
MULTILANGUAGE DESIGN OF HETEROGENEOUS
SYSTEMS

P. COSTE, F. HESSEL, PH. LE MARREC, Z. SUGAR, M. ROMDHANI, R. SUESCUN, N.
ZERGAINOH, A.A. JERRAYA

TIMA Laboratory, 46 avenue Félix Viallet, 38000 Grenoble France

Pascal.Coste@imag.fr

ABSTRACT
Multil anguage solutions are required for the design of
heterogeneous systems where different parts belong to different
application classes e.g. control/data or continuous/discrete. The
main problem that needs to be solved when dealing with
multil anguage design is the refinement of communication between
heterogeneous subsystems. This paper discusses the basic
concepts of multil anguage design and introduces MUSIC a
Multil anguage design approach. The paper also shows the
application of this approach in the case of a mechatronic system.

Keywords
Multil anguage, Codesign, Heterogeneous Systems, Cosimulation.

1. INTRODUCTION
Experiments with system specification languages [21] show that
there is not a unique universal specification language to support
the whole li fe cycle (specification, design, implementation) for all
kinds of applications. A plethora of specification languages exists.
Each claims superiority but excels only within a restricted
application domain. The design of a complex system may require
the cooperation of several teams belonging to different cultures
and using different languages. New specification and design
methods are needed to handle these cases where different
languages and methods need to be used within the same design.
These are multil anguage specification, design and verification
methods.

A typical application domain for multil anguage design is
Mechatronics. In fact, the use of electronics within cars, for
example, is becoming more and more important. It is expected
that the electronic parts will constitute more than 20% of the price
of future cars [19]. The joint design of various mechanical parts
with electronic parts and specially micro-controllers is a very
important area for the Mechatronics design. In traditional design
approaches, the different parts are designed by separate groups
and the integration of the overall system is made at the final stage.

This scheme may induce extra delays and costs because of
interfacing problems. The necessity for more eff icient design
approaches allowing for a joint design of different parts is evident.
Multil anguage design constitutes an important step in this
direction. It gives the designer the abilit y to validate the whole
system's behavior before the implementation of any of its parts.
Multil anguage system design offers many advantages including
eff icient design flow and shorter time to market. The key idea is to
allow for early validation of the overall system through co-
simulation.

This paper introduces a complete design methodology and a set of
tools used for Mechatronics design. The next two sections discuss
system level modeling strategies, multil anguage design concepts
and previous work. Section 4 introduces MUSIC, a multil anguage
design environment. Section 5 shows the feasibilit y of the
multil anguage method through an example. Finally, section 6
provides our conclusions.

2. Multilanguage Design
Most of the existing system specification languages are based on a
single paradigm. Each of these languages is more eff icient for a
given application domain. For instance some of these languages
are more adapted to state-based specifications (SDL or Statecharts
[5]), some others are more suited for data flow and continuous
computation (LUSTRE, Matlab [15]), while many others are more
suitable for algorithmic description (C, C++).

When a large system has to be designed by separate groups, they
may have different cultures and expertise with different modeling
styles. The specification of such large designs may lead each
group to use a different language which is more suitable for the
specification of the subsystem they are designing according to its
application domain and to their culture.

The key issue for the design of such a system is the validation of
the overall system and the synthesis of the interfaces between the
different subsystems. Of course, most of these subsystems may
include both software and hardware. In this case, a multil anguage
design is needed. The key issues with such a scheme are
validation and interfacing. The use of a multil anguage
specification requires new validation techniques able to handle a
multiparadigm model. Instead of simulation we will need
cosimulation and instead of verification we will need
coverification. Additionally, multil anguage specification brings
about the issue of interfacing subsystems which are described in
different languages. These interfaces need to be refined when the
initial specification is mapped onto a prototype.

Figure 1 shows a generic flow for codesign starting from a multi -
level specification. Each of the subsystems of the initial
specification may need to be decomposed into hardware and
software parts. The codesign process also needs to tackle the
refinement of interfaces and communication between subsystems.

Subsystem 1

L anguage 1

Subsystem 2

L anguage 2

Subsystem n

L anguage n

System-L evel V ali dation (e.g. cosimulation)

Hardware Sof tware Other components

CODESIGN

Implementation V ali dation (e.g. cosimulation)

Figure 1 : Multil anguage Codesign Flow

3. Previous work
The success of cosimulation techniques [23] has made the
Multil anguage approach very popular within the research
community. There are two main approaches for multil anguage
design : the compositional approach and the cosimulation-based
approach.

The compositional approach aims at integrating the partial
specification of sub-systems into a unified representation which is
used for the verification and design of the global behavior. This
allows to operate full coherence and consistency checking, to
identify requirements for traceabilit y links, and to facilit ate the
integration of new specification languages [3]. POLIS [1], [13],
JavaTime [27], SPI [28],[6] and SpecC [4] introduce a
compositional-based codesign approach. Both Polis and SPI use
an internal model for composition. Both JavaTime and SpecC use
another specification language (respectively Java and SpecC) for
composition.

The cosimulation-based approach consists in interconnecting the
design environments associated to each of the partial
specifications. Compared with the deep specification integration
accomplished by the compositional approaches, cosimulation is
an engineering solution to multil anguage design that performs just
a shallow integration of the partial specifications. However it
allows for modular design.

In this approach the different modules described in different
languages may be designed using different environments. During
the design flow, Cosimulation is used for the validation of the
overall system through the codesign steps. The main Codesign
steps in this case are interlanguage communication synthesis and
subsystem refinements [16]. Most of existing tools in this area
provides few refinements and they start the design at quite a low
level e.g. RTL for Hardware and C language for Software. Coware
[22], Seamless [9] and [24] are typical environments supporting
such a codesign scheme. They start from a mixed description
given in VHDL or VERILOG for hardware and C for software.
All of them allow for cosimulation. However, only Coware allows
for interface synthesis [2]. Only few systems in the literature tried
to tackle the Cosimulation-based multil anguage codesign
approach at a higher level. These are RAPID [20], Ptolemy [14]

and SEA [10]. Unfortunately most of these systems provide only
Cosimulation faciliti es [20],[14].

The work presented in this paper overcomes these limitations. It
allows to start the multil anguage approach at the system level
providing both system-level refinement and high-level interfaces
synthesis. The interlanguage communication synthesis is based on
the concept of high-level communication synthesis similar to the
concepts used in Codesign tools such as those used in LYCOS
[11], CHINOOK [25] and the work reported in [17].

4. MUSIC : a multilanguage approach for
heterogeneous system design
This section introduces MUSIC, a complete design methodology
and a set of tools for cosimulation-based multil anguage codesign.
Although the design flow supports more languages covering
several application domains we will restrict this presentation to
the Mechatronics area. Figure 2 shows the flow used for the
design of a Mechatronics system including hardware, software
and mechanical parts. The design starts with an analysis of the
system requirements and a high-level definition of the various
functions of the system. The mechanical part is modeled in Matlab
and the electronic part is modeled in SDL. At this stage, we obtain
a multil anguage system-level model given in SDL-Matlab. At the
top level, partitioning is done manually because we have no
formal specification.

The design flow handles three abstraction levels : the system
level, the system architecture level and the RTL or cycle accurate
level.

System Analysis

Electronic parts
(SDL)

Mechnical parts
(Matlab)

HW/SW Partitioning

Software (C) Hardware (VHDL)

Cosimulation 1

Cosimulation 2

Cosimulation 3

Binary Code
Model of

Micro-Controller

Software
Hardware

(Gates)

µ Controller

Memory
ASIC

Mechanical
(Emulator or Prototype)

Prototype

Sy
st

em
-l

ev
el

m
od

el
Sy

st
em

A
rc

hi
te

ct
ur

e
C

yc
le

-t
ru

e
m

od
el

Pr
ot

ot
yp

e

Figure 2 : Multil anguage design flow for Mechatronics

At the system level, communication is described at the application
level. The validation of the overall system may be done using
system level co-simulation of SDL-Matlab models. This model
may be used as a mock-up of the system in order to fix the final
specification. At this level the SDL-Matlab communication needs
to be refined. Additionally the electronic module needs to be

partitioned into hardware and software. This may be performed
automatically using the COSMOS tools [26]. This step produces a
mixed hardware/software model of the electronic part.

After the partitioning step and the interlanguage communication
synthesis, we obtain a system-architecture Model. Hardware is
modeled as behavioral VHDL, software is modeled as C-
programs, Hardware/Software communication is performed
through generic wires and the mechanical part remains as a
Matlab model. At this level the interlanguage communication (C,
VHDL, Matlab) is described at a level where all the protocols are
explicit in the model. Cosimulation may be achieved in order to
validate the partitioning and the communication protocols. Some
timing verifications may be achieved at this level.

During the next step the design is refined to the cycle-true level.
Hardware is refined as an RTL model. The software is executed
on a model of the final processor and the mechanical part may be
kept in Matlab. At this level all i nterfaces are refined to the
physical level. HW/SW interfaces should include drivers in the
software part and some hardware adapters to link the processor to
the application. The model of the processor may be an
implementation model (e.g. a gate model or a synthesizable
VHDL) or a high-level model (e.g. a C program). At this level,
cosimulation may be used to check timing at the clock-cycle level
[18].

The final step in this multi -language design flow is prototyping.
At this level, a prototype of the electronic system needs to be
built . The mechanical part may be emulated [12],[8].

5. Application Example
This section shows the results of our multil anguage codesign flow
in the case of a multil anguage model. The example is a large
application, a robot arm controller. In the example we will
ill ustrate the overall design flow of MUSIC, from a system-level
specification given in SDL and Matlab to an implementation.

Figure 3 : Motors controller application

5.1 The application
The application is a robot arm controller. The system can be
divided into two parts, the robot arm’s motors and the controller.
SDL is used to model the controller and Matlab is used to model
motors physical behavior.

The robot arm controller can adjust the position and speed
parameters of eighteen motors belonging to a robot arm. In this
paper we will restrict the model to two motors only.

Four signals are exchanged between the Matlab model and the
SDL model, two for each motor. The first signal controls the
motor and the second one provides the current position. The basic
bloc diagram of the system is shown in Figure 3. The
GENERATOR bloc computes a trajectory for all motors of the

robot arm. The Sampler bloc receives Motors’ positions and
transmits them to the Controller. The Controller bloc is in charge
of giving orders to Motors only when it is possible.

5.2 The design process
• The SDL System-Level Specification

The SDL specification uses three mains blocs that include six
SDL processes, a generator, a distributor, one controller per
motor, and one sampler per motor.

Figure 4 : SDL controller specification

Figure 4 shows the processes’ structure of the controller system.
The Gener process produces two signals, an order which is called
Cons and an address, which is an identifier of a motor. The Dist
forwards orders to the called motor controller by the address. A
Ctrl process gives the order to the motor and scans its position.
When a motor is about to accomplish its order, the Ctrl process
informs the Gener process that it can produce a new destination.
Because a position signal is a “continuous signal” , each Echant
process represents a digital acquisition. In SDL all processes are
concurrent and communicate through asynchronous queues.

• The Matlab Specification

In this case a Matlab model is used to specify the mechanical part.
This model acts as a testbench for the SDL model during all the
codesign steps.

• The Overall System

The overall system’s interconnections, including SDL and Matlab
instances, are described using a configuration file that gives the
interconnection between the blocs. Figure 5 shows the
configuration of the SDL-Matlab Models. It is made of two blocs
interconnected through abstract channels. We use the SOLAR
format [7] for the description of the configuration file. In SOLAR,
a system is modeled as a set of design units interconnected
through high-level channels or physical signals. MUSIC uses this
configuration file in order to produce a cosimulation run where
the different blocs will be executed using the corresponding
Simulators.

S1

S2
�

S3
�

S4

CONTROL MOTEUR 2�

Figure 5 : SDL-Matlab blocs configuration

The same file will be used to refine the communication protocols
between SDL and Matlab. In fact, the global configuration of the
system is a kind of "system-level netlist" that specifies the
interconnection between different subsystems. Since the different
languages are based on different concepts for data exchange, the

interpretation of the link between heterogeneous subsystems will
need a specific communication synthesis step.

• System-level Validation (SDL-Matlab Cosimulation)

In order to validate the system at this stage of the design flow, an
SDL-Matlab cosimulation is performed. During Cosimulation,
debuggers and GUI can be launched to control the simulation and
analyze all parts of the system. Figure 6 shows a running
cosimulation of the SDL-Matlab model. The left part shows the
SDL simulator window and the right part shows the
Matlab/Simulink windows.

Figure 6 : controller system-level running cosimulation

• Partitioning and Communication Synthesis

The system-level specification contains two blocs, one Matlab
bloc, the mechanical part, and one SDL bloc, the controller. As
described in section 4, several steps are used to refine the
controller specification down to a prototype.

The first step is the translation of SDL to the internal model of
MUSIC (SOLAR) in order to apply system-refinement
transformations. The specification obtained is presented in Figure
7, this model is made up of seven blocs. Six come from the SDL
model and the seventh corresponds to the Matlab bloc.

Figure 7 : SOLAR specification after SDL translation

The next step consists in the communication synthesis. The
MUSIC tool assists the user in mapping abstract communication
channels on explicit communication protocols. In this case we
have two kinds of communication channels. First of all we have
channels that correspond to the communication between SDL
processes : The four bottom channels of Figure 7 link electronic
modules. In this case we decided to implement them as “ rendez-
vous” protocols.

Then we have the four top channels of Figure 7 that correspond to
communications between the mechanical part (Matlab) and the

electronic system. They need specific transceivers able to connect
heterogeneous blocs. The result of the communication synthesis is
shown in Figure 8. Four extra communication controllers were
inserted automatically during the communication synthesis. They
correspond to adapters that implement the communication
between mechanical parts and electronic parts. For both kinds of
communication syntheses we use the library-based protocol
mapping method described in [26].

The next step is Hw/Sw partitioning. MUSIC allows to
decompose the system into three kinds of blocs : Hardware blocs,
Software blocs and IP blocs. The IP bloc corresponds to parts of
the system that will be handled as black boxes. As shown in
Figure 9 the initial specification was reorganized into a Hardware
module (in black), an IP module (in white) and two Software
modules (in gray).

Figure 8 : Explicit Communication Specification

• Hardware/Software Synthesis

The next step is code generation. MUSIC generates VHDL-RTL
code for hardware blocs and C code for software blocs. This new
model can be used for low-level cosimulation or for prototyping.

Figure 9 : C/VHDL generated system

• Architectural Validation (C-VHDL-Matlab cosimulation)

The architectural controller specification is composed of VHDL,
C and Matlab blocs. MUSIC is used again to cosimulate this
model. VHDL blocs are executed on Synopsys VSS simulator, C
blocs are compiled and executed on a workstation and Matlab
executes the models of the motors. Figure 10 shows a screen
running C, VHDL and Matlab. This simulation allows to check
that the produced system has the same behavior as the initial
specification. According to the design flow in Figure 2 another
simulation step may be performed to check the behavior of the
system at the clock-cycle level.

• System Implementation

The final step is implementing the system into a Hardware /
Software architecture. This part may be done using classical
methods [18].

6. Conclusion
This paper discussed multil anguage design and introduced a
multil anguage design flow called MUSIC. The application of
MUSIC on mechatronic design was also discussed.

The main contribution of this work is to start from a
multil anguage specification made of SDL and Matlab for the
design of a mechanical system. The design flow combines SDL-
Matlab Cosimulation, Interlanguage Communication Synthesis
and classical Hardware/Software Codesign flow.

Figure 10 : architectural specification running cosimulation

Acknowledgement

This work was supported by France-Telecom/CNET, ESPRIT-
OMI program under project CODAC 24139, SGS-Thomson,
Aerospatiale, PSA, ESPRIT program under project COMITY
23015 and MEDEA program under projects SMT AT-403 and
CIME 452.

REFERENCES

[1] Felice Balar in et al. 1997 (May). Hardware-Software Co-Design of
Embedded Systems, The POLIS Approach. Kluwer Academic
Publishers.

[2] I . Bolsens, B. L in, K. Van Rompaey, S. Vercauteren and D.
Verkest. 1995 (June). Co-Design of Dsp Systems, from In NATO ASI
Hardware/Software Co-Design. Tremezzo, Italy.

[3] A. Davis. 1995. Software Requirements: Analysis and Specifi cation.
Elsiever. NY.

[4] D. Gajski, Rainer Domer and Jianwen Zhu. 1998 (Aug.). IP-
Centric Methodology and Design with the SpecC Language, from
Contribution to NATO-ASI Workshop on System Level Synthesis. Il
Ciocco, Barga, Italy.

[5] D. Harel. 1987. Statecharts : A Visual Formalism for Complex
Systems. Science of Computer Programming, 8, pages 231-274.

[6] J. Henkel and R. Ernst. 1995 (Sept.). A Path-Based Technique for
Estimating Hardware Runtime in Hw/Sw- Cosynthesis, from 8th Intl.
Symposium on System Synthesis (SSS). Cannes, France. Pages 116-
121.

[7] A.A. Jerraya and K. O'Br ien. 1994. SOLAR: An Intermediate
Format for System-level Modeling and Synthesis, from Computer
Aided Software/Hardware Engineering., ed. J.Rozenblit and
K.Buchenrieder IEEE Press.

[8] B. Kienhuis and E. Deprettere and K. Vissers and P. Von der
Wolf. 1998. The Construction of a Retargetable Simulator for an
Architecture Template, from 6th International Workshop on
Hardware/Software Co-Design (Codes/CASHE'98). Pages 33-37.

[9] R. Klein. 1996. Miami: A Hardware Software Co-Simulation
Environment, from RSP'96. IEEE CS Press. Pages 173-177.

[10] B. Kleinjohann. 1998 (sept.). Multilanguage Formalism.
MEDEA/ESPRIT conference HW/SW Codesign, pages X.1.1-X.1.22.

[11] P.V. Knudsen and J. Madsen. 1998. Communication Estimation
for Hardware/Software Codesign. CODES98, pages 55-59.

[12] G. Koch and U. Kebshull and W. Rosenstiel. 1994 (Sep.). A
prototyping Environment for Hardware/Software Codesign in the
COBRA Project, from IWHSC. Grenoble, France.

[13] L. Lavagno, A. Sangiovani-Vincentelli and H. Hsieh. 1996.
Embedded System Codesign: Synthesis and Verification Kluwer
Academic, Boston. Pages 213-242.

[14] B. Lee and A. Lee. 1998. Hierarchical Concurrent Finite State
Machines in Ptolemy. Proc. Of International Conference on
Application of Concurrency to System Design. Pages 34-40.

[15] MathWorks. 1998. Matlab. http://www.mathworks.com

[16] V. Mooney and T. Sakamoto and G. De Micheli . 1997. Run-Time
Scheduler Syntheis for Hardwrae-Software Systems and Application
to Robot Control Design, from CHDL'97. IEEE. Pages 95-99.

[17] R.B. Or tega and G. Borr iello. 1998 (nov.). Communication
Synthesis For Distributed Embedded Systems, from ICCAD98. San
Jose, CA, USA.

[18] P. Paulin. 1995 (Sept.). High Level Synthesis and Codesign
Methods: An Application to a Videophone Codec, from Proc. of
EuroDAC/EuroVHDL. Brighton.

[19] A. Rault, Y. Bezard, A. Coustre and T. Halconruy. 1996. Systems
Integration in the Car Industry. PSA, Peugeot-Citroen. 78140 Velizy
Villacoublay, France.

[20] N.L. Rethman and P.A. Wilsey. 1993 (Apr.). RAPID: A Tool For
Hardware/ Software Tradeoff Analysis, from Proc. CHDL'93. Elsevier
Science, Otawa,Canada.

[21] M. Romdhani et al. 1995 (Sept.). Evaluation and Composition of
Specification Languages, an Industrial Point of View, from Proc. IFIP
Conf. Hardware Description Languages (CHDL). Pages 519-523.

[22] K.Van Rompaey, D. Verkest, I . Bolsens and H. De Man. 1996
(Sept.). Coware - a Design Environment for Heterogeneous
Hardware/Software Systems, from The European Design Automation
Conference. Geneve.

[23] J.A. Rowson. 1994 (june). Hardware/Software Co-Simulation, from
DAC94. San Diego, CA, USA. Pages 439-440.

[24] D.E. Thomas and J.K. Adams and H. Schmit. 1993 (Sep.). A
Model and Methodology for Hardware-Software Codesign.
IEEEDTC, 10(3), pages 16-28.

[25] F. Vahid and L . Tauro. 1997. An Object-Oriented Communication
Library for Harware-Software Co-Design, from 5th International
Workshop on Hardware/Software Co-Design (Codes/CASHE'97).
Pages 81-86.

[26] C. Valderrama et al. 1997. Hardware and Software Co-design :
Principles and Practice KLUWER. Chap. COSMOS : A
Transformational Codesign Tool for Multiprocessor Architectures,
pages 307-357.

[27] J.S. Young et al. 1998. Design and Specification of Embedded
Systems in Java Using Successive, Formal Refinement, from DAC98.
Pages 70-75.

[28] D. Ziegenbein, R. Ernst, K. Richter, J. Teich and L . Tiele. 1998.
Combining Multiple Models of Computation for Scheduling and
Allocation, from 6th International Workshop on Hardware/Software
Co-Design (Codes/CASHE'98). Pages 42-46.

	Main Page
	CODES'99
	Front Matter
	Table of Contents
	Session Index
	Author Index

