-1:0] mem_a[T(a)], mem_b[T(b)];
integer count_a, count_b;

count_a = count_a- T(a);
taskc(ab):

end

diseif (count_b >= T(b)) begin
count_b = count_b - T(b);
tasko(ab);

end

end

Figure 4: Verilog HDL for task c that is an OR/s/d task. Ver-
ilog task, taskc, captures the functionality of the task. Initially,
old_a = a, old_b =b and count_a = count_b = 0.

In the above task structuring phases, RADHA-RATAN only
expects to know the rate of the input task, task a, and some
important details related to the functionality of the tasks, such
as there must be at least two pulses to compute a distance value
and thereby a speed value. We should mention that RADHA-
RATAN handles all the other derivations and validations au-
tomatically. The derivations and validations in the above dis-
cussion, which may seem to be carried out manually by the
designers, are to illustrate how RADHA-RATAN works inter-
nally.

4 Timing Driven Design Exploration

RADHA-RATAN derives a time budget for each task in the
task graph. Hence, we know the timing constraints that each
task should obey. Also, from the task graph, we know the in-
put/output characteristics of each task in terms of token usage.
These two can be combined to define a high-level process timing
model for the system in order to perform a high-level simula-
tion of the system to evaluate its performance characteristics,
which we call process timing simulation. For timing simulation,
we represent the high-level process timing model of the tasks
of the system using Verilog HDL. In contrast to functional sim-
ulation, process timing simulation does not assume knowledge
of task internals. Functional simulation is performed only to

present valid internal values while for process timing simula-
tion, the contents of tokens used to communicate between tasks
do not matter.

4.1 Transformation to Verilog HDL

The generalized task graph classifies its tasks according to their
behavior upon receiving tokens from their predecessors as in
Figure 4. Using this classification, we capture the functionality
of the task into a Verilog task. Note that this functionality may
not be known in the very early stages of the design cycle, and
may result in an empty Verilog task. Our tool provides a “token
protocol layer” around the functionality of the task that triggers
the functionality (which may be an empty Verilog task, when
the implementation of the functionality is not known) based
on the tokens received from its predecessors. Figure 4 shows
an example of such a protocol layer for an OR/s/d task. Our
tool automatically generates the Verilog code from the input
that the user has provided: the generalized task graph and the
interaction of the tasks using tokens. Using this generated code
as a template, the user can then refine the functionality of the
task by providing the implementation details of the task.

Comparisions of distance travelled as displayed by the life odometer
20 T T T T

Typ‘lcal Dm‘/lng Scenario ——
18 | Latgney for tasks f and g uniformly drawn from [1.38,71.99] secs -—»-— |

16 Distance travelled during a typical driving scenario
12
10

Distance in kilometers

0
0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06 9e+06 le+07
Time in milliseconds

Figure 5: Comparisons of distance traveled by the car as dis-
played by the life odometer under a typical driving scenario and
when we pick the latency of tasks f and g uniformly from the
interval [1.38,71.99]. The fewer number of data points indicates
that we have token loss, and the distance traveled is incorrect
when we reduce the latencies of tasks f and g.

We now describe how we can transform a typical task to
Verilog HDL for process timing simulation. Recall that a task
needs enabling tokens to get enabled. These tokens are gener-
ated by the task’s predecessors. For example, only one token
sent from the “read speed” task to the “filter speed” task in
the dashboard controller is enough to enable the latter task.
However, we do not exactly know how many tokens the “read
speed” task needs to get enabled but we know that it should
get enabled every 250 ms. This has been obtained by run-
ning RADHA-RATAN during Step 2 or Step 4 of our codesign
methodology. We can achieve this behavior using a timer (a
clock in the context of Verilog HDL). The timer can also be
represented as a task in the task graph so it does not disrupt
the task graph semantics.

Now, consider the “filter speed” task. We know its func-
tionality in that we know it gets enabled by one token from the
“read speed” task and generates 25 tokens for the speedometer,
one every 10 ms. The only detail that we do not know is how the
“filter speed” task actually filters the speed which means we do
not know the internal details of the task filter speed. Therefore,
the token sent from the “filter speed” task to the speedometer
does not have a valid and filtered speed value as would be the
case in functional simulation. The key issue in process timing
simulation is the fact that the token is communicated between
these tasks under the required timing constraints.

4.2 Timing simulation scenarios

A time budget for a task is a period interval and it gives the
smallest and largest period possible for the task. For exam-
ple, the “wheel pulses” task has a period interval of T, =
[2.28,118.80] ms, which is derived by knowing that the vehi-
cle travels at a speed in the range of 5-260 km/h. The rate
derivation algorithm derives the period interval for the other
tasks using T,.

To understand the timing behavior under typical operating
conditions, simulation is necessary. Assume that under a typical
driving scenario the vehicle’s driver decides between accelera-
tion, deceleration, and changes speed in a uniformly distributed
manner. We assume the acceleration and deceleration periods
are normally distributed with a mean of 20 s and a standard
deviation of 1 s. We assume the acceleration or deceleration of
the vehicle is such that it takes 10 s for the vehicle to have a
speed increment of 100 km/h. These are normally distributed
such that the time to get this speed increment has a mean of
10 s and a standard deviation of 4 s. We assume the vehicle
will not accelerate and decelerate constantly. We also assume
that it will not change its speed for twice as long as the acceler-
ation/deceleration period. We prevent the car going above 80
km/h. These restrictions are placed in a test bench file that
drives the generation of the wheel pulses. We now describe two
scenarios with these simulation parameters.

Comparisions of Speed as displayed by the speedometer

80

‘Late C)‘/ for task c unif(‘)rmly dréwn frorh [4.46,‘237_60]‘ secs T
; Driving Scengrio R

3 !
) Speqd with tz‘asyﬁ c Iat‘ency

Typic
70 | Speed during typical drive x q
i i
60 - ; » bl
i X i ¢ :]INIEMIME
< 50| i % B % b % g
g x x bl X X
= * ; | % ¢
<ol 3 A N N b
(% 30 ““.‘ ! X i *i b il
X 1 ¥ X * E— 3
: n ¥ ooper % ;
20 ; ; @m £ b
] i x
10 i it | i
e 1 A
.

0
0e+00 1le+05 2e+05 3e+05 4e+05 5e+05 6e+05 7e+05 8e+05 9e+05 le+06
Time in milliseconds

Figure 6: Plot of the speed of the car when we pick the latency of
task ¢ from a uniform distribution in the interval [4.46,237.60]
s versus the speed during a typical driving scenario. The token
loss is indicated by the fact the we have lesser data points and
the displayed speed is incorrect when we vary the latency of task
c. If there were no token loss, we would expect identical speed
values in both cases.

Case 1: In this scenario, we wish to determine the rate
at which tasks f and g should run so that we can ascertain
their latencies. From our analysis results, we know that tasks
f and g will have a period interval of [1.38,71.990] s, so their
latency should be at most 1.38 s. Once the latencies have been
determined, we can impose a timing requirement on the spe-
cific implementation of tasks f and g. To validate the latencies
with timing simulation, we chose the latency of tasks f and
g such that they are uniformly distributed within the interval
[1.38,71.990].

A timing simulation of the system, with these parameters for
tasks f and g, reveals that these tasks are slower than required.
The system drops almost 1/4 of the tokens that should reach
the odometers. Figure 5 illustrates this scenario: it displays
the number of tokens that get registered at the life and trip
odometers under a typical driving scenario (presented above)
and when the latency of tasks f and g are drawn uniformly
from the interval [1.38,71.99]. This shows that the latency of
both tasks has to be 1.38 s, otherwise we will drop tokens and

report the distance traveled incorrectly (Note that the distances
traveled as reported by the life odometer is different).

Case 2: From our analysis results, we know that task ¢ will
have a period of 250 ms. Since it may take at most 237.6 s for
task b to produce a token for task ¢, any latency of less than
237.6 s for task ¢ will result in loss of tokens. In order to validate
this, we draw the latency of task ¢ uniformly from [4.46, 237.60)]
s, and see that the system drops many tokens. Figure 6 illus-
trates this scenario, and compares it with the timing simulation
of the dashboard controller under a typical driving scenario.

From these examples it is clear that multiple system de-
sign scenarios can explored via simulation using rate derivation
and task structuring. In this way, a designer can get a prelimi-
nary idea of the system’s performance and validate the system’s
timing prior to detailed implementation. Further, detailed im-
plementation can now be timing driven as well as shown in the
first scenario.

5 Summary

We proposed a timing driven codesign methodology based on
high-level timing constraint derivation and validation (RADHA-
RATAN). This is applied to task structuring and enables pro-
cess timing simulation during the design of embedded real-time
systems. We show that this tool can be used for systematic
treatment of timing issues during task structuring. Using the
timing bounds obtained from RADHA-RATAN, we can perform
process timing simulation of the system and explore various tim-
ing dependent system design choices.

References

[1] BALARIN, F., ET AL. Hardware-Software Co-Design of Embedded
Systems: The POLIS Approach. Kluwer Academic Publ., Boston,
MA, USA, 1997.

[2] Cuou, P., WALKUP, E. A., AND BORRIELLO, G. Scheduling for reactive
real-time systems. IEEE Micro (Aug. 1994), 37-47.

[3] DASDAN, A., RAMANATHAN, D., AND GUPTA, R. K. A timing-driven
design and validation methodology for embedded real-time systems.
ACM Trans. on Design Automation of Electronic Systems. 3, 4
(Oct. 1998).

[4] DASDAN, A., RAMANATHAN, D., AND GUPTA, R. K. Rate derivation and
its applications to reactive, real-time embedded systems. In Proc.
the 85th Design Automation Conf. (1998), pp. 263-268.

[5] RAMANATHAN, D., DASDAN, A., AND GUPTA, R. K. High-Level Modeling
of Communication in Real-Time Embedded Systems. IEEE High-
Level Design Validation and Test Workshop, Nov 1998, pp. 172—
180.

[6] DASDAN, A. Timing Analysis of Embedded Real-Time Systems. Ph.D
Thesis, University of Illinois at Urbana-Champaign, 1998.

[7] GERBER, R., HONG, S., AND SAKSENA, M. Guaranteeing real-time
requirements with resource-based calibration of periodic processes.
IEEE Trans. Software Eng. 21, 7 (July 1995), 579-92.

[8] Gomaa, H. Software Design Methods for Concurrent and Real-
Time Systems. Addison-Wesley, Reading, MA, USA, 1993.

[9] HATLEY, D. J., AND PIRBHAL 1. A. Strategies for Real-Time System
Specification. Dorset House, New York, NY, USA, 1987.

[10] Hou, J., aND WoLF, W. Process partitioning for distributed embed-
ded systems. In Proc. Int. Wrkshp on HW/SW Codesign. (1996),
IEEE, pp. 70-76.

[11] Ku, D., AND MICHELI, G. D. High Level Synthesis of ASICs Under
Timing and Synchronization Constraints. Kluwer Academic Publ.,
Boston, MA, USA, 1992.

MATHUR, A., DAsDAN, A., aND Gupta, R. K. Rate analysis of em-
bedded systems. ACM Trans. on Design Automation of Electronic
Systems 3, 3 (July 1998).

[13] DIRk ZIEGENBEIN, AND ROLF ERNST A Framework for High-Level Per-
formance Validation of Embedded HW/SW Systems IEEE Interna-
tional Workshop on High-Level Design Validation and Test, Nov
1998.

[12

	Main Page
	CODES'99
	Front Matter
	Table of Contents
	Session Index
	Author Index

