Designing Digital Video Systems: Modeling and Scheduling

H.J.H.N. Kenter!, C. Passerone’, W.J.M. Smits!, Y. Watanabe! and A.L. Sangiovanni-Vincentellit

t Philips Research Labs, Eindhoven, Netherlands, T Politecnico di Torino, Turin, Ttaly
! Cadence European Labs, Rome, Italy

Abstract

An advanced Digital Video Broadcasting (DVB) system is used
as a design driver for an IP-based real-time design methodology
explored in the ESPRIT/OMI COSY project [3]. The design
methodology is supported by the Felix VCC environment [10],
provided by a COSY partner Cadence, and tool-set developed
for COSY. In this paper, we focus on two key aspects of the de-
sign: behavior modeling and code generation. For the behavior
modeling, we present the model of computation used to represent
the DVB and the technique for expressing this particular model
with the more general model of computation supported by the
Felix technology. In a companion paper [4], the architecture se-
lection and communication refinement are described. Once the
architecture is selected and a partitioning has been decided, the
implementation phase starts. In this phase, for most system de-
signs, a great deal of software has to be written to ”customize”
the programmable components of the architecture. Obtaining an
optimized and correct-by-construction software implementation
is fundamental in an effective design methodology. Here we focus
on a software generation technique which aims to reduce run-time
overhead for functions executed on a single CPU, by generating
a minimal number of run-time tasks.

keywords: System design, IP integration, Software generation

1 Introduction

IP-based design methodologies have been discussed as a promis-
ing vehicle to realize cost-effective design practice for real-time
embedded systems. A goal of the COSY project [3] is to finalize
a general IP-based system design methodology supported by the
Felix VCC environment and tool-set to a consumer electronics
application characterized by a great deal of data-flow processing
and control. We use a Digital Video Broadcasting (DVB) system
designed by Philips Semiconductors as a design driver to assess
the methodology. The objective behind this choice was to use a
non-trivial design, rather than a toy example, based on commer-
cial products, that possesses important characteristics commonly
observed in state-of-the-art real-time embedded systems. Two
such characteristics are (1) the design is neither control domi-
nated nor data-flow dominated but rather a mixture of both, and
(2) the design is the basis of a new generation of existing products,
and as such, requires to re-use parts of the existing designs while
meeting new specifications. Our system takes as input MPEG2
transport streams and decodes them, and can resize and filter the
decoded objects under the control of real-time commands issued

by a user.

The design methodology is based on a set of successive refine-
ment steps starting with the specification of the behavior of the
design and of the constraints it has to obey. Fundamental to this
step is the choice of a model of computation. A model of compu-
tation for a given application domain is often chosen so that key
properties for designs of that particular domain are ensured by
construction. However, if we wish to obtain a design methodology
that is general enough to support a fairly large number of appli-
cation domains, the underlying model of computation should be
able to express almost all models of computation. In Felix, the
model of computation is based on the network of Co-design Finite
State Machines [1], which is low level enough to represent other
computation semantics. In the design of the DVB systems, on
the other hand, the model used is at a much higher level. Hence,
in order to capture these systems in Felix, it has to be described
in terms of the semantics provided in Felix. This process is quite
interesting in that it exposes a general problem for system de-
sign. We believe that our solution is simple and at the same time
powerful enough to be captured in the environment so that all
future designs in this domain can now be expressed in the higher
level model without worrying about the translation into the low
level model. The model of computation introduced for the DVB
system is called YAPI and allows mix-and-match of several IP
blocks guaranteeing correctness of the composition.

The analysis of the functional aspects of the DVB system has
led to the choice of an appropriate library of IP blocks whose
granularity is the result of an informal optimization step that
trades-off re-usability with efficiency. We present the IP library
that has been used to define the functionality of the DV B system.

The architecture is defined using the COSY architecture
model as a set of interconnected components that composes the
implementation of the design. The designer then explores differ-
ent implementations of the behavior on the architecture. Here,
trade-offs are made between cost and performance, by reducing
run-time overhead to meet real-time constraints under the avail-
able resources. Three key issues concerned in this step are: par-
titioning between hardware and software, communication refine-
ment (e.g. bus protocols, buffer sizes), and generation of run-time
tasks for software !. A partitioning is obtained by defining a map-
ping of the behavior onto the architecture, i.e. deciding which ar-
chitecture components will execute the behavior IPs. The map-
ping is then elaborated by communication refinement and task
generation. Once the behavior and the architecture have been
imported into Felix, a mapping can be defined graphically and
communication is refined by specifying protocols and by setting
implementation parameters.

The generation of run-time tasks is supported by a software
generation technique developed in COSY. It generates a minimal
set of run-time tasks for a behavior mapped to a CPU running a
multi-tasking RTOS, in order to reduce run-time overhead, e.g.
interrupts or synchronization, as much as possible. It schedules

1Scheduling of the generated tasks and implementation of each
task will follow this process.

each run-time task and generates C code for it. The result of
code generation are then incorporated into Felix, and its cycle-
approximate simulator is applied to verify the overall performance
of the design.

The paper is organized as follows: In Section 2, we present the
DVB system. Section 3 is concerned with the behavior modeling.
We first present YAPI, with the focus on the underlying com-
putation semantics. We show that this API is suitable for DVB
applications, in which data loss must be prevented in dataflow
processing and a special attention is required for interaction be-
tween dataflow and control processing. We then describe how to
import this behavior into Felix. Section 4 presents the software
generation technique outlined above.

2 The Design

Digital (uncompressed) video systems are characterised by high
speed and high throughput processing, in which operations are
repeatedly executed. On the other hand, compression in the dig-
ital video domain (MPEG) also requires control processing, since
compression/reproduction of data is controlled based on data be-
ing handled. Control processing is also needed to support real-
time user interaction. Thus, both data and control flow aspects
and their interaction need special attention when modeling such
a system.

In general, the systems receive MPEG2 transport streams,
where the user selects channel(s) to be decoded. The associated
video or graphic objects are then descrambled, demultiplexed,
and decoded. The user may also define post-processing operations
on the decode objects, such as filtering, zooming, and composi-
tion. In the COSY project, we focus on MPEG2 video decoding
with picture in picture capabilities. We have developed an IP
library which enables designs of three basic applications: HDTV,
QUADTYV, and PIPTV, which consists of the following:

e the MPEG2 Transport Stream (ISO/IEC 13818-2) demulti-
plexer. This TSDEMUX function extracts from an incom-
ing Transport Stream (TS) those Packetized Elementary
Stream (PES) packets that correspond to the Packet IDen-
tifiers (PID) selected by the user.

e the MPEG2 Packetized Elementary stream header parser.
This PESPARSER function parses the incoming PES
packets to collect Elementary Stream (ES) data per PID.

e the MPEG2 decoder. The H.262 compliant MPEG2 video
bitstream decoder MPEGDECODE decodes all video ES
streams up to main profile and high level (MPQHL).

o the Resizer. The RESIZE function deals with (user con-
trolled) scaling images in the range of 0.16 to 10, both
horizontally and vertically. For scaling we use horizontal
and vertical sample rate conversion and implement them
by 6 tab/64 polyphase filters. A simplified Producer-Filter-
Consumer model reflecting this functionality is worked out
in this paper and in the complementary paper [4].

o the Image Controller. IMAGECONTROL combines a
number of arbitrary sized video images into a single new
image. For all the input images position and overlay prior-
ity are controlled by the user.

e the User Controller. The USERCONTROL provides the
user with an interface to control his application. Upon
changes of the user settings, it calculates and sends control
data to the several building blocks in the application.

An example of the PIPTV application is depicted in Figure 1.
The application is capable of demultiplexing an input MPEG2 T'S
stream selecting two PIDs into a PES stream. It extracts the two
MPEG ES streams from the PES stream, decoding them at the
main profile and main level into two Standard Definition (SD)
video streams. Further, it can resize one SD stream by a variable
ratio (both horizontally and vertically), and composes the SD
video stream and the resized video stream to a Picture in Picture
SD image with a controllable PIP position.

user_interface

PID_PES PID_PCR
- - Decode_flag
PES
Teen T,
FLAGS IPESPARSER]
AVStrobe'

trans_demux pes_pars

SD_NEW

IMAGECONTROL

pip_source

mpeg_decoder[1]

Figure 1: The PIPTYV application.

3 Behavior Modeling

3.1 Application modeling: YAPI

The API has been defined with the following main goals. First,
it is easy to compose IPs for DVB applications. This is done by
specifying potential parallelism explicitly and by ensuring loss less
communication of data: two characteristics commonly observed
in this domain of applications. It also supports functions often
used in interaction between control and data processing. Sec-
ond, the specification retains the possibility of either hardware or
software implementation, or both. Third, it is easy to deal with
abstraction. This is important in IP based design, since except
for the interface, the user of an IP does not need to or even can-
not know all the details of the (third party) IP. The API allows
one to specify a behavior of an IP, independent of how data is
provided to the IP.

The model is an extension of the Kahn Process Network model
[6] and we call it Y-chart [7] Application Programmers Interface
(YAPI). The model consists of:

Processes A process is made of a process function and a set
of input and output ports through which it communicates
with other processes (or environment). The function is de-
fined by C, together with three constructs to support op-
erations on ports: read, write, and select. To avoid data
loss, read and write block when data is not available or
cannot be delivered, respectively. select also provides an-
other blocking mechanism. It takes two input ports as input
and returns a port ID. If neither input port has data avail-
able, it blocks. It identifies the port that has data avail-
able. If both ports do, select chooses one of them non-
deterministically, because we do not want the programmer
to influence the process scheduling, when specifying the ap-
plications. This non-determinism will be resolved later at
the mapping level, where the designer chooses a particular
deterministic implementation by taking into account vari-
ous design and architecture constraints.

Directed fifos Via the input port of a fifo we can store data in
the fifo and via the output port retrieve data from it.

Process network Processes are connected port-to-port by means
of fifos, forming a network that is known at compile time
and does not change at run time. Each output port of a
process is connected to precisely one input port of a fifo
and v.v.

A network of processes connected by fifos has deterministic
behavior if and only if select is not used. If it is, behavior
will be non-deterministic, until a scheduling of processes is deter-
mined. As an example we consider a Producer-Filter-Consumer
configuration: a Producer sends video data to a Filter, which pro-
cesses it using a set of coefficients and sends the new data to a
Consumer (data path). The filter coeflicients depend on a user-
controlled resize factor (control path). We model the interference
of the control path and data path in the filter process with a se-
lect method on both input ports. If neither input ports provide
data, the process blocks. If only one of them provides data, this

is deterministically indicated by the return value of the select. If
both data are present, one of the ports is non-deterministically
indicated. The designer still has all the freedom to react on the
return value of the select. The return value can be used to (non-
deterministically) switch between execution of the data path and
execution of the control path. On the other hand he can also
model to always do the data path and if needed do the control
too.

3.2 Behavior Capturing in Felix

In this section we describe how the IP library and the application
defined in Section 2 are imported into Felix, thus re-creating the
IPs in Felix.

3.2.1 Felix Model of Computation

Felix function diagram is a network of functional blocks connected
through ports, and the model of computation (MoC) is based on
Discrete Event simulation, or “fire and exit”: a functional block
is activated on receiving a token on a port, it can post tokens
to ports during its execution, and when it is finished the token
which activated the block is discarded. The blocking write, read
and select semantics of Section 3.1 must be realized on top of this
semantics.

The Felix tool supports several languages to express behaviour.
We use ECL [8]. It is an extension of Standard C, offering addi-
tional constructs: PAR, emit, await, present, abort. The seman-
tics are those of the Esterel primitives ||, emit, await, present,
and abort [2]. In short, emit and await offer non-blocking write
and blocking read, present tests signal presence, and abort al-
lows abortion of the execution of sections of code. The attractive
feature of await is that it offers blocking semantics to the user,
even though the underlying functional block in Felix exits in or-
der to allow other blocks to run. This requires state preservation,
which is looked after by ECL.

The behaviours we want to import into Felix have been de-
fined using YAPI, which not only provides blocking read, as does
ECL, but also blocking write and select. To enable the import
of such behaviours into Felix, we first create a functional block
for each process, and convert the behaviour to ECL. Since ECL
extends plain C and YAPI is also based on C, this boils down
to translating the blocking read, write and select of YAPI. As
processes are connected through fifos, also in the Felix functional
diagram we connect functional blocks using fifos by creating a
functional block for each fifo.

3.2.2 Modeling YAPI semantics in Felix

The original behaviour uses YAPI’s write, read and select. We
present here how they can be implemented using three ECL prim-
itives: emit, await and present.

Blocking write can be achieved in two ways: one is first to
wait for a permission to send data and then send it once a permit
is given, while the other is first to send data and then wait for an
acknowledge. This implies a protocol in which also the reading
process emits a token, which corresponds to either a permit or an
acknowledge. When the writer and reader are connected directly,
the order of events is important because of the way Felix and ECL
operate: an incoming token is seen only when a block is awaiting
it; else it is lost.

To prevent such a token loss, we use a scheme that allows both
the writer and reader to initiate a transaction, i.e. either of them
may be the first to send a token. The adopted solution is to put a
block in the middle of the writer and reader. This block is passive
in the sense that it does not take the initiative on either side but
responds to incoming requests. At the writer’s side, the request
is the data to transfer. At the reader’s side, it is a request for a
data item. The block always accepts incoming data. It does not
acknowledge the data until room becomes available. See Figure
2.

The select primitive uses another feature ECL inherits from
Esterel: the argument of await is really a signal expression. Hence,
we can await the occurrence of one or both of two signals and then

Writer FIFO Reader
] req em t
emt data
awai t ack data awai t
] | .
received! time

Figure 2: Time lines for req/ack protocol

test which one is active. There is a subtle difference in program-
ming models: in YAPT we express that we want to wait for data on
one of two channels and then read it; in ECL the await statement
already reads the values of the active signals and we test after-
wards with the present construct which ones we did read. Figure
3 shows how we can translate a YAPI fragment with select to
ECL, disregarding the req/ack protocol.

n = select (inl, in2); await (inl | in2);
if (n==0) { present (inl) {
read (inl, x); X = inl;
f1 (x); f1(x);
} elseif (n==1) { } else present (in2) {
read (in2, y); y =in2;
f2 (y); f2 (y);
}
a b.

Figure 3: a. YAPI fragment, b. ECL counterpart

The code fragment to the left awaits data on either of two
input signals, blocking if none is present, using a select state-
ment. It uses the return value to determine which input has data
available, which can then be read. The ECL code to the right
reflects the blocking on two input signals, but when it terminates
all data present on the inputs is consumed and available in in1
and/or in2. If both inputs have data, we use only inl. Thus, the
non-determinism of Section 3.1 turns into priority for the first
input.

3.2.3 FIFOs

In Section 3.2.2 we argued the need for extra blocks in the Felix
functional diagram to model blocking semantics, by means of a
request/acknowledge protocol. In fact, these blocks model in an
explicit way the channels of the original functional behaviour, and
we bind the FIFO behaviour that we associate with channels to
these blocks. Thus, FIFOs become explicit functional blocks in
Felix, connected to their writers and readers by four channels.
Figure 4 shows this for a Producer-Filter-Consumer example.

Producer

— Il — Il

Figure 4: Producer-Filter-Consumer with FIFOs

4 Software Generation

After the behavior of the design has been captured and simu-
lated to check its correctness, it is mapped onto an architectural
diagram. An architectural diagram is a collection of entities (mi-
crocontrollers, DSPs, ASICs, memories and so on), which com-
municate through dedicated or shared buses. Each block in the
functional diagram should be mapped to an architectural entity,
and communication links between blocks assigned to different en-
tities should be mapped to buses. More details about architecture
capturing are described in the companion paper [4].

This mapping process is not automated in our design method-
ology, but is done by the designer. The mapping is not one-to-
one in general, and may assign more than one process to the
same architecture component like a CPU or a DSP. Therefore, a
proper scheduling is required for those processes mapped to the
same processor. This section describes code generation for the
software partition of a design, or in case of multiprocessor sys-
tems, the software partition per processor. Since in these cases
the computational resource is shared by the processes, all parallel
operations should be serialized?, either at compile time or at run
time. This decision has a big impact on the performance of the
final implementation, and thus it is an important design param-
eter. In the COSY project, we provide a procedure aiming to
reduce run-time overhead as much as possible. Specifically, the
procedure takes a set of processes mapped to a single processor,
and then

1. generates a minimal number of run-time tasks,
2. schedules each task at compile time whenever possible,
3. generates an efficient C code for the schedule of each task.

Extensive research has been made on scheduling algorithms,
of which the two most popular classes are static scheduling, e.g.
[9], and real-time scheduling, e.g. [5]. The former makes all
scheduling decisions at compile time, thus reducing run-time over-
head completely. However, not all applications can be modeled
in this way, since information needed for scheduling is often only
available at run time. A data-dependent choice is an example
often encountered in control processing. Real-time scheduling
can handle data dependencies at run time, but it seldom consid-
ers communication patterns. Especially in data processing, data
samples are often generated with known patterns on rates and
latencies, and this information can be used to reduce run-time
overhead.

The single-processor software scheduling technique that we
are developing combines the best aspects of these approaches. It
schedules basic blocks at compile-time, i.e. statically, serializing
concurrency and resolving multi-rate dependencies. Further, sets
of basic blocks that are connected with data-dependent choices
or related by synchronization are grouped into a run-time task.
C code is generated for each such task, which implements the
schedules of the basic blocks and uses if-then-else constructs
for data-dependent choices. In this way, data-dependent opera-
tions can be included in compile-time schedules, leaving the ac-
tual resolution of dependencies to run time. Synchronization of
basic blocks within a single task is resolved in the code, sav-
ing precious RTOS synchronization resources and memory. The
resulting tasks are scheduled at run time using RTOS-supplied
synchronization and context switching primitives. We call this
technique Quasi-static scheduling (QSS), since it tries to sched-
ule processes as much as possible at compile time.

This technique is particularly interesting in DVB applications,
where high speed data flow coexists with control decision, both
synchronous to the bitstream, as compression/decompression, and
asynchronous, like user interaction with a set-top-box. The Pro-
ducer-Filter-Consumer system, described in Section 3.1, is a typ-
ical example of such an application: a completely static sched-
ule would not be able to handle control, while current real-time
scheduling techniques would impose an excessive overhead in the
data flow part. Our approach is different because we can model re-
actions on “soft real-time” control, having a minimal cost penalty
for the “hard real-time” data path, thus yielding an efficient im-
plementation.

To realize this, we need a mathematical model with which the
system function can be modeled, as well as scheduling algorithms
that work on it. We also need a mechanism that translates a
language specification of the system function into the model.

For the model, we use a class of Petri Nets (PNs) called Unique
Choice Petri Nets (UCPNs). PNs are bipartite graphs with two
types of nodes called places and transitions [11]. An advantage of

20ur current approach considers a CPU as a single processor which
executes operations sequentially, even though many of the modern
microprocessors support out-of-order or VLIW execution.

PNs over other models of computation is that it naturally models
both control and data operations: the former mainly consists of
data dependent choices, the latter are series of mixed rate oper-
ations with intensive concurrency. Both choices and concurrency
can be conveniently modeled using the two types of nodes. An-
other advantage of PNs, unlike general Data Flow models, is that
the question on schedulability is decidable, and therefore it is
possible to algorithmically find a schedule, if one exists.

A PN is said to be unique choice if and only if at any time
a place with multiple successor transitions is marked, either only
one successor transition is enabled, or all its successor transitions
are enabled. Thus, a choice is either not a choice or a free choice.
A free choice represents a data dependency that must be resolved
at run-time. UCPNs are deterministic by definition, i.e. a transi-
tion to fire is uniquely determined once information is provided at
run-time to resolve the data dependencies. This property makes
it easier to develop scheduling algorithms, with the only restric-
tion that the system function represented by the model must be
deterministic under given data values, which is the case for em-
bedded systems specified in deterministic languages like C.

In our model, it is relatively straightforward to translate a
large portion of a C-based language to it. This allows many parts
of legacy designs, either for creating design libraries or for other
design projects, to be imported into our design flow with minor
changes. Examples are the building blocks of Section 2. This is
a key advantage, since reuse of previously developed IPs is one
of the main factors to increase designers’ productivity, and hence
reduce design time.

As a specification language, from which a UCPN is derived,
we use YAPI with a restriction; we exclude the use of recursion. In
the translation from YAPI to a UCPN, the control flow and ports
are modeled by places, while the C statements are associated with
transitions. Successive transitions can be merged to reduce the
net, if they are not input or output of a place representing a
port. The same applies to the then and else branches of a data
dependent choice, so that the choice disappears from the PN, but
lives as a piece of C code associated with the resulting transition.

The translation algorithm guarantees that the resulting PN
is Unique Choice, except for the select construct. As defined in
Section 3.1, the select construct non-deterministically selects one
of the two ports to which this construct is applied, if both ports
have data available. Therefore, non-unique choiceness arises in
the resulting PN. However, this PN can be made Unique Choice
if a priority is defined over the ports so that in case both ports
have data, one with the higer priority is selected. Such a priority
is defined by the designer as a design parameter at the mapping
step, and since the proposed technique is applied after the map-
ping has been made, one can incorporate these priorities into the
model.

This translation algorithm is used to generate a UCPN for
each process, and the UCPNs for two processes communicating
through a pair of ports are connected by merging the places for
those ports.

An example of a fragment of UCPN representing the Producer-
Filter-Consumer system is shown in Figure 5, where the higher
priority is given to the port for coefficients. To make the net
Unique Choice, we need a pair of complementary places for the
coefficient port to distinguish the presence and absence of a token
at the port.

Once a UCPN is obtained, it is analyzed to find a schedule.
This operation involves three steps:

1. determine if the UCPN is schedulable in finite memory,

2. if so, find a schedule that minimizes the number of tasks,

3. generate C code for the tasks based on the schedule.

For the first two steps, we extend scheduling techniques developed
for a sub-class of UCPNSs [12]. The result is a set of sequences of
transitions for each task, with a guarantee that no matter how
data dependent choices are resolved at run-time, there exists a se-
quence in the set that can be executed with finite memory so that
the system state returns to the initial state after the execution.

The last step produces the final C code for each task. This is
done by stitching the statements of the original C code associated
with transitions based on the sequences computed for the task.

User Control -

handle coeff

Producer - select(data,coeff) Filter

L |—~ handle data
write(data) /

Figure 5: UCPN for the Producer-Filter-Consumer

The synthesized code can then be read back in Felix, where the
processes originally mapped to the processor are replaced by the
run-time tasks generated from the UCPN, and simulated along
with all the blocks mapped to other processors or hardware. The
code is of final implementation quality, since the scheduling has
been optimized and functions are written by designers.

5 Summary and Acknowledgments

We presented the application of a general system design method-
ology to the design of a DVB system. A model of computation
has been presented that is optimized for the application char-
acterized by the presence of sizable data-flow computation and
control. This model has been expressed using the basic model of
computation supported by the Felix technology. An IP library
has been created to favor design verification and re-use. The de-
sign has been imported into Felix to effectively explore the design
space.

This work is supported by the European Commission under
ESPRIT COSY EP25443. The first release of the COSY method-
ology and its evaluation with DVB designs is scheduled for Q1,
2000. The QSS technique is joint work with Jordi Cortadella at
Universitat Politécnica de Catalunya, Spain. The authors wish
to thank David Lahei, Ellen Sentovich, and Luciano Lavagno for
their collaboration.

References

[1] F. Balarin et al, “Hardware-Software Co-Design of Embedded
Systems: The Polis Approach”, Kluwer, 1997

[2] G. Berry, “The Esterel v5 Language Primer, Version 5.10, release
2.0,” Centre de Mathématiques Appligées, Ecole des Mines and
INRIA, France, 1998

[3] J-Y. Brunel et al., “COSY: a methodology for system design
based on reusable hardware & software IP’s,” in: J-Y. Roger
(ed.), Technologies for the Information Society, pp. 709-716,
1998

[4] J-Y. Brunel et al., “Communication Refinement in Video Sys-
tems On Chip,” CODES’99, 1998

[5] W.A. Halang, A.D. Stoyenko, “Constructing predictable real
time systems,” Kluwer Academic Publishers, 1991

[6] G. Kahn, “The semantics of a simple language for parallel pro-
gramming,” in: J.L. Rosenfeld (ed.), Information Processing,
North-Holland Publishing Co., pp. 471-474, 1974

[7] B. Kienhuis et al., “An approach for quantitative analysis of
application-specific dataflow architectures,” ASAP’97, Zurich,
Zwitserland, July 14-16 1997, pp. 338-349

[8] L. Lavagno, E. Sentovich, “ECL: A Specification Environment
for System-Level Design,” Submitted to DAC’99, 1998

[9] E.A.Lee, D.G. Messerschmitt, “Static scheduling of synchronous
dataflow programs for digital signal processing,” IEEE Trans.
on Computers, January 1987

[10] G. Martin and B. Salefski, “Methodology and technology for
design of communications and multimedia products via system-
level IP integration,” DATE’98, 1998

[11] T. Murata, “Petri nets: properties, analysis and applications,”
Proc. of the IEEE, April 1989

[12] M. Sgroi, “Quasi-static scheduling for free-choice Petri Nets,”
MS Thesis, UC Berkeley, 1998

	Main Page
	CODES'99
	Front Matter
	Table of Contents
	Session Index
	Author Index

