
Iterative Cache Simulation of Embedded CPUs
with Trace Stripping

Zhao Wu and Wayne Wolf
Dept. of Electrical Engineering, Princeton University

Princeton, NJ 08544, U.S.A.
Tel: (609) 258-4261, Fax: (609) 258-3745

Email: {zhaowu, wolf}@ee.princeton.edu

Abstract

Trace-driven cache simulation is a time-consuming yet valuable
procedure for evaluating the performance of embedded memory
systems. In this paper we present a novel technique, called as
iterative cache simulation, to produce a variety of performance
metrics for several different cache configurations. Compared with
previous work in this field, our approach has following features.
First, it supports a wide range of performance metrics, including
miss ratio, write-back counts, bus traffic, et al. Second, unlike
estimation-based methods, the results produced by our simulator
are accurate. Third, our approach is flexible. It can simulate both
uniprocessor and multiprocessor caches, with options of higher
level caches, sub-block replacement and prefetching. Last, it is
fast. Our simulation results show that it has similar runtime as the
fastest one-pass cache simulator.

1. Introduction
Caches are very important to embedded computer systems,
especially as the gap between microprocessors and memories is
continuously becoming wider and wider. Trace-driven cache
simulation is a popular and essential tool for performance
evaluation of memory systems. With the data-memory trace
generated by an instrumented program, researchers can obtain a
number of performance metrics such as cache miss ratio, write-
back counts (for write-back cache), et al., and then identify the
bottleneck of interested systems. This is particularly useful for
designing embedded systems, where the memory plays an
important part in the overall performance and must be tweaked to
reduce cost. A good reference on hardware/software co-synthesis
with memory hierarchies can be found in Li and Wolf’s
comprehensive study [1].

There are primarily two types of cache simulation. While post
simulation generates a trace first and then analyzes it, on-the-fly
simulation combines the two stages into a single step. There are

pros and cons with both types. On one hand, post simulation
requires large storage for the trace, which is not necessary for on-
the-fly simulation. On the other hand, generating traces takes
time; so if we want to simulate several cache architectures with
the same trace collected, it is better to use post simulation.

As we know, the three basic parameters of a cache are: cache size,
block size (also known as line size), and degree of associativity.
In cache designs, the problem often resides in the choice of the
three parameters. To get optimal performance for a program, we
need to run cache simulation over the reference trace many times
with varying parameters.

While the idea of trace-driven simulation is simple, it is very time-
consuming since the simulation time is proportional to the length
of the trace. For real applications, the traces can easily exceed
millions of references. Therefore numerous efforts have been
made to reduce trace length and simulation time. Among many
techniques a very attractive class is one-pass simulation [2], which
simulates several cache configurations in a single run. However,
although the large number of methods can vastly accelerate
simulation time, each of them has certain limitations. Traditional
trace reduction cannot handle varying block sizes (so are most
one-pass algorithms). Few one-pass algorithms support
multiprocessor caches that use invalidation based coherence
protocols.

In hardware/software co-design, fast simulation of several
candidate cache configurations is of special importance. Li and
Wolf pointed out this problem; but hampered by the time
complexity of cache simulations, they only described an
estimation scheme for miss rates of direct-mapped caches [1].

In this paper, we propose iterative cache simulation, which is a
fast simulation method that can be used to evaluate a variety of
cache configurations. The basic idea of iterative simulation is to
arrange the caches in such a way that every time after we simulate
one configuration, we can strip off some redundant information
from the trace, hence to speedup following simulations. Unlike
some other fast simulation algorithms which trade accuracy for
time, ours produces precise results and it supports many
performance metrics, including miss ratio, write-back counts,
distribution of misses, et al. Even though we have to run cache
simulation multiple times (each for a different configuration),
results show that the total simulation time is very similar to
Cheetah, the fastest one-pass simulator of which we are aware.

The rest of this paper is organized as follows. In section 2 we
briefly review some previous work in cache simulation. Section 3
describes our method in detail. Simulation results of some
multimedia applications based on our method are shown in

section 4, together with the runtime of cheetah. Finally concluding
remarks are drawn in section 5.

2. Related work

2.1 Trace reduction

Since the simulation time and storage requirement are directly
related to the size of trace, a lot of work has been done in trying to
reduce the trace length. The key idea is to retain only the
references that contribute to the performance metrics. E.g.,
consecutive accesses to the same cache block can be shrunk to
one without changing miss ratio.

Smith proposed two schemes for reducing trace length [3]. The
first one, called as stack deletion, maintains an LRU (Least
Recently Used) stack and discards references to the D most
recently used blocks. The resulting trace can be used to obtain the
miss ratio of a fully associative memory with more than D blocks
and same block size, assuming LRU replacement is also used. The
second method, called as snapshot, samples references at regular
time intervals. These two methods were primarily used for
studying paging system instead of cache.

Later, Puzak extended Smith’s work to set-associative caches [4].
He proposed a technique called trace stripping, which passes the
original trace through a direct-mapped cache and records only
those accesses that cause a miss. The subsequent trace can then be
used for any set-associative caches with the same block size and
number of sets (number of sets = cache size / block size /
associativity). Since the resulting trace only contains miss
references, the workload is greatly reduced.

Combining Smith’s snapshot method with Puzak’s trace
stripping, Agarwal and Huffman proposed two-step filter [5],
which compacts traces through a cache filter (stripping temporal
locality) followed by a block filter (stripping spatial locality).
While good compression ratio is achieved with this approach,
accuracy is sacrificed. Laha et al. noticed remarkable errors in
large caches with small miss rates in their sampling techniques
[6].

We are interested in a trace stripping technique that can always
guarantee accurate performance metrics while compressing traces
substantially. As pointed out by Wang and Baer, Puzak’s method,
albeit precise for set-associative caches in terms of miss ratio, is
not sufficient for other metrics (e.g. write-back counts) or
multiprocessor caches. Therefore we need to devise some other
methods.

2.2 One-pass cache simulation

One-pass simulation algorithms attack the problem from another
perspective. Instead of simulating one cache configuration at a
time, these methods simulate a class of caches efficiently in a
single pass through the trace.

As early as in 1970, Mattson et al. presented an algorithm for
simulating fully associative caches with varying sizes but fixed
block size [2]. Their algorithm, referred to as stack simulation,
takes advantage of inclusion property (i.e. at any time of
simulation, the contents of a cache is always the subset of any
larger ones), which is guaranteed by certain replacement policies
including LRU.

Originally stack simulation only works for fully associative
caches and it only reports miss ratio. Hill and Smith identified set-
refinement property (i.e. blocks mapped to the same set in larger
caches are also mapped to the same set in smaller caches) and
extended inclusion property for direct-mapped and set-associative
caches. They further proposed forest simulation and all-
associativity simulation, which respectively work for direct-
mapped caches and caches with arbitrary associativity [7].
Meanwhile Thompson and Smith introduced dirty level and
writes avoided [8], which track the status of a written block in
write-back caches and give write-back counts in addition to miss
ratio. Their algorithm was then generalized by Wang and Baer to
set-associative caches as well [9]. The new algorithm can be used
to simulate multiprocessor caches with update-based protocols,
but it has some difficulties in dealing with invalidation-based
protocols. Later Wu and Muntz fixed the problems by using
covering vector and marker splitting to track invalidated data
blocks in the stack [10].

Aside from stack simulation, which is based on stacks that record
accesses, Sugumar and Abraham developed some more efficient
algorithms using binomial trees [11]. Their new one-pass schemes
are reported to outperform earlier ones by a factor of up to 5.
Furthermore, they proposed a one-pass algorithm to simulate
caches with varying block size. Their algorithms were
implemented in Cheetah, a really fast one-pass cache simulator.

In spite of the their efficiency, one-pass simulation algorithms all
have certain limitations. Since they have to track block status for
all the caches in the simulation pool, the bookkeeping of each
reference has to be simple, otherwise it will not make much
difference from simulating the caches one by one. As a matter of
fact, none of the one-pass simulations support prefetching, sub-
block replacement, or multi-level caches; nor can they produce
useful performance metrics such as distribution of misses.

3. Iterative cache simulation

3.1 Motivation and goals

Our attempt of evaluating cache performance originated from
studies of video applications on a VLIW base video signal
processor. Since the processor consists of several clusters each
having its local cache, we need a simulator that can support
multiprocessor caches. Due to limited inter-cluster
communication bandwidth and uncommon data sharing patterns,
invalidation-based protocols are preferred over update-based
protocols. Moreover, we are interested in prefetching-based
systems. However, no existing one-pass simulators could do the
job. At first, we tried to adapt them to the new requirements, but it
turned out that the modifications would be so complicated that
there would not be much difference from running the simulation
for each cache configuration.

It seems clear that we have to simulate all the candidates one by
one. On one hand, this gives us the flexibility to deal with various
cache models (e.g. multiprocessor caches, multi-level caches,
caches with sub-block replacement and/or prefetching strategies,
et al.) and performance metrics (e.g. write-back counts,
distribution of misses) that are not supported or only partially
supported by one-pass simulators. On the other hand, however,
the gains might be at the cost of excessive time. Therefore our
focus is on reducing simulation time.

In order to reduce simulation time, we have to reduce workload.
There is always a tradeoff between accuracy and trace length. Our
goal is to reduce trace length as much as possible and meanwhile
keep performance metrics 100% correct.

3.2 Notations and assumptions

In the following discussions, we use a 3-tuple (nsets, blksize,
assoc) to refer to a specific cache configuration where the cache
consists of nsets sets and each set contains assoc blocks of blksize
bytes. Therefore if assoc=1 it indicates a direct-mapped cache,
otherwise it is an assoc-way set-associative cache (with LRU
replacement being used). We further assume that nsets and blksize
are both in powers of two.

Miss ratio is probably the most important figure among all the
useful performance metrics. We will use this metric as an example
in the next subsection, and then generalize our algorithms to other
metrics at the end of this section.

3.3 Iterative cache simulation

As mentioned previously, we want to discard some non-
interesting references in the trace after each simulation, so that
next time when we simulate another cache configuration the
workload could be reduced. E.g., sometimes when we go from
one cache configuration C1 to another one C2, all the references
that hit C1 will always hit C2, therefore by stripping off those
references that cause hit to C1 (which is a significant reduction),
we reduce trace length yet are still able to get exact miss ratio for
C2.

Hill and Smith found out that set-refinement property implies
inclusion property in direct-mapped caches with same block size
[7]. This observation facilitates the simulation of direct-mapped
caches with same block size. E.g., during the simulation of cache
(256, 16, 1), we could toss out all the references that cause hit,
and later the reduced trace can be used to simulate (512, 16, 1) or
other direct-mapped caches with more number of sets but same
block size. Remember that extended inclusion property says that
cache configuration (nsets1, blksize, assoc1) contains a subset of
blocks in (nsets2, blksize, assoc2), provided that nsets1 ≤ nsets2
and assoc1 ≤ assoc2. So once we have the reduced trace from
(256, 16, 1), we could also simulate set-associative caches with
more than or equal to 256 sets.

Now the question is which references we should discard when
simulating a set-associative cache. Of course we can use the
reduced trace from direct-mapped cache for all the set-associative
caches, but that is not economical as we could filter out more
redundant references. Unfortunately set-refinement does not
imply inclusion in set-associative caches, which means that we
cannot simply throw away references that cause a hit. This is
because LRU replacement may change the mapping of a missed
block. E.g., suppose we have a cache configuration (1, 1, 2) and a
reference sequence 0, 1, 0, 2, 1; then the outcome would be,
respectively, miss & place into block 0, miss & place into block 1,
hit block 0, miss & replace block 1, miss & replace block 0
(Figure 3.3.1a). If we remove the references that cause hit (as we
did with direct-mapped caches), the subsequent sequence 0, 1, 2, 1
would result in a hit for the last 1 (Figure 3.3.1b), since the
previous miss of 2 will replace block 0, the least recently used
one.

Figure 3.3.1: Examples showing that set-refinement does not
imply inclusion in set-associative caches

The reason for the discrepancy is that hits can change the
recentness of a block. Therefore in addition to the references that
cause miss, we need to save as well those hit references that alter
recentness of blocks in a set. Notice that recentness does not
matter at all until a miss occurs, so we only need to save at most
assoc-1 hit references before the miss reference when an assoc-
way set-associative cache is being simulated. As shown in
Algorithm 3.3.1, the overhead of this method is fairly small, but
the gain in trace length reduction is significant. For many traces
and cache configurations we have analyzed, after simulating 2-
way set-associative cache the trace length could be cut 50%. Each
time when we simulate a cache, we can strip off some redundant
references, thereby accelerate further simulations of caches with
more sets and/or higher associativity.

Algorithm 3.3.1: Cache simulation with trace reduction

So far we have only assumed same block size throughout our
cache simulations. For varying block size, things become very
complicated, because the inclusion property no longer holds. To
deal with this problem, Wang and Baer proposed a “universal”
trace [9], which is a collection of references that cause misses in
each cache filter with different block sizes. In Cheetah, Sugumar
and Abraham developed a one-pass algorithm based on binomial
trees and tag inclusion property to simulate direct-mapped caches
of same size but different block sizes [11].

(256, 32, 3) (256, 64, 3)
(512, 16, 1..3) (512, 32, 2..3) (512, 64, 2..3)
(1024, 16, 1..3) (1024, 32, 1..3) (1024, 64, 1..2)
(2048, 16, 1..3) (2048, 32, 1..3)

Table 3.3.1: Cache configurations

0 0 1 0 1 0 2
0 1 0 2 1
m m h m m

1 2 0 0 1 2 1 2 1
0 1 2 1
m m m h

a) 4 misses with original trace b) 3 misses with reduced trace

 1. cache_sim(addr)
 2. {
 3. /* set and blk indicate the set (in cache) and the
 4. block (in set) addr ended up with, no matter
 5. whether it is a hit or miss.
 6. */
 7. (set, blk, hit) = conventional_cache_sim(addr);
 8. if (hit) {
 9. set.block[blk].hit_addr = addr;
 10. } else { // miss
 11. for (i = 1..assoc-1 in LRU order) do {
 12. // 0: LRU — assoc-1: MRU
 13. if (set.block[i].hit_addr != invalid) {
 14. save(set.block[i].hit_addr); // hit reference
 15. set.block[i].hit_addr = invalid;
 16. }
 17. }
 18. save(addr); // miss reference
 19. }
 20. }

While Wang and Baer’s algorithm applies for caches with same
number of sets, Sugumar and Abraham’s algorithm assumes fixed
cache size. Our approach to the problem is a combination of both.
It first finds out a dominant set, which contains the minimum
cache for each block size. E.g., given the interested cache
configurations in Table 3.3.1, the dominant set is { (512, 16, 1),
(256, 32, 1), (256, 64, 1) } , as (due to inclusion property) the
union of the miss trace of the three configurations will be a
superset of references that cause misses in any of the caches in
Table 3.3.1. Algorithm 3.3.2 shows the function to generate the
universal trace using the same example. It simulates (256, 32, 1)
and meanwhile saves the miss references for all the three
configurations. Notice that cache (512, 16, 1) has the same size as
(256, 32, 1), which means that the tags for both configurations are
of the same size too, so it is treated differently as (256, 64, 1). In
our implementation, this algorithm is realized using bit-vectors, so
it is quite efficient.

Algorithm 3.3.2: Generating universal trace using
{(512, 16, 1), (256, 32, 1), (256, 64, 1)} as an example

Figure 3.3.2: Lattice of some cache configurations

Once we have the universal trace, we can simulate all the cache
configurations. In order to save workload to the maximum extent,
we need to sort the candidate cache configurations into a special
order such that following simulations can use the reduced traces
generated by previous simulations. E.g., both (512, 16, 2) and
(1024, 16, 3) can be simulated using the universal trace. If we
simulate the former one first, then we can take advantage of the
further reduced trace in the latter one. However, if the latter

configuration is simulated first, we have to use the universal trace
again when simulating (512, 16, 2). Obviously the cache
configurations in our design space form a partially ordered set,
in which the relation is defined by the inclusion property. As an
example, Figure 3.3.2 depicts the lattice of a set consisting of the
configurations in Table 3.3.1.

Starting from the universal trace, we can traverse the lattice in
associativity first or number-of-sets first order. Depending on the
trace, either one can be faster but the difference is not distinctive
in our experiments.

3.4 Other performance metrics

Although miss ratio is important, there are some other interesting
and useful performance metrics as well. E.g., in write-back cache
systems, the frequency of write-backs would greatly affect the
traffic that goes to next level of memory. Since for each cache
configuration we perform a conventional simulation, it is very
easy to adapt the simulation algorithm to take into account other
performance metrics and/or cache architectures. In fact, for some
metrics like distribution of misses, we need not change Algorithm
3.3.1 or 3.3.2 at all.

For write-back counts, we need to record references that cause
write-hit. In Algorithm 3.3.1, at most assoc-1 hit references are
recorded before a miss reference. However, the write-hits that
make a block dirty (and thus contribute to write-back counts) may
not be among the hit references recorded, since only the most
recent access to each block is kept. A trick to solve this problem is
to change any read operation to write operation. Notice that this
change of Algorithm 3.3.1 is minor and does not increase the trace
length. However, in Algorithm 3.3.2 we have to record all the
write-hits as we do not know which of them will modify which
block in a set-associative cache.

As for multiprocessor caches, obviously read accesses of shared
data will not cause any problem. This is because a shared read
will clear the dirty flag (if set) of the block containing shared data
on the exclusive processor and bring the block to the processors
that issue the read, regardless of whether update- or invalidation-
based protocols are used. However, things become different for a
shared write. In update-based protocols, a shared write will update
all the blocks that have the shared data, which has the same effect
as a shared read, hence no extra processing is required for one-
pass simulation algorithms. In invalidation-base protocols,
however, those blocks will be invalidated by the shared write.
This will cause deletion of a block in the LRU stacks used by one-
pass algorithms. Tracking the propagation of a deleted block for
different cache configurations is a complicated matter, so one-
pass algorithms cannot handle invalidation-based protocols.
Nonetheless, our method does not have such a problem, since only
one cache configuration is simulated at a time. Note that update or
invalidation happens only when a miss occurs. Because all the
miss references are saved anyway, Algorithm 3.3.1 and Algorithm
3.3.2 do not need any modification.

4. Results
Since we are interested in video applications and the traces of
several such programs are readily available, we use them as
examples. The outputs (performance metrics) of our simulations
are correct when compared with results from other methods.
Discussions of the miss ratios or the impact of cache

 1. univ_cache_filter(addr)
 2. {
 3. (set, hit) = conventional_cache_sim((256, 32, 1), addr

);
 4. if (hit) {
 5. saddr = addr >> 4; // strip off block offset
 6. if (!set.fetched[saddr & 0x1]) {
 7. set.fetched[saddr & 0x1] = 1;
 8. save(addr); // for (512, 16, 1)
 9. } elsif (last[(addr>>6) % 256] != addr>>6) {
 10. last[(addr>>6) % 256] = addr>>6;
 11. save(addr); // for (256, 64, 1)
 12. }
 13. } else { // miss
 14. save(addr); // miss reference
 15. clear set.fetched[];
 16. }
 17. }

 (256, 32, 3)
 |

 (512, 32, 2) — (512, 32, 3)
 | |
(1024, 32, 1)—(1024, 32, 2)—(1024, 32, 3)

 | | |
(2048, 32, 1)—(2048, 32, 2)—(2048, 32, 3)

(512, 16, 1) (256, 32, 1) (256, 64, 1)

Universal trace

…………

configurations on video applications are beyond the scope of this
paper, but they can be found in our other work [12]. In this section
we will concentrate on the execution time. The generation of
original traces and our trace-driven cache simulations are done on
an SGI Power Challenge workstation which has four 194 MHz
MIPS R-10000 microprocessors.

Applications Original First Last
H.263 encoder 329,872 K 5,286 K 78 K
H.263 decoder 47,071 K 623 K 4 K
MPEG-2 encoder 113,820 K 5,704 K 17 K
MPEG-2 decoder 2,550 K 53 K 3 K
MPEG-4 encoder 358,393 K 7,709 K 1,875 K
MPEG-4 decoder 274,889 K 9,791 K 3,772 K

Table 4.1: Trace length of six video applications

Table 4.1 shows the trace lengths of original data references. To
highlight the reduction of disk space, we also show in the table the
trace lengths after the first and last simulations. We compared the
simulation time of our method with Cheetah, which is a great one-
pass cache simulator in terms of speed but lacks flexibility. It only
reports miss ratio and it does not support complex cache models
(e.g. caches using write-back, prefetching, and/or sub-block
replacement). Moreover, it can only simulate caches with the
same block size or direct-mapped caches with the same cache
size. For these reasons, we only measured miss ratios for
(256..2048, 32, 1..4) (i.e. fixed block size — 32 bytes) and { (256,
128, 1), (512, 64, 1), (1024, 32, 1), (2048, 16, 1) } (i.e. fixed
cache size — 32 Kbytes). The results are shown in Table 4.2 and
Table 4.3 respectively. We also compared our iterative method
with traditional trace length reduction technique, in which the
reduced trace generated during the simulation of (256, 32, 1) is
used for all the other configurations (i.e. “multi-run”). A speedup
of 10-20% of iterative method over multi-run is observed in Table
4.2. As we can also see, our method outperforms Cheetah for
caches with the same block size (Table 4.2); but for fixed-size
direct-mapped caches, it could be 50% slower (Table 4.3),
because for each configuration we have to use the universal trace.

Applications Cheetah Multi-run Iterative
H.263 encoder 164.12 s 192.82 s 150.12 s
H.263 decoder 14.86 s 17.33 s 14.71 s
MPEG-2 encoder 66.57 s 71.77 s 58.76 s
MPEG-2 decoder 0.87 s 0.98 s 0.77 s
MPEG-4 encoder 190.22 s 207.39 s 185.04 s
MPEG-4 decoder 169.33 s 171.27 s 150.97 s

Table 4.2: Simulation time with fixed block size

Applications Cheetah Iterative
H.263 encoder 83.96 s 146.64 s
H.263 decoder 11.19 s 11.81 s
MPEG-2 encoder 45.62 s 51.72 s
MPEG-2 decoder 0.55 s 0.69 s
MPEG-4 encoder 146.51 s 158.47 s
MPEG-4 decoder 112.52 s 120.09 s

Table 4.3: Simulation time with fixed cache size

5. Conclusions
In this paper, we presented a so-called iterative cache simulation
method, to trace-driven simulate a set of cache configurations

accurately and quickly. In our approach, we sort candidate cache
configurations in such an order that after each simulation we can
reduce trace length and thus speedup following simulations.
Compared with other cache simulators, our method features
following:

1. It supports a wide range of performance metrics,
including miss ratio, write-back counts, bus traffic, et al.

2. Unlike trace sampling techniques which cannot guarantee
accuracy, the results produced by our simulator are 100%
precise.

3. It is flexible in terms of supporting various cache models
such as uniprocessor and multiprocessor caches, multi-
level caches, and caches with sub-block replacement and
prefetching.

4. Empirically it has similar speed as Cheetah, the fastest
simulator ever reported.

References

 [1] Yanbing Li and Wayne Wolf, “Hardware/software co-
synthesis with memory hierarchies” , Proc. Int’ l Conf. on
Computer Aided Design, pp. 430-436, Nov. 1998.

 [2] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger,
“Evaluation techniques for storage hierarchies” , IBM Systems
Journal, 9(2), pp. 78-117, 1970.

 [3] Alan J. Smith, “Two methods for the efficient analysis of
memory address trace data” , IEEE Trans. on Software
Engineering, 3(1), pp. 94-101, Jan. 1977.

 [4] Thomas R. Puzak, “Analysis of Cache Replacement
Algorithms” , Ph.D. Thesis, Univ. of Massachusetts, Amherst,
Feb. 1985.

 [5] Anant Agarwal and Minor Huffman, “Blocking: exploiting
spatial locality for trace compaction” , Proc. 1990 ACM
SIGMETRICS Conf. on Measurement and Modeling of
Computer Systems, pp. 48-57, May 1990.

 [6] Subhasis Laha, Janak H. Patel , and Ravishankar K. Iyer,
“Accurate low-cost methods for performance evaluation of
cache memory systems”, IEEE Trans. on Computers, 37(11),
pp. 1325-1336, Nov. 1988.

 [7] Mark D. Hill and Alan J. Smith, “Evaluating associativity in
CPU caches” , IEEE Trans. on Computers, 38(12), pp. 1612-
1630, Dec. 1989.

 [8] James G. Thompson and Alan J. Smith, “Efficient (stack)
algorithms for analysis of write-back and sector memories” ,
ACM Trans. on Computer Systems, 7(1), pp. 78-117, Feb.
1989.

 [9] Wen-Hann Wang and Jean-Loup Baer, “Efficient trace-
driven simulation methods for cache performance analysis” ,
Proc. 1990 ACM SIGMETRICS Conf. on Measurement and
Modeling of Computer Systems, pp. 27-36, May 1990.

 [10] Yuguang Wu and Richard Muntz, “Stack evaluation of
arbitrary set-associative multiprocessor caches” , IEEE Trans.
on Parallel and Distributed Systems, 6(9), pp. 930-942, Sep.
1995.

 [11] Rabin A. Sugumar and Santosh G. Abraham, “Efficient
simulation of multiple cache configurations using binomial
trees” , Technical Report CSE-TR-111-91, CSE Division,
Univ. of Michigan, 1991.

 [12] Zhao Wu and Wayne Wolf, “Study of cache system in video
signal processors” , Proc. IEEE Workshop on Signal
Processing Systems, pp. 23-32, Oct. 1998.

	Main Page
	CODES'99
	Front Matter
	Table of Contents
	Session Index
	Author Index

