
Timing Coverificationof ConcurrentEmbeddedReal-TimeSystems

Pao-AnnHsiung
Instituteof InformationScience,AcademiaSinica,Taipei,TAIWAN.

E-mail: eric@iis.sinica.edu.tw

���������	��
��

Hardware-softwarecodesignresultsof concurrentembeddedreal-
time systemsare often not easily verifiable. The main difficulty
lies in thedifferenttime-scalesof the embeddedhardware,of the
embeddedsoftware,andof the environment. This ratedifference
causesstate-spaceexplosionsand hencecoverification hasbeen
mostly restrictedto the initial systemspecifications. Currently,
most codesigntools or methodologiesonly supportvalidation in
theform of cosimulationandtesting.Here,we proposea new for-
mal coverificationmethodbasedon linear hybrid automata. The
basicproblemsfoundin mostcoverificationtasksarepresentedand
solved. For complex systems,a simplificationstrategy is proposed
to attackstate-spaceexplosionsin formal coverification. Experi-
mentalresultsshow thefeasibilityof ourapproachandtheincrease
in verificationscalability throughthe applicationof the proposed
method.

���� ���	������
������ �

An embeddedreal-timesystemis onewhich is installedin a larger
systemcalledenvironment. It is generallyacompact,task-oriented,
and budget-limitedsystemsatisfyingtiming constraintsand cost
bounds.Embeddedreal-timesystemsusuallyhave bothhardware
andsoftware interactingwith eachother to accomplisha specific
task.Hardwaretriesto satisfytiming constraints,andsoftwarere-
ducestheoverall costandprovidesdesignflexibility. Thepresence
of both hardware and software incurs difficulties in verifying an
embeddedreal-timesystem. Somecommonobstaclesfacedare:
the lack of a formal methodthat can specify both hardware and
software, the different time scalesof the hardware, the software,
andtheenvironment,therequirementof communicationprotocols
betweenhardware and software, synchronizationmechanismsin
hardware-softwareinterfaces,andthelack of a formal verification
technologydevoted to hardware-software coverification. After a
carefulanalysisof possible/existingverificationtechniques,wefelt
theneedof proposinga new coverificationmethodthatcantackle
someof theaboveproblemsandhasisscalableto complex systems.

The threedifferenttime scalesof anembeddedsystemandits
environmentposeda greatproblemin previous approaches(see

Section2). Thediffering time scalesleadto anexplosionof state-
spaceduring model compositionfor coverification. Hybrid au-
tomata, asdefinedlater in Section3, wereproposedfor modeling
hybrid systems[2]. Not only caneachhybrid automatonhave a
differenttimescale,but ahybridautomatoncanalsohavedifferent
timescaleswithin eachlocation(collectionof states).This feature
allows themodelingof a multi-ratesystemthathasseveral timers
with differentprogressrates.In thehardware-softwarecontext, this
meansnotonly canwemodelasinglechiphardware(1-ASIC)and
a uniprocessorsoftware(1-CPU),but alsomulti-chiphardware(n-
ASIC) andmultiprocessorsoftware(m-CPU),wheren � m � 0.

Anotherreasonfor usingthehybrid automatamodelis thatan
embeddeddigital systemcanalwaysbe perceived asa linearsys-
tem,thatis, theclock ratesareall linear. Theverificationtheoryfor
linearhybridautomatawasproposedbyAlur etal in [2] andalready
implementedin the HyTech tool [11]. Our contribution mainly
lies in modelingembeddeddigital systemsusingthe linearhybrid
automatamodel,demonstratinghow basiccoverificationproblems
canbesolved,experimentingwith realexamples,andproposinga
simplificationstrategy for coverifying complex systems.

This article is organizedasfollows. Section2 describessome
relatedandpreviouswork. Section3 givestheformal definitionof
ahybridautomatonanddescribeshow anembeddedsystemcanbe
modeledby anetwork of hybridautomata.Section4 presentssome
elementarycommonly-foundcoverificationproblemsandhow they
aresolved.A simplificationstrategy is alsopresentedfor coverify-
ing complex systems.Section5 presentsan EthernetBridgecase
studyillustratingourcoverificationconceptsandmethod.Section6
concludesthearticlewith somefuturework.

� � �	������� ���"!#�$�	%

Largesystemscannow significantlydecreasetheir overall costby
designingpartsof embeddedsystemsassoftwareexecutingon a
general-purposecomputationprocessor. This costreductionis de-
sirable,but it hasalsocreateda few new problemsof its own such
as the needfor a communicationprotocolbetweenthe hardware
andsoftwareparts,morecomplicatedfault-toleranceproblems,the
myth thatsoftwarecanbeeasilychanged, without any heavy con-
sequences,andcoverificationproblems.

Codesignis an emerging field of researchthat dealswith de-
signingsystemsthathave bothhardwareandsoftware. In thepast
few years,several codesignmethodologieswere proposed,such
asCOSMOS[8], ECOSproject[1], LOTOS-basedcodesign[15],
CMAPS [12] to namea few. Codesigntools also abound,such
asSpecSyn[10], Ptolemy, andPolis [4], COSYMA [9], Tyndex,
SAW, COWARE,andCHINOOK [7]. Eitheracombinedprogram-
ming languagesuchas VHDL with C and HardwareC,or some



formal specificationlanguagesuchasLOTOS, ETOILE, Esterel,
graphical& FSM, and CSPare usedfor specifyingembeddedsys-
tems. Formal techniqueshave oftenbeenlimited to the specifica-
tion stagesuchasformalverificationof thesystemspecificationin
LOTOS[15].

From the above, most codesignmethodologiesor tools cur-
rently validatethecodesignsproduced,insteadof verifying them.
Validationoccursin the form of cosimulationandtesting. Cover-
ification, althoughdifficult, shouldnot be neglected,especiallyin
high-consequencesystemssuchasnuclearprojects,safetysystems,
etc.Themainproblemsfacedin coverifyingadesignsuchasdiffer-
enttime-scales,etc.werepresentedin Section1. Below, webriefly
mentiontwo formal modelsthathave beenusedfor coverification
and/orcodesign,namelyCFSMandIPN.

CodesignFSM (CFSM)[5] is a formal modelusedin thePO-
LIS codesigntool [4]. Coverificationis performedby translating
CFSM into traditionalFSM andexisting FSM-basedverification
techniquesapplied. The problemof different time scalesis not
solved becausetraditionalFSM eitherhave no notion of time or
their extensionsuchasTimedAutomata[3] allow specificationof
clockswith a singleuniformrateonly. IntepretedPetri Nets(IPN)
wereusedfor synthesizinginterfacesin [16]. Temporalconstraints
were specifiedby assertinga delay to a place in IPN. But, the
delaysoccurringin a multi-ratesystemmustbe transformedinto
a commonbaserate. This transformationis not always ideal or
straightforward. Both CFSM andIPN have the sameproblemof
having to handledifferenttime scales,eitherfor coverificationor
codesign.Thehybrid automatamodelwe usefor formal coverifi-
cationsolvestheproblemof differenttime-scalesandat thesame
timeautomaticcoverificationcanbeperformed.Wewill show how
usingthismodel,severalcoverificationproblemsaresolved.

Further, existingreal-timesystemverificationtoolssuchasUp-
paal[6], SGM (State-GraphManipulators)[13, 17], andothersdo
notexplicitly distinguishhardwareandsoftwareverification.Since
our model is basedon hybrid automata,we usethe HyTechtool
[11] developedby Henzinger, et al. HyTechis a populartool for
verifying hybridsystems.

' (*) ���+�,�-�.�/���$01�2���435�����76

Thehardware-softwaretiming coverificationapproachproposedin
this article is mainly basedon the hybrid automatamodel. There
arevariousreasonsfor usingsucha modelasgiven in Section1.
In this section,hybrid systemsaredefinedandillustratedwith ex-
amples,the hybrid automatamodel is formally defined,and two
different systemmodelsfor hardware-software coverification are
proposed.

The hybrid automatamodelwasinitially proposedfor hybrid
systems. A hybrid systemconsistsof a discreteprogramwith an
analogenvironment[2]. For example,a thermostatwhich controls
thetemperatureof a roomby sensingthetemperatureandcontrol-
ling a heateris a hybrid systembecausewhentheheateris off the
temperature(x) decreaseswith a rateof 8 Kx andwhentheheater
is on, the temperaturechangeswith a rateof K 9 h 8 x: , whereK
is a constantrelatedto the roomandh is a constantrelatedto the
power of the heater. The specificationfor the thermostatis that
the temperatureshouldbe maintainedbetweenm andM degrees
(0 ; m ; M). Otherexamplesof hybrid systemsincludea water-
level monitor, timedmutual-exclusionprotocol,leakinggasburner,
andagameof billiards[11]. Hybrid systemscanalsobecomposed
in parallel.Linearhybridsystemsarehybridsystemsthathavetheir
activities, invariants,andtransitionrelationsall expressedaslinear
expressionson thesystemvariables[2].

A hybridautomatoncanbeformally definedasfollows.

Definition 1 Hybrid Automaton(HA)
A hybridautomaton(HA) is a tupleH <=9 L � V � B � E � α � η : , whereL

is a setof locations,V is a setof variables,B is a setof synchro-
nizationlabels,E is a setof edgescalledtransitions,E <?> e@ e <
9 l � b � µ� l AB:C� l � l A2D L � b D B � µ E=F 2 G , where F is thesetof all valu-
ationsof thevariablesin V, α is a labelingfunctionthatassignsto
eachlocationa setof activitieswhich aretime-invariant,andη is
a labelingfunctionthatassignsto eachlocationl D L an invariant
conditionη 9 l :�E-F . H

A stateof a hybrid automatonH is a pair 9 l � v: , wherel D L
andv is a valuationof the variablesin V. A run of H is a finite
or infinite sequenceρ : σ0 I t0

f0
σ1 I t1

f1 JKJLJ , whereσi <=9 l i � vi : , ti DM4N 0, fi D α 9 l i : , fi 9 0:�< vi � fi 9 t :�D η 9 l i :PO t � 0 Q t Q ti , andσi R 1 is a
transitionsuccessorof σ Ai <=9 l i � fi 9 ti :K: .

An embeddedsystemwith hardwareandsoftwarecanbemapped
into a network of linear hybrid automata(LHA). In the simplest
case,onehybridautomatonrepresentsthehardwareandonerepre-
sentsthesoftware.Thehardwareandsoftwareinterfacesaremod-
eledinto thehardwarehybrid automaton(HHA) andthesoftware
hybrid automaton(SHA), respectively. Anotherform of modeling
couldbemappingthehardwarepart into severalLHA eachrepre-
sentingsomephysicalhardwarecomponentandthe softwarepart
into several LHA eachrepresentinga software process. Due to
page-limit,thispartis omitted.

S T �U�$�V�+�XWY
��2����� �-Z �7
+[ � �,\]���7�

Using the hybrid automatamodelfor an embeddedsystem,solu-
tion techniquesareproposedfor somecommonly-foundcoverifica-
tionproblems.Thefivecommonly-foundelementarycoverification
problemspresentedhereinclude:SoftwareSynchronization, Hard-
ware Synchronization, Software Concurrency, Hardware Concur-
rency, and Integrated CodesignAlternativeVerification. A sys-
tematicsimplificationtechniquecalledSHIV (Software-Hardware-
InterfaceVerification) is alsopresentedfor verifying complex sys-
tems.SHIV decomposestheLHA modelsinto threeparts,namely
thesoftware,thehardware,andthe interface,andensuresthat the
systemis safeby performingverificationof eachpart.

S�^� _ ��`a�cbd�2�	� _])�� 
+[��	� � ��e�������� �
In mostembeddedsystems,thesoftwareaccomplishessometasks
that arecostly for thehardware. Often, the hardwaremakesa re-
questto thesoftwarefor performinga taskandwaits for thesoft-
wareto respond.Blocking synchronizationis assumedthroughout
this articlebecauseembeddedsystemsaregenerallysynchronous.
Asynchrony increasescomplexity andembeddedsystemsusually
cannotafford it. The hardwareaftermakinga requestwaits for a
pre-specifiedperiodof time, asdeterminedby the systemspecifi-
cationor the codesignmethodology. If the time limit is reached
andthesoftwarehasnot yet responded,thehardwareentersa dan-
gerousambiguousstateandthe systemis unsafe. Coverification
mustensurethatall suchsoftwaresynchronizationsaresuccessful
for thegivendifferenttimescalesof thehardwareandthesoftware.

Figure1showsaLHA simplemodelof asoftwaresynchroniza-
tion. The hardwarehasa relative clock rateof f 5g 6 � 7g 6h andthe
software f 3g 4 � 4g 5h . RunningthemodelusingtheHyTechtool, we
foundthatsoftwaresynchronizationis guaranteedonly if 9hmax i
14smax. Furtheranalysisshows that if f hl � hu h and f sl � su h werethe
hardwareandsoftwareclock rates,respectively, thenthecondition
for softwaresynchronizationcanbegivenasa parametricexpres-
sion:

sl hmax i husmin (1)

wherehmax is themaximumtime thehardware,aftermakinga re-
quest,will wait for thesoftwareresponseandsmin is themaximum
time thesoftwaremusttake for computationof the requestedtask
or equivalentlytheslowestcomputationdelay.



j j j j j j j j j j j j jjjjjjjjjjjjjj
jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj jj j j j j j j j j j j j j j j j j j j j j j j jj j j j j j j j j j j j jjjjjjjjjjjjjj

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjj jjj j j j j j j j j j j j j j j j j j j j j j j j j
jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j jj

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j jj jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j jj jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j jj

j j j j j j j j j j j j jjjjjjjjjjjjjj
jjjjjjjjjjjjjj j j j j j j j j j j j jj j j jj j jj j jj j jj j jj j jj j jj j jj jj jj jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

j jj jj jj jj j jj j jj j jj j jj j jj j jj j jj jj jj jj jj jj jjjjjjjjjjjjjjj jjj jjj jjj jjj j j j j j j j j j j j j
jjjjjjjjjjjjjj j j j j j j j j j j j jj j j jj j jj j jj j jj j jj j jj j jj j jj jj jj jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

j jj jj jj jj j jj j jj j jj j jj j jj j jj j jj jj jj jj jj jj jj j jjjjjjjjjjjj jjj jjj jjj jjj j j j j j j j j j j j j
done
xs k smin

Init

Dead

done
xh l hmax

start

Wait xh m hmax

xh n 0

start

Hardware Software

dxh odp 5q 6 r 7q 6s dxs otp 3q 4 r 4q 5s

xs l smin

xs n 0

xh l 1

Compute

Init

xh n 1
xh : n 0

xs : n 0

Figure1: SoftwareSynchronization

S/^B� ( ���+�/bd���	� _�)�� 
u[/�	� � ��e��2����� �
In contrastto softwaresynchronization,hardwaresynchronization
involvesaminimumtimethatthehardwaremustwait aftermaking
a requestto thesoftware.This situationoccursin theexecutionof
periodic tasks,wherethe start time of two instancesof the same
tasksmustbe separatedby a minimum time interval. For exam-
ple, whenthesoftwareis responsiblefor digital signalprocessing,
if two instancesof thesametasksoverlaprandomly, thenthecom-
putationof the first taskwill be affectedby the secondone,thus
causinga delayin all futureoutputs.Thesituationbecomesworse
whenmorethantwo instancesof thesametaskall overlapcausing
aheavy workloadon theprocessorexecutingthesoftware.Coveri-
ficationin this casemustensurethatthehardwaredoesnot violate
theminimumwait timeconstraints.

Figure2 shows a hybrid automatamodel of a hardware syn-
chronization.Thehardwareandsoftwarerelativeclock-rateranges
were f 5g 6 � 7g 6h and f 3g 4 � 4g 5h , respectively. Themodelspecifica-
tion was executedusing HyTech and the resultsobtained: hard-
waresynchronizationis guaranteedwhentheparametriccondition
25smax i 24hmin is satisfied. Furtheranalyticalstudyshows that
if the hardware and software clock-raterangeswere f hl � hu h andf sl � su h , respectively, thenthe hardwaresynchronizationis guaran-
teedonly if thefollowing conditionis satisfied.

hl smax i suhmin (2)

wheresmax is themaximumcomputationtime of thesoftwareand
hmin is theminimumwait-timeof thehardware.

S/^v' _ �$`P�cbd���	� T � � 
��/�	�	� � 
 )
If a multiprocessorsystemis within costconstraintsfor executing
thesoftware,a naturalquestionthatarisesis how many computa-
tion processorsmustbeusedto speedup softwareexecutionin or-
der to copewith hardwarerequirementsandthusguaranteea safe
andfeasiblesystem.This questioncanbeansweredthroughSoft-
wareConcurrencyCoverification(SCC).Softwareconcurrency cov-
erificationmainly derivesparametricconditionsthat mustbe sat-
isfied by a m-processorsystem(m i 1) to ensurea safesystem.

j j j j j j j j j j j j jjjjjjjjjjjjjj
jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj jj jj j j j j j j j j j j j j j j j j j j j j j jj j j j j j j j j j j j jjjjjjjjjjjjjj

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj jj j j j j j j j j j j j j j j j j j j j j j j j
jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j jj j

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j jj jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j jj jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j jj

j j j j j j j j j j j j jjjjjjjjjjjjjj
jjjjjjjjjjjjjj j j j j j j j j j j j jj j j jj j jj j jj j jj j jj j jj j jj j jj jj jj jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

jjj jj jj jj j jj j jj j jj j jj j jj j jj j jj jj jj jj jj jj jj jjjjjjjjjjjj jjj jjj jjj jjjj j j j j j j j j j j j j
jjjjjjjjjjjjjj j j j j j j j j j j j jj j j jj j jj j jj j jj j jj j jj j jj j jj jj jj jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

j jj jj jj jj j jj j jj j jj j jj j jj j jj j jj jj jj jj jj jj jjjjjjjjjjjjjjj jjj jjj jjj jjj j j j j j j j j j j j j
Init

xs k smax

Init
xh l 1

Dead

xh k hmin

start

Wait xh w hmin

xh n 0 xs n 0

start

Compute
xs l smax

done

SoftwareHardware

dxh otp 5q 6r 7q 6s dxs otp 3q 4r 4q 5s

done
xs : n 0xh n 1

xh : n 0

Figure2: HardwareSynchronization

j j j j j j j j j j j j jjjjjjjjjjjjjj
jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj jj j jj j j j j j j j j j j j j j j j j j j j j j

j j j j j j j j j j j j jjjjjjjjjjjjjj
jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj jj j j j j j j j j j j j j j j j j j j j j j j jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j jj

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j jj jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j jj j

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j jj

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j
j j j j j j j j j j j j jjjjjjjjjjjjjj

jjjjjjjjjjjjjj j j j j j j j j j j j jj j j jj j jj j jj j jj j jj j jj j jj j jj jj jj jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

jjj jj jj jj j jj j jj j jj j jj j jj j jj j jj jj jj jj jj jj jj jjjjjjjjjjjjjj jjj jjj jjj jj j j j j j j j j j j j j

j jjjjj jj jj jj jj jj jj jj jj jj jj jj jj jj jj jj j j jj jj jj jj jj jj jj jj jj jj jj jj jjjjj jjjjjjjjjjjjjjjjjjj
jj jjjjjjjjjjjjjj jjjjj jjjjj jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj jj jj jj jj jj jj jj jj jj jj jj jj jj j j jj jj jj jj jj jj jj jj jj j jj j jj j jj j jj j jj j jj j j j jj j j j j j j j j j j j jjjjjjjjjjjjjj

jjjjjjjjjjjjjj j j j j j j j j j j j jj j j jj j jj j jj j jj j jj j jj j jj j jj jj jj jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj
jjjjjjjjjjjjjj j j j j j j j j j j j jj j j jj j jj j jj j jj j jj j jj j jj j jj jj jj jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

jjjjjjjjjjjjjj j j j j j j j j j j j jj j jj jj j jj j jj j jj j j jj j j jj j j j jj j j j jj j j j jj j j j jj j j j jj j j j jj j j j jj j j j jj j j j jj j j jj j j jj j j jj j j jj j jj j jj j jj j jj j j jj j j jj j jj j jj j jj j jjj jjj j jjj jj jjj jjjj jjjj jjj jjjjj jjjjjjjj jjjjjj jjjjjjjjjjjjj jjjjjjjjjjjjj jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

jjjjjjjjjjjjjj j j j j j j j j j j j jj j j jj j jj j jj j jj j jj j jj j jj j jj jj jj jj jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

j jj jj jj jj j jj j jj j jj j jj j jj j jj j jj jj jj jj jj jj jjj jjjjjjjjjjj jjj jjj jjj jjjj j j j j j j j j j j j j

jjjjjjjjjjjjjjjjjjjjjjjjjjj j jj jj jj jj jj jj j jj j jj j jj j jj j jj j j jj j j j j j j j j j j j jjjjjjjjjjjjjj
jjjjjjjjjjjjjjjjjjjjjjjjj jjjjj jj jj jj jj jj jj j jj j jj j jj j j j jj j j j j j j j j j j j jjjjjjjjjjjjjj

j jj jj jj jj jj jj j jj j jj j jj j jj j jj j jj j jj j jj j jj j jj j jj j jj
j jj j jj jjj j jjj jjj jjj jjj jjjjj jjj
jjjjj jjjjj jjjjjjjjjjj
jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj
jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj
jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj jjjjjjjjjjjjjj j j j j j j j j j j j j

Hardware

Init
xh l 1

done1,done2,done3
xh l hmax

start

xh m hmax

xh n 0

restart1
xh : n 0

restart2
xh : n 0

Dead

dxh otp 3q 5r 2q 3s

Wait

xh n 1
xh : n 0

Init

xs n 0

start
xs : n 0

done3

restart1

restart2
Compute2

Compute3

Compute1

Software

done2

done1
xs w smin1

dxs1 otp 1q 4 r 3q 7s

dxs2 otp 1q 2 r 2q 3s

dxs3 otp 3q 4 r 4q 5s

xs n smin1

xs n smin2

xs w smin3

xs w smin2

Figure3: SoftwareConcurrency

The clock ratesfor eachconfigurationof the m-processorsystem
(m i 1) mustbeestimated.Thehardwarewaitsfor someminimum
time periodaftermakinga request.By increasingthe quantityof
processors,the software performancecould be improved to give
resultswithin thehardwareminimumtimeperiod.

Figure3 shows ahybridautomatamodelfor asystemwith one
hardwareandthreepossiblesoftwareconfigurations:1-processor,
2-processor, and3-processorsystems.Thehardwarerelative clock
rateis assumedto be f 3g 5 � 2g 3h andthatof thesoftwareconfigura-
tions[1/4,3/7], [1/2,2/3], and[3/4,4/5], respectively. A sub-linear
increasein computingpower of thesoftwareconfigurationsis as-
sumed.If hmax is themaximumhardwarewait-timetimeandsmin is
theslowestsoftwarecomputationperiod,thenon runningthrough
HyTecheitheroneof thefollowing holds:(1) all thethreeconfigu-
rationsaresafeif hmax � 3smin, or (2) only the1-processorsystem
is not safeif hmax � 2smin, or (3) only the 3-processorsystemis
safeif hmax � smin.

Dependingontheparticulartaskathand,hmaxandsmin couldbe
estimatedandthedegreeof softwareconcurrency obtainedthrough
coverification.

S�^ S ( �2�+��bd�2�	� T � � 
��/�	�	� � 
 )
In contrastto softwareconcurrency coverification,which increases
software performanceto meethardware requirements,Hardware
ConcurrencyCoverification(HCC) decreasesthehardwarecostto
meetboth the cost and software requirements.Often a cheaper,
slower hardware could satisfy all timing requirementsin an em-
beddedsystem.Optingfor sucha hardwarecoulddecreaseoverall
systemcost,thusleavingmorebudgetfor otherembeddedsystems.
Hardwareconcurrency coverificationderivesparametricconditions
for eachhardware-softwareconfigurationandtheverificationengi-
neercould thendecideon oneparticularconfigurationthat meets
thetiming requirements.

Figure4 shows theLHA modelof hardwareconcurrency cov-
erificationwith threehardwareconfigurationsH1, H2, andH3 and
onesoftwareconfiguration(S). The hardware clock ratesare re-
spectively f 1g 4 � 3g 7h , f 1g 2 � 2g 3h , and f 3g 4 � 4g 5h andthatof thesoft-
wareis f 3g 5 � 2g 3h . Supposethathmin1, hmin2, andhmin3 arethere-
spectiveminimumtimethatthehardwareconfigurationsmustwait
(seeHardwareSynchronizationCoverificationin SubSection4.2)
andsmax bethemaximumcomputationtime of software.Running
this model throughHyTech,we obtain the result that the system
configurationsaresafeonly if the following conditionsaresatis-
fied: (1) 9 H1 � S: is safeif 3hmin1 ; smax, (2) 9 H1 � S: and 9 H2 � S: are
safeif 2hmin2 ; smax, and(3) 9 H1 � S: , 9 H2 � S: , and 9 H3 � S: areall
safeif hmin3 ; smax. Hence,if in theslowestandcheapesthardware



start

done3

done1

restart1

restart2

Wait1

Wait2

Wait3

DeadHardware

Init

Wait

restart1

Software

start

restart2

Init

xh x 0

xh : x 0

done2

dxh3 y{z 3| 4 } 4| 5~
dxh2 y{z 1| 2 } 2| 3~
dxh1 y{z 1| 4 } 3| 7~

xh
N hmin2

xh
N hmin1

xh � hmin3

xh
N hmin3

done1,done2,

xs x 0 dxs y{z 3| 5 } 2| 3~

xs : x 0

xs � smax

xs : x 0 xs : x 0
xs � smax

xs � smax

done3

xh � hmin1

xh � hmin2

Figure4: HardwareConcurrency

configuration(H1) thecondition3hmin1 ; smax is met,thenwecan
useH1 insteadof thecostlierH2 andH3 hardwareconfigurations.

S/^B� ��� ���V�$�	�2���V� T �����7����� � �.6������ � �2�����������V�+�BW�
��2���X� �
Integrated CodesignAlternativeVerification (ICAV) handlesthe
caseof complex embeddedsystemswith morethanonehardware
architecturesanda multiprocessorsystemfor executingthe soft-
ware. Several codesignalternatives may be producedand vali-
datedby a codesignmethodology. Normally the selectioncrite-
rion dependsoneitherthecost(minimumcost)or theperformance
(maximumthroughput)or both(minimumcost-performanceratio).
ICAV proposesa new criterion, namelyIncompatibilityRatio of
Software-Hardware (IRSH),which is definedasthesafestratioof
hardwareandsoftwareclock rates. By a saferatio, it meansthat
the ratio is either a minimum or a maximumthat must be satis-
fied by an embeddedsystem’s clock ratesin orderfor the system
to besafe. IRSH is a globalminimumratio whentherearepurely
softwaresynchronizations,it is aglobalmaximumratiowhenthere
arepurelyhardwaresynchronizations,otherwiseit is expressedas
arangewith its lowerboundbeingtheminimumof all locally min-
imal ratioscorrespondingto softwaresynchronizationsandits up-
per boundbeing the maximumof all locally maximal ratioscor-
respondingto hardwaresynchronizations.This metric achievesa
better trade-off betweenthe hardware and the software than the
conventionalcost-performanceratio becausethe latter canbe de-
ceiving at timesfor very low costsandpeakperformances.

IRSH is best illustratedby an exampleas shown in Fig. 5.
Thereare two hardware alternatives with clock rates f 3g 2 � 15g 8h
and f 5g 6 � 7g 6h andtwo softwarealternativeswith clock rates[3 g 4,
4g 5] and f 1g 2 � 5g 8h . This exampleis a caseof multiple software
synchronization.Table1 shows the four differentconfigurations
(C1, C2, C3, C4) achievableby thetwo hardwareandthetwo soft-
warealternativesalongwith their costs,performancevalues,and
cost-performanceratios. We observe that underdifferentmetrics
thebestdesignconfigurationis different:

� C4 hastheleastcost,but it hasaverypoorperformance,

� C1 hasthebestperformance,but it hasaveryhighcost,

� C2 hasthebestcost-performanceratio,but onapplyingICAV
we found that it hasthe largestsoftware-hardware incom-
patibility (highestIRSH),which meanssynchronizationand
othercommunicationscouldrequirea largeeffort, and

� C3 hasthe leastIRSH, which meansthat the hardwareand
the softwarearethe leastincompatibleandthusachievesa
betterhardware-softwaretrade-off thantheothers.

Table1: ICAV Example

Conf HW Clock SW Clock Cost Perf Cost/Perf IRSH
C1 p 3q 2 r 15q 8s p 3q 4 r 4q 5s 1000 100 10.00 2.5
C2 p 3q 2 r 15q 8s p 1q 2 r 5q 8s 750 80 9.38 3.75
C3 p 5q 6r 7q 6s p 3q 4 r 4q 5s 650 60 10.83 1.56
C4 p 5q 6r 7q 6s p 1q 2 r 5q 8s 500 50 10.00 2.33

Wait2

Dead

Init
start2

start4

Wait2

start3start1

Init

Hardware

done1

Compute2

done2

Compute1

Software

start4start1 start2start3
done1 done2

xh � hmax2

xh � 0

xh : � 0

xs � 0

xh � hmax1 xh � hmax2

xs : � 0

xs � smin2

xh : � 0
xh : � 0

dxh2 �]� 5� 6 � 7� 6�xh � hmax1

dxh2 �$� 5� 6 � 7� 6�
xh : � 0

xs � smin1

xs : � 0 xs : � 0xs : � 0

dxs1 �$� 3� 4 � 4� 5� dxs2 �$� 1� 2 � 5� 8�xs � smin1 xs � smin2

Figure5: Integrated CodesignAlter nativeVerification

S�^�� _ ��`a�cbd�2�	��� ( ���+�/bd���	��� ��� �����	`a��
��*���V�+�BW�
��2���X� �
A new modularizedverificationstrategycalledSoftware-Hardware-
InterfaceVerification (SHIV) is proposedfor hardware-software
embeddedsystems.Generally, the softwareand the hardwareof
anembeddedsystemcommunicateeitherthroughan interfaceus-
ing communicationprotocolsor throughsharedmemoryusingsyn-
chronizationvariables.Theinterfaceis oftenexplicit andimportant
in anembeddedsystem.TheSHIV strategy verifiesanembedded
systemby verifying eachpart individually, namelythe hardware,
thesoftware,andtheinterface.Theassume-guaranteeprincipleof
formalmodularverification[14] is employedin SHIV. In verifying
(guaranteeing) the interface,it is assumedthatboth thehardware
andthesoftwarethemselvesarecorrect.Similarly, theprincipleis
appliedto theothertwo parts:thehardwareandthesoftware.

In thecontext of thelinearhybridautomatamodel,SHIV must
performeachof thefollowing stepsto verify asystem.

� Software Verification: Thetriggeringconditionson thetran-
sitionsinterconnectingtheinterfaceandthesoftwareareas-
sumedto be TRUE. All clock variablesareeitherresetor
advanceda periodof time dependingon the triggeringcon-
ditionson theabove transitions.� HardwareVerification: Thetriggeringconditionsonthetran-
sitionsinterconnectingtheinterfaceandthehardwareareas-
sumedto be TRUE. All clock variablesareeitherresetor
advanceda periodof time dependingon the triggeringcon-
ditionson theabove transitions.� InterfaceVerification: Thetriggeringconditionson thetran-
sitionsinterconnectingtheinterfaceandthehardwareandon
thetransitionsinterconnectingtheinterfaceandthesoftware
areassumedto be TRUE. All clock variablesareeitherre-
setor advancedaperiodof timedependingon thetriggering
conditionson theabove transitions.

� � ��[/�V� � �����t�+�,����� T �$��� _ ����� )
Besidesthefiveelementaryproblemspresentedin theprevioussec-
tion, we hadappliedour approachto several real-world systems.
An EthernetBridge [15] exampleis presentedin this sectionfor
illustration. It is assumedasin [15] that theEthernetLANs oper-



Port2

Init

Port1 Port3

Create Req

Control

Wait

Table Access

Retrieve Data

Idle

Software Hardware
xs x 0

xs : x 0
xs x 4

xs : x 0

data x 0

data x 1data x 0

xs : x 0

xs x 9
data x 1
data : x 0

xs x 11
xs : x 0

xs x 11
xs : x 0

xh x 122
data : x 1

xs : x 0

data x 0

xs x 10

xs : x 0

xs x 9

data x 1
data : x 0

xs x 10 data : x 1data x 0

data x 1xh : x 0

xh x 5
xs x 4
xs : x 0xs : x 0

xs x 4

xs x 9
data x 1
data : x 0

Figure6: Ethernet Bridge: Hardware/SoftwareModels

Init

Software Hardware

Control

ErrorWait

answer

Table Access

Retrieve Data

Idle
req

req answer

xs x 0
data x 0

xs x 4
xs : x 0

data x 1

xs x smax

data x 1
xs � smax

data x 0
xs : x 0

xs x 22
xh x hmin
data : x 1

xh : x 0

data x 1

xh x 5

data x 1
data : x 0

data x 0

Figure7: Ethernet Bridge: Interface Models

ateunderCSMA/CD. Thecommunicationestimatesgivenin [15]
weretransformedinto our linearhybridautomatamodel.

It was found that if the LHA modelwasdirectly verified us-
ing HyTech, it could not terminateeven after modifying the sys-
temmodelasindicatedin theHyTechuserguide[11]. Finally, the
SHIV strategy wasapplied. The decomposedhardwareandsoft-
ware LHA areshown in Fig. 6 and the interfaceLHA in Fig. 7.
We presentthe interfaceverificationwhich is the most important
for a codesignproblem.Thebridgeprocessingratewas3000pps
(packetspersecond)andthehardwareareawas4000[15].

Givenahardwareclockrangeof f 51g 10� 6h andasoftwareclock
rangeof f 1g 5 � 2g 5h , thesafetyconditionwas4hmin Q 51smax. For
the estimatesfound in [15], hmin is 127andsmax is 10, hencethe
conditionis satisfied.

Sincetheabove conditiondependson theclock rates,a further
analysisshows that if f hl � hu h and f sl � su h weretherespective hard-
wareandsoftwareclock ranges,thentheconditionwouldbe:

hmin

smax
Q hl

su
or suhmin Q hl smax (3)

� T � � 
�6�������� �
A linearhybridautomatamodelbasedcoverificationapproachwas
proposedfor hardware-softwareembeddedsystems.It wasshown
how differenttime scalesof thehardwareandthesoftwareandthe
environmentcouldbehandledby themodel.Fivecommonly-found
elementarycoverificationproblemswerepresentedandsolvedus-
ing theproposedapproach.A simplificationstrategy calledSHIV
wasalsoproposedfor complex systems.Finally, anEthernetBridge

casestudywaspresentedwhichshowedhow SHIV couldbeusedto
verify a systemwhenthetraditionalapproachfailed. Futurework
will includedevelopingmorestrategiesusingthelinearhybridau-
tomatamodelto solve othercoverificationproblems.

� �V`P�V�	� � 
��V�
[1] M. Aiguier, J.Benzakki,G. Bernot,S.Beroff, D. Dupont,L. Freund,

M. Israel,andF. Rousseau.ECOS:A genericcodesignenvironment
for theprototypingof real-timeapplications.In J-M.Berge,OzLevia,
and JacquesRouillard, editors,Hardware/Software Co-Designand
Co-Verification. Kluwer AcademicPublishers,1997.

[2] R. Alur, C. Courcoubetis,N. Halbwachs,T.A. Henzinger, P.-H. Ho,
X. Nicollin, A. Olivero, J. Sifakis, andS. Yovine. The algorithmic
analysisof hybrid systems.Theoretical ComputerScience, 138:3–
34,1995.

[3] R. Alur andD. Dill. Automatafor modelingreal-timesystems.The-
oreticalComputerScience, 126(2):183–236,April 1994.

[4] F. Balarin,M. Chiodo,P. Giusto,H. Hsieh,A. Jurecska,L. Lavagno,
C. Passerone,A. Sangiovanni-Vincentelli , E. Sentovich, K. Suzuki,
andB. Tabbara. Hardware-Software Co-Designof EmbeddedSys-
tems:ThePolis Approach. Kluwer AcademicPublishers,1997.

[5] F. Balarin,H. Hsieh,A. Jurecska,L. Lavagno,andA. Sangiovanni-
Vincentelli. Formal verification of embeddedsystemsbasedon
CFSMnetworks. In Proceedingsof the DesignAutomationConfer-
ence, 1996.

[6] J. Bengtsson,K. Larsen, F. Larsson,P. Petterson,Y. Wang, and
C. Weise.New generationof UPPAAL. In Procs.of theInternational
WorkshoponSoftware Toolsfor Technology Transfer, July 1998.

[7] P.H. Chou,R.B.Ortega,andG. Borriello. TheCHINOOK hardware-
softwareco-synthesissystem.In Procs.InternationalSymposiumon
SystemSynthesis, 1995.

[8] J.M. Daveau, G.F. Marchioro, T. Ben-Ismail, and A.A. Jerraya.
COSMOS:An SDL basedhardware/softwarecodesignenvironment.
In J-M. Berge, Oz Levia, and JacquesRouillard, editors, Hard-
ware/Software Co-Designand Co-Verification. Kluwer Academic
Publishers,1997.

[9] R. Ernst,J. Henkel, andT. Benner. Hardware-softwarecosynthesis
for micro-controllers. IEEE Designand Testof Computers, 10(4),
December1993.

[10] D. Gajski,F. Vahid,andS.Narayan.A designmethodologyfor sys-
temspecificationrefinement.In Procs.EuropeanDesignAutomation
Conference, February1994.

[11] T.A. Henzinger, P.-H. Ho,andH. Wong-Toi. A userguideto HyTech.
In Procs.ToolsandAlgorithmsfor theConstructionandAnalysisof
Systems,LNCS, volume1019,pages41–71.SpringerVerlag,1995.

[12] P.-A. Hsiung. CMAPS:A cosynthesismethodologyfor application-
orientedparallelsystems.ACMTrans.onDesignAutomationof Elec-
tronicSystems, 5(2):toappear, April 2000.

[13] P.-A. HsiungandF. Wang. A state-graphmanipulatortool for real-
timesystemspecificationandverification.In Proc.5th.IEEEInterna-
tionalConferenceonReal-TimeComputingSystemsandApplications
(RTCSA’98), October1998.

[14] OrnaKupfermanandM.Y. Vardi. On the complexity of branching
modularmodelchecking.In Procs.6th InternationalConferenceon
ConcurrencyTheory, LNCS, volume962,August1995.

[15] L. Sanchez,M. L. Lopez, N. Martinez, C. Carreras,J.C. Lopez,
C. Delgado-Kloos,A. Royo, and P.T. Breuer. Co-designat work:
The ethernetbridge casestudy. In J-M. Berge, Oz Levia, and
JacquesRouillard, editors,Hardware/Software Co-Designand Co-
Verification. Kluwer AcademicPublishers,1997.

[16] ChristopherVial and Bruno Rouzeyre. Hardware-software co-
synthesis:Modelling and synthesisof interfacesusing interpreted
petri nets. In J-M. Berge, Oz Levia, and JacquesRouillard, ed-
itors, Hardware/Software Co-Designand Co-Verification. Kluwer
AcademicPublishers,1997.

[17] F. WangandP.-A. Hsiung. Automaticverificationon the large. In
Proc. 3rd IEEE High-Assurance SystemsEngineeringSymposium
(HASE’98), pages134–141,November1998.


	Main Page
	CODES'99
	Front Matter
	Table of Contents
	Session Index
	Author Index


