
w
is
,
7,

nd

e

i-

a

te
m

up
n
a
a

y,
t

y
n
n
e
e

ore
fy
not
re

as
Its

Fast Prototyping: a system design flow for fast design,
prototyping and efficient IP reuse

Francois Pogodalla
STMicroelectronics

5bis, Chemin de la Dhuy
F-38240 Meylan France

+33-476-584-037
francois.pogodalla@st.com

Richard Hersemeule
STMicroelectronics

5bis, Chemin de la Dhuy
F-38240 Meylan France

+33-476-584-145
richard.hersemeule@st.com

Pierre Coulomb
STMicroelectronics

5bis, Chemin de la Dhuy
F-38240 Meylan France

+33-476-584-028
pierre.coulomb@st.com
1. ABSTRACT
This paper describes a new design flow that significantly
reduces time-to-market for highly complex multiprocessor-
based System-On-Chip (SOC) designs. This flow, put in
place within STMicroelectronics and which is called Fast
Prototyping, allows concurrent hardware and software
development, early verification and enables the productive
re-use of intellectual property. We describe how using this
innovative system design flow, that combines different
technologies, such as C modeling, emulation, hard Virtual
Component re-use and CoWare N2C, we achieve better
productivity on a multi-processor SOC design.

1.1 Keywords
HW/SW co-design, system modeling, HW/SW co-
verification, emulation, RTC, Virtual Components.

2. SYSTEM-ON-CHIP CHALLENGE
The trend towards Systems-On-Chip (SOC), now widely
promoted in the industry, creates many issues that the
semiconductor companies have to face in order to, while
improving the time-to-market, provide their customers with
the best quality.

The productive re-use of Virtual Components is crucial since
gate counts continue to escalate while market windows
continue to shrink. But as few VCs exist in a nice re-usable
form in most companies, re-use does not result in the
expected time-to-market gains.

At STMicroelectronics a new methodology has been
developed that addresses these issues:

• integration of various tools for true re-use of VCs

• generation of virtual prototypes at different levels of
abstraction in the process, effectively enabling the con-
current development of hardware and software.

• verification at different levels of abstraction and even
where blocks are modeled at different abstraction levels

• the design flow allows any entry point, from full behav-

ioral system modeling and HW/SW partitioning to
hybrid RTL/C/gates prototyping

This is the outline of the paper. In Section 3, we revie
existing technologies. Fast Prototyping methodology
introduced in Section 4, and its application to our SOC
described in Section 5, is detailed in Section 6. In Section
we present the results and discuss some future work.

3. EXISTING TECHNOLOGIES
There are many technologies available for modeling a
design, each with their own merits and drawbacks:

• tools like Cadence Bones are difficult to integrate in a
design flow. The models produced require intensiv
works for correlation with the RTL implementation

• data-flow based tools like Synopsys COSSAP and Alta
SPW are very application-specific, and mostly ded
cated to DSP-based dataflow architectures.

• C prototyping is a solution that has the problem that
path down to implementation is missing

• RTL simulation or emulation: models are very accura
with the implementation, but the time to get a syste
model is long, thus delaying the integration work.

• high-level languages such as SDL, although ramping-
rapidly, are still not yet supported by industry-prove
flows-to-silicon. Besides, most generally they require
radical change in the design practices, rather than
smooth transition from RTL-based methodologies

Looking inside most of the semiconductor companies toda
we find a strong will to broaden VC re-use, specifically a
the RT-level. But the vast majority of the VCs in the industr
is not available even as an RTL. The profit is not i
developing different models (C, BoNES,...) for VCs, but i
re-using them. Hence a VC-friendly design flow would hav
to give the capability to build a system model whatever th
available view of a VC (gates, transistors, RTL,...).

Based on these considerations, it is clear that the m
traditional technologies for system modeling do not satis
our requirements, and that the most advanced ones are
directly applicable in a business-driven company. Therefo
it was necessary to develop a new methodology.

4. FAST PROTOTYPING
This new methodology, referred to as Fast Prototyping, w
developed at STM. It defines a flow for fast SOCs design.
main characteristics are:

of
g

, a
s,
nd

s
n
ff
W

n
g

C-
o
,

• focus on producing system prototypes (i.e. models) early
in the design flow

• maintain the consistency of the models by keeping a uni-
fied development and validation framework throughout
the design process

• provide the designers with a fast turn-around to refine
the architecture of the new parts of the system

The Fast Prototyping methodology relies on CoWare N2C
system design tool as a front-end [2], and on Mentor
Graphics SimExpress hardware emulation as a back-end.
The basic reasons for choosing these technologies include:

• CoWare N2C provides a powerful co-simulation
engine that allows hybrid prototyping in a very efficient
manner (i.e. prototypes made of C, RTC, RTL)

• CoWare N2C provides, through Register-Transfer-C
(RTC) a seamless and fast track flow that allows, by suc-
cessive iterations, to refine a behavioral C description
down to a clocked-C which is close to a VHDL RTL
(path down to implementation)

• CoWare N2C supports HW/SW partitioning through
automatic interface synthesis

• emulation provides simulation power for VCs that are
not available under the form of a high-level view

• emulation is a system functional sign-off platform for a
design, hence is a natural ultimate prototype for a SOC
integration

The capability of handling hybrid prototypes is key for
building early system models. As shown inFigure 1., the

design of the functional blocks of a SOC can start at various
levels, and although all of them will end up under the form
of an RTL or a software library element, they will go
through various description levels as the design process
progresses. Hence cosimulating these views becomes
essential, as it allows to keep a consistent framework
throughout the design process, as indicated inFigure 2.

If the different levels of description are not inter-operable,
then each model produced at a stage raises correctness
issues, and more important, all the blocks of the SOC have
to be at the same level of description at the same time to
build a prototype.

In this design flow, early availability of the ISS is extremely
important, as the first model available for a core. We made
use of an ST proprietary technology called FlexWare [6], [7]
which offers a design framework for fast and semi-
automatic generation of tools for a core: ISS, assembler, C
compiler, debugger. Using FlexWare, we can get access to
an ISS far before any RTL is available for the core being

developed. The ISS is a pure behavioral representation
the core, which executes its instruction set without bein
cycle accurate in any manner.

Another important tool for the introduction of already
designed components as a VC is a tool called LayBool
layout abstraction tool. It reads in CDL transistor netlist
extracts boolean equations through BDD representation a
translates to RTL.

Finally, adding emulation to this design framework bring
us the VC re-use efficiency, and the powerful simulatio
capability. Emulation eventually becomes the sign-o
platform for the system, possibly connected to its target H
system.

We made extensive use of the RTC, which is refinable dow
to a point where it matches an RTL description. Producin
RTC is faster than producing an RTL, and thanks to an RT
to-RTL translation, we are capable of going quickly down t
emulation (hence HW prototyping) from C/RTC models

C
Clocked-C
RTL
gates
transistors
software libraries

FB1 FB2 FB3 FB4 Views

FB: Functional Block

Figure 1. Hybrid prototyping

Tim
e

C behavioural
Timed C

cycle accurate C
hand-coded RTL

IP

IP

IP

IP

IP

IP

Full behavioural

HW/SW partitioning

Refinement

Prototype

Implementation

IP

Transistor/gate/RTL IPIP

e
m

u
la

tio
n

c
o

d
e

sig
n

Figure 2. Fast Prototyping framework

Emulation

RTC2RTL

RTC2HDL

SDL

C Behav. ISS

SW

C func.
blocks

RTC

Low-level
RTC

HDL

Gates

RTL

Layout LayBool

COSIMULATION
ENGINE

{CoWare N2C
Figure 3. Fast Prototyping flow

Fast Track Regular track

FlexWare

Fast path from C
to HW emulation

re
at
al

or
eir
t
n

he
cle
ry
st

ual

he
he

r
f

or
or
to
ts.

ck
ed
e
e
of

e

he

ng
e
r

ore
e
ls

C,
e
el
even if the RTL produced in this way is not the final
implementation RTL. This fast track path from high-level
description down to full system emulation is key, as most of
the time a HW prototype is the only sign-off platform when
connected to its target system, but also SW modeling
requires modeling the environment (or target system), which
is time consuming, not necessarily a value-added process,
and most of the time impossible.Figure 3.gives a complete
view of Fast Prototyping.

5. AN INDUSTRIAL APPLICATION

5.1 The CP4 SOC
CP4 is a 600k gates SOC targeted at consumer application.
It is a multiprocessing system, containing mainly 3 parts: a
high performance DSP cell, a microcontroller cell, and VCs
designed and provided by the customer.Figure 4. shows a
simplified block diagram of CP4.

The DSP and its peripherals are new designs, that are being
conducted for the CP4 project. Hence we have there a new
core development, alongside with the peripherals
development (interrupt controller, DMAs, caches,...).

The microcontroller cell is based on an existing proprietary
32-bits core from STMicroelectronics. The majority of the
microcontroller cell is direct reuse.

A software and an application team is working in parallel
with the design team to produce tools, drivers and software
application libraries.

5.2 Product design requirements
The requirements identified in this project can be split in 4
categories:

• architectural & microarchitectural refinements:in this
development, the gross architecture and microarchitec-
ture are already frozen, but still the need some tools to
tune specific parts (cache behaviors, bus priorities,...).

• reference simulation:a reference model is needed to
support the RTL verification activities

• VCs integration: a significant part is direct reuse

• system prototyping:the parallelisation of tools, internal
application software and customer integration develop-
ments put a specific requirement of usable system proto-
types early in the design process

6. FAST PROTOTYPING ON CP4

6.1 High performance megacell
The challenge in the DSP megacell is important in that it

involves not only peripherals design, but also a DSP co
design. Clearly, designing a DSP core is a long effort th
generally gates the system modeling effort in tradition
approaches, due to late availability of the RTL.

In CP4, we decided to implement the peripherals in RTC f
quick development,. The models are bit-accurate, and th
cycle-behavior is correct at their IO level. This allows to ge
good simulation performance (better than RTL), and a
architecturally correct model, which can be used to tune t
megacell performance thanks to its top-level accurate cy
behavior. This step of peripherals development is ve
useful for the architecture refinement, as developing fa
models helps sorting out holes in the architecture man
(undefined values, unclear behaviors,...).

To get a simulation model of the megacell we also need t
DSP, represented by its ISS integrated in the design. T
ISS is generated using FlexWare (see4.FAST
PROTOTYPING). We assigned to the ISS a cycle-behavio
through a Bus Functional Model (BFM). This prototype o
the DSP megacell is described inFigure 5.

This model constitutes the reference simulation platform f
this megacell. It is usable as a plug-and-play platform f
RTL development. The software application team uses it
start developing code, and also to develop verification tes
This model is calledgolden model.

As the RTL design progresses, whenever a peripheral blo
is available, its RTC description is removed and replac
with the VHDL. The prototype can then be run to validat
the new RTL part, inside the full megacell prototype. At th
end of this plug-and-play process, the model is composed
the ISS, the BFM, possibly the firmware, and all th
peripherals in VHDL, which we call thehybrid model.
This model enables the peripherals verification before t
core RTL is available.

Another important model is thecore verification model.
This model is delivered to the team in charge of designi
the core. It is made of all the peripherals in RTC, and th
ISS+BFM replaced by the core RTL that is unde
development. This provides the core design team with a c
validation platform that brings simulation performanc
(peripherals in RTC), without the overhead of periphera
debug.

Also the external customer, who is the final user of the SO
is keen on having early models for his softwar
development. We deliver to our customer the golden mod
(ISS+BFM+RTC), which brings him simulation

DSP

CACHE

OTHER

System

RAM

RAM

EMI
MCU

I/F

I/F

coreMISC.
PERIPHERALS

core

RAM

BLOCKS

Figure 4. CP4 block diagram

MISC.
PERIPH.

Virtual World

encapsu-
lated
ISS

Appli software

Workstation/CoWareN2C 

RTC

CO-SIMULATION

periph.

Figure 5. Reference model

nd

ent
a
a
the
g
a

ll

re
e

s
er
xi-

s,
er

n 4
to
-
-

gy,
e

re

he
’s
C).
eir

se
o

performance and architectural accuracy, before any VHDL
is available and validated.

6.2 MCU megacell
Some of the peripherals were developed in VHDL, but for
the core itself we had to use a hard VC (i.e. a layout view).

Hence the flow we used was based on LayBool (see4.FAST
PROTOTYPING). The RTL generated by LayBool from the
CDL transistors netlist was re-synthesized and mapped onto
SimExpress emulator. This flow guarantees that the netlist
emulated matches exactly the physical implementation, thus
tackling the validation problems. Having the core in the
emulator, the peripherals themselves were mapped from
their RTL description.

The MCU megacell would not be complete without reusing
also the software tools associated with the core, i.e.
essentially the software source-level debugger. This
debugger interacts with the silicon through the JTAG lines
that are used to carry a dedicated debug protocol.

6.3 System prototyping
At this point in time, we have described the way we built
prototypes for each of the two main cells of the SOC. The
next step is naturally to integrate these prototypes to build a
full system prototype. This is achieved by integrating the
emulator into CoWare N2C cosimulation engine, as
shown onFigure 6.

In a common development with CoWare and Mentor
Graphics, we extended CoWare’s co-simulation capability
to the emulator. This is possible thanks to the emulation
technology which provides a co-emulation library that
contains all the functions to control the emulator. It is also
remarkable that, although used in a co-emulation mode, the
emulator can be at the same time in-circuit (JTAG part).

The power of this full system prototype is that it is available
very early. The use of emulation makes the simulation
performance higher than that of an RTL simulation-based
prototype. Another strength of this prototype is that it can
seamlessly be transformed into a fully emulated prototype,
which is the system functional validation sign-off platform.
This transformation is done naturally by integrating the RTL
blocks as they become available, and mapping them into the
emulator.

Another way of achieving a full emulation prototype, in
case we need full system emulation performance early, a
before all the RTL is available, is to use RTC to VHDL
translation. We have assisted CoWare in their developm
of a tool that transforms an RTC description into
synthesizable RTL. This tool is not intended to be
behavioral synthesis tool, but rather a translator. Hence
RTC itself has to be refined precisely before bein
translated, synthesized and mapped. But still, it provides
faster path to full system emulation than waiting for the fu
RTL to be ready.

7. RESULTS AND FUTURE WORKS

7.1 Results on CP4 project
Overall, the results of this Fast Prototyping technology we
very positive on the project. First the time-to-first-prototyp
was a breakthrough for that kind of complex SOC:

• the emulation bring-up of the MCU megacell wa
achieved in 4 weeks, including the software debugg
bring-up, thanks to both the re-use strategy and the fle
bility of our emulation technology

• the RTC/ISS prototype was made available in 4 month
with 2 engineers, hence a productivity gain of 55% ov
the RTL development.

• hence the full system prototype was achieved betwee
and 5 months. This is remarkable specially in regard
the DSP core VHDL availability: it was available, as in
system integrable RTL, 6 months after this first full sys
tem prototype

This shows that a consistent Fast Prototyping methodolo
together with a strong VC reuse policy can overcome som
of the SOC challenges.

The customers for the different prototypes that we built a
numerous, as described earlier. TheFigure 7.shows a list of
internal and external customers.

Being able to build these prototypes enables t
parallelisation of the work that is required to meet today
time-to-market challenges (core, hardware, software, SO
Both the application team and the customer started th
developments early.

Another important result is due to the consistency of the
models. Having this common framework from which t

Hardware

Real World
MCU Megacell

Emulator

software

netlist

Workstation

interprocess
communication

coem
ula

tio
n

Figure 6. Full system prototype

Virtual World

encapsu-
lated
ISS

Appli software
RTC

CO-SIMULATION

periph.

JTAG
SW dvpt

CoDesign
FastPrototyping

Design

System
Integration

ApplicationVerification
Customer

ArchitectureEmulation

ISS & RTC

VHDL & RTC IS
S

 &
V

H
D

L

IS
S &

 V
HDL &

RTC
ISS & VHDL

ISS & VHDL &RTC

IS
S

 &
 V

H
D

L
&

R
T

C IS
S &

VHDL

Software
Tools

Figure 7. Fast Prototyping customers

ci-

-
nt
d-
/

-

s-

-

-

a

y

derive prototypes provides lots of cross-checking
capabilities, thus maximizing the functional validation of
the models.

Although we have had quite significant industrial
achievements with this technology, we see some room for
improvement, that we will discuss in the next section.

7.2 Future works
In this project, we have not used the capability to describe
functional blocks at a pure behavioral C level. This has two
consequences: first, we did not get the maximum simulation
performance; and second, we did not leverage the
capabilities of N2C for hardware/software partitioning.
However, we plan to use future customer projects to validate
this capability. Additionally, we are planning to extend the
coverage of the flow to the very high-level system capture,
possibly by adding other tools as earlier front-ends (SDL-
based, for example) [9].

Also, in this pilot project, we minimized the risks by
developing concurrently in RTC and VHDL. Our next step
is to cancel the VHDL development until the first system
prototypes are validated, hence until the architecture itself is
satisfactory. To achieve this, we shall rely on both the RTC
prototyping, and also on the RTC-to-VHDL translation,
which should allow a quick path from RTC to VHDL, hence
to emulation. ST has developed advanced verification
technologies, one of which being a test (assembler
programs) generator targeted at functional verification of
cores [3,10]. The natural next step is to raise the capabilities
of this test generation environment to the system level, by
integrating system simulators to generate accurate system
reference data.

The area of verification also encompasses formal
verification, which we are investigating as a mean to
formally prove the equivalence of the descriptions we build
throughout the flow (C vs. RTC, RTC vs. VHDL). Another
track we investigate to secure the models’ quality is code
coverage on the RTC descriptions, just as it is done in the
RTL world.

8. CONCLUSION
In this paper we presented the Fast Prototyping system
design framework that we put in place within
STMicroelectronics. We demonstrated how this
environment, based on CoWare N2C (system design tool)
and emulation, was applied to a real industrial project to
increase the productivity and the quality of the SOC design
effort.

We believe that the capability of producing system
prototypes very early in a SOC design flow is a major key of
success in today’s industry:

• to secure the system architecture work

• to support hardware/software codesign, and parallelize
the different design tasks instead of serializing them

• to distribute usable prototypes to internal and external
customers

• to start functional verification as early as possible

9. AUTHORING
The following persons co-authored this paper:

10. REFERENCES
[1] M. Genoe, Alcatel, “Requirements capturing and spe

fication of Systems-on-Chip”, MEDEA/ESPRIT con-
ference on hardware/software codesign, 1998

[2] S. Tsasakou, C. Dre, H. Kharatanasis, A. Birbas, Uni
versity of Patras/Intracom SA, “Combined assessme
of an industrial current practice and CoWare’s metho
ology to the codesign/cosimulation problem”, MEDEA
ESPRIT conference on HW/SW codesign, 1998

[3] C. Berthet, G. Mas, F. Pogodalla & al.,
STMicroelectronics, “Functional verification method-
ology of Chameleon processor”, 33rd DAC, 1996

[4] K. Hashmi, A. C. Bruce, “Design and use of a system
level specification and verification methodology”,
EURO-DAC 95

[5] J. Monaco, D. Holloway, R. Raina, “Functional verifi-
cation methodology for the PowerPC 604 microproce
sor”, 33rd DAC, 1996

[6] M. Santana, P. Paulin, “Retargeting FlexWare to an
application-specific DSP processor”, MEDEA/ESPRIT
conference on hardware/software codesign, 1998

[7] P. Paulin, “A flexible hardware/software development
environment and its application to consumer multime
dia products designs”, CODES/CASHE’98

[8] A. Sangiovanni-Vincentelli, J. Liu, M. Lajolo, “Soft-
ware timing analysis using hardware/software cosimu
lation and instruction set simulator”, CODES/
CASHE’98

[9] A.A. Jerraya, J.M. Daveau, G. Marchioro, “hardware/
software codesign of an ATM network interface card:
case study”, CODES/CASHE’98

[10]M. Benjamin, D. Geist, A. Hartman, G. Mas, R.
Smeets, Y. Wolfsthal, STMicroelectronics and IBM
Science and Technology, Haifa Research Lab. "A Stud
in Coverage-Driven Test Generation", DAC’99

Etienne Lantreibecq
STMicroelectronics
850 rue Jean Monnet

BP 16
F-38926 Crolles Cedex, France

etienne.lantreibecq@st.com

Bernard Ramanadin
STMicroelectronics

STAR US RnD c/o Hitachi HMSI, SH5 project
179, east Tasman drive, San Jose, CA 95134, USA

bernard.ramanadin@st.com

Benoit Clement
STMicroelectronics

5bis Chemin de la Dhuy
F-38240 Meylan, France

+33-476-584-238
benoit.clement@st.com

	Main Page
	CODES'99
	Front Matter
	Table of Contents
	Session Index
	Author Index

