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ABSTRACT

Multilanguage solutions are required for the design of
heterogeneous g/stems where different parts belong to dfferent
applicaion classs e.g. control/data or continuows/discrete. The
main problem that needs to be solved when deding with
multil anguage design is the refinement of communicaion between
heterogeneous aubsystems. This paper discuses the basic
concepts of multilanguage design and introduces MUSIC a
Multilanguage design approach. The paper aso shows the
applicaion d thisapproac in the cae of amedcatronic system.
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1. INTRODUCTION

Experiments with system spedficaion languages [21] show that
there is naot a unique universa spedficaion language to suppat
the whole life gycle (spedficdion, design, implementation) for all
kinds of applications. A plethora of spedfication languages exists.
Each clams auperiority but excds only within a restricted
application damain. The design of a @mplex system may require
the moperation d severa teans belonging to dfferent cultures
and wing different languages. New spedfication and design
methods are needed to handle these caes where different
languages and methods neal to be used within the same design.
These ae multilanguage spedfication, design and verificaion
methods.

A typicd applicaion damain for multilanguage design is
Medatronics. In fad, the use of eledronics within cars, for
example, is becoming more and more important. It is expeded
that the dedronic parts will constitute more than 20% of the price
of future cas [19). The joint design o various mechanicd parts
with eledronic parts and spedally micro-controllers is a very
important areafor the Mechatronics design. In traditional design
approadnes, the different parts are designed by separate groups
andtheintegration o the overal systemis made & the final stage.

This <heme may indwce etra delays and costs becaise of
interfadng problems. The necessty for more dficient design
approadhes all owing for ajoint design of different partsis evident.
Multil anguage design constitutes an important step in this
diredion. It gives the designer the aility to validate the whole
system's behavior before the implementation o any of its parts.
Multil anguage system design dffers many advantages including
efficient design flow and shorter time to market. The key ideaisto
dlow for ealy vaidation d the overal system through co-
simulation.

This paper introduces a mmplete design methoddogy and a set of
tools used for Mechatronics design. The next two sedions discuss
system level modeling strategies, multil anguage design concepts
and previous work. Sedion 4introduces MUSIC, a multil anguage
design environment. Sedion 5 shows the feasibility of the
multil anguage method through an example. Finaly, sedion 6
provides our conclusions.

2. Multilanguage Design

Most of the eisting system spedfication languages are based ona
single paradigm. Each of these languages is more dficient for a
given applicaion damain. For instance some of these languages
are more alapted to state-based spedficaions (SDL or Statecharts
[5]), some others are more suited for data flow and continuows
computation (LUSTRE, Matlab [15]), whil e many others are more
suitable for algorithmic description (C, C++).

When a large system has to be designed by separate groups, they
may have different cultures and expertise with dfferent modeling
styles. The spedficaion o such large designs may lead eat
group to use adifferent language which is more suitable for the
spedficaion o the subsystem they are designing acwording to its
applicaion damain and to their culture.

The key isaue for the design of such a system is the validation o
the overall system and the synthesis of the interfaces between the
different subsystems. Of course, most of these subsystems may
include both software and hardware. In this case, a multil anguage
design is nealed. The key isales with such a scheme ae
validation and interfadng. The use of a multilanguage
spedfication requires new validation techniques able to hande a
multiparadigm model. Instead o simulation we will ned
cosimulation and instead of verificdion we will nea
coverificaion. Additionally, multilanguage spedficaion krings
abou the isale of interfadng subsystems which are described in
different languages. These interfaces need to be refined when the
initial spedficationismapped orto a prototype.



Figure 1 shows a generic flow for codesign starting from a multi-
level spedfication. Each of the subsystems of the initial
spedficaion may need to be decomposed into hardware and
software parts. The @design process also neals to tadkle the
refinement of interfaces and communicaion between subsystems.
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Figure 1 : Multil anguage Codesign Flow

3. Previouswork

The success of cosimulation techniques [23] has made the
Multilanguage gproach very popuar within the reseach
community. There ae two main approaches for multil anguage
design : the aompositional approach and the cosimulation-based
approach.

The mpositional approach aims at integrating the partial
spedficaion d sub-systemsinto a unified representation which is
used for the verification and design of the global behavior. This
allows to operate full coherence and consistency cheding, to
identify requirements for tracedility links, and to fadlitate the
integration d new spedficaion languages [3]. POLIS [1], [13],
JavaTime [27], SPI [28,6] and SpedC [4] introduwce a
compasitional-based codesign approach. Both Polis and SPI use
an internal model for compasition. Both JavaTime and SpecC use
another spedfication language (respedively Java and SpecC) for
compasition.

The msimulation-based approach consists in interconneding the
design environments asxciated to eadh o the partid
spedficaions. Compared with the deep spedfication integration
acomplished by the compositiona approaches, cosimulation is
an engineaing solution to multil anguage design that performs just
a shalow integration o the partial spedficaions. However it
allows for moduar design.

In this approach the different modues described in dfferent
languages may be designed using different environments. During
the design flow, Cosimulation is used for the validation o the
overal system through the @mdesign steps. The main Codesign
steps in this case ae interlanguage ommunicdion synthesis and
subsystem refinements [16]. Most of existing todls in this area
provides few refinements and they start the design at quite alow
level e.g. RTL for Hardware and C language for Software. Coware
[22], Seamless[9] and [24] are typicd environments sippating
such a mdesign scheme. They start from a mixed description
given in VHDL or VERILOG for hardware and C for software.
All of them alow for cosimulation. However, only Coware dlows
for interfacesynthesis [2]. Only few systems in the literature tried
to takle the Cosimulation-based multilanguage @design
approach a a higher level. These ae RAPID [20], Ptolemy [14]

and SEA [10]. Unfortunately most of these systems provide only
Cosimulation fadliti es [20],[14].

The work presented in this paper overcomes these limitations. It
dlows to start the multil anguage gproach at the system level
providing both system-level refinement and high-leve interfaces
synthesis. The interlanguage ommunicaion synthesisis based on
the concept of high-level communication synthesis smilar to the
concepts used in Codesign toadls guch as those used in LYCOS
[11], CHINOOK [25] and the work reported in [17].

4. MUSIC : amultilanguage approach for

heterogeneous g/stem design

This fdion introduces MUSIC, a complete design methoddogy
and a set of todls for cosimulation-based multil anguage @design.
Although the design flow suppats more languages covering
several application damains we will restrict this presentation to
the Medatronics area Figure 2 shows the flow used for the
design of a Medhatronics g/stem including hardware, software
and mechanicd parts. The design starts with an analysis of the
system requirements and a high-level definition d the various
functions of the system. The mechanicd part is modeled in Matlab
and the dedronic part ismodeled in SDL. At this gage, we obtain
a multil anguage system-level model given in SDL-Matlab. At the
top level, partitioning is dore manualy becaise we have no
formal spedficaion.

The design flow handes three &stradion levels : the system
level, the system architedure level and the RTL or cycle acarate

level.
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Figure 2 : Multil anguage design flow for Mechatronics

At the system level, communicationis described at the gplicaion
level. The vaidation d the overal system may be dore using
system level co-simulation d SDL-Matlab models. This model
may be used as a mock-up d the system in order to fix the final
spedfication. At this level the SDL-Matlab communicaion reels
to be refined. Additionally the dedronic modue neels to be



partitioned into hardware and software. This may be performed
automaticdly using the COSMOS tools [26]. This dep produces a
mixed hardware/software model of the dedronic part.

After the partitioning step and the interlanguage communication
synthesis, we obtain a system-architecdure Model. Hardware is
modeled as behavioral VHDL, software is modeled as C-
programs, Hardware/Software @mmunicaion is performed
through generic wires and the mechanicd part remains as a
Matlab model. At this level the interlanguage communication (C,
VHDL, Matlab) is described at alevel where dl the protocols are
explicit in the model. Cosimulation may be adieved in order to
validate the partitioning and the communication protocols. Some
timing verifications may be atieved at thislevel.

During the next step the design is refined to the gscle-true level.
Hardware is refined as an RTL model. The software is exeated
onamode of the final processor and the mechanicd part may be
kept in Matlab. At this level al interfaces are refined to the
physicd level. HW/SW interfaces shoud include drivers in the
software part and some hardware alapters to link the procesor to
the gplicaion. The model of the processor may be a
implementation model (e.g. a gate model or a synthesizable
VHDL) or a high-level model (e.g. a C program). At this level,
cosimulation may be used to chedk timing at the dock-cycle level
[19].

The final step in this multi-language design flow is prototyping.
At this level, a prototype of the dedronic system needs to be
built. The medhanicd part may be enulated [12],[8].

5. Application Example

This £dion shows the results of our multil anguage @design flow
in the cae of a multilanguage model. The example is a large
applicaion, a roba arm controller. In the example we will
ill ustrate the overall design flow of MUSIC, from a system-level
spedficaion given in SDL and Matlab to an implementation.
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Figure 3 : Motors controll er applicaion

5.1 Theapplication

The gplicaion is a roba arm controller. The system can be
divided into two parts, the roba arm’s motors and the cntroller.
SDL is used to modd the controller and Matlab is used to model
motors physicd behavior.

The roba arm controller can adjust the position and speed
parameters of eighteen motors belonging to a roba arm. In this
paper we will restrict the model to two motors only.

Four signals are exchanged between the Matlab model and the
SDL model, two for ead motor. The first signa controls the
motor and the second ore provides the aurrent position. The basic
bloc diagram of the system is sown in Figure 3. The
GENERATOR bloc computes a trgjedory for al motors of the

roba arm. The Sampler bloc recéves Motors positions and
transmits them to the Controller. The Controller bloc isin charge
of giving ordersto Motors only when it is possble.

5.2 Thedesign process
e« The SDL System-Level Spedfication
The SDL spedficaion wses three mains blocs that include six

SDL processs, a generator, a distributor, one controller per
motor, and ore sampler per motor.

Motor 1 Consigne

Controller

Generator

Sampler M.1
Position
Adr Echant 1
@
-«
g Echant 2
cons M2
Ack Position

Motor 2 Consigne
Figure 4 : SDL controller spedfication

Figure 4 shows the proceses' structure of the cntroller system.
The Gener processproduces two signals, an order which is cdled
Cons and an address which is an identifier of a motor. The Dist
forwards orders to the cdled motor controller by the aldress A
Ctrl process gives the order to the motor and scans its position.
When a motor is abou to acomplish its order, the Ctrl process
informs the Gener processthat it can produce anew destination.
Becaise aposition signa is a “continuows sgna”, eah Echart
process represents a digital aqquisition. In SDL all processes are
concurrent and communicate through asynchronous queues.

e TheMatlab Spedfication

In this case aMatlab model is used to spedfy the mecdhanicd part.
This model ads as a testbench for the SDL model during all the
codesign steps.

e TheOveradl System

The overall system’s interconredions, including SDL and Matlab
instances, are described using a cnfiguration file that gives the
interconredion bketween the blocs. Figure 5 shows the
configuration d the SDL-Matlab Models. It is made of two blocs
interconreded through abstrad channels. We use the SOLAR
format [7] for the description o the @nfiguration file. In SOLAR,
a system is modeled as a set of design unts interconneced
through high-level channels or physicd signals. MUSIC uses this
configuration file in order to produce acosimulation run where
the different blocs will be exeaited using the @rrespondng
Simulators.

CONTROL MOTEUR 2

s | \
s2

83

sS4

Figure 5 : SDL-Matlab blocs configuration

The same file will be used to refine the ommunicaion protocols
between SDL and Matlab. In fad, the global configuration o the
system is a kind d "system-level netlist" that spedfies the
interconredion between dfferent subsystems. Since the different
languages are based on dfferent concepts for data exchange, the



interpretation d the link between heterogeneous subsystems will
neel a spedfic communication synthesis gep.

»  System-level Vadlidation (SDL-Matlab Cosimulation)

In order to validate the system at this sage of the design flow, an
SDL-Matlab cosimulation is performed. During Cosimulation,
debuggers and GUI can be launched to control the smulation and
analyze d parts of the system. Figure 6 shows a running
cosimulation d the SDL-Matlab model. The left part shows the
SDL simulator windov and the right part shows the
Matlab/Simulink windows.
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Figure 6 : controll er system-level running cosimulation
»  Partitioning and Communication Synthesis

The system-level spedficaion contains two blocs, one Matlab
bloc, the mecdhanicd part, and ore SDL bloc, the crtroller. As
described in sedion 4 several steps are used to refine the
controller spedficaion davn to a prototype.

The first step is the trandation o SDL to the interna mode of
MUSIC (SOLAR) in oder to apply system-refinement
transformations. The spedficaion oltained is presented in Figure
7, this model is made up d seven blocs. Six come from the SDL
model and the seventh corresponds to the Matlab bloc.
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Figure 7 : SOLAR spedfication after SDL trandation

The next step consists in the @mmunicaion synthesis. The
MUSIC todl asssts the user in mapping abstrad communicaion
channdls on explicit communicaion protocols. In this case we
have two kinds of communication channels. First of al we have
channdls that correspond to the communicaion between SDL
processs : The four bottom channels of Figure 7 link eledronic
modues. In this case we dedded to implement them as “rendez
vous’ protocols.

Then we have the four top channels of Figure 7 that correspondto
communicaions between the mechanicd part (Matlab) and the

eledronic system. They neal spedfic transcavers able to conred
heterogeneous blocs. The result of the mmmunicaion synthesisis
shown in Figure 8. Four extra communicdion controllers were
inserted automaticdly during the cmmunication synthesis. They
correspond to adapters that implement the @mmunicaion
between medchanicd parts and eledronic parts. For both kinds of
communicaion syntheses we use the library-based protocol
mapping method described in [26].

The next step is Hw/Sw partitioning. MUSIC alows to
demmpose the system into threekinds of blocs : Hardware blocs,
Software blocs and IP blocs. The IP bloc corresponds to parts of
the system that will be handled as bladk boxes. As sown in
Figure 9 the initial spedfication was reorganized into a Hardware
modue (in bad), an IP modue (in white) and two Software
modues (in gray).
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Figure 8 : Explicit Communication Spedfication
e Hardware/Software Synthesis

The next step is code generation. MUSIC generates VHDL-RTL
code for hardware blocs and C code for software blocs. This new
model can be used for low-level cosimulation a for prototyping.
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Figure9 : C/VHDL generated system

e Architedura Validation (C-VHDL-Matlab cosimulation)

The achitedural controller spedfication is composed of VHDL,
C and Matlab blocs. MUSIC is used again to cosimulate this
model. VHDL blocs are exeauted on Synopsys VSSsimulator, C
blocs are ompiled and exeaited on a workstation and Matlab
exeautes the models of the motors. Figure 10 shows a screen
running C, VHDL and Matlab. This smulation allows to chedk
that the produced system has the same behavior as the initial
spedficaion. According to the design flow in Figure 2 another
simulation step may be performed to ched the behavior of the
system at the dock-cycle level.

e System Implementation

The fina step is implementing the system into a Hardware /
Software achitecure. This part may be dore using classcd
methods [1§].

6. Conclusion

This paper discussed multilanguage design and introduced a
multil anguage design flow cdled MUSIC. The gplicaion o
MUSIC on mechatronic design was also dscussed.



The main contribution o this work is to start from a
multil anguage spedfication made of SDL and Matlab for the
design of a mechanicd system. The design flow combines SDL-
Matlab Cosimulation, Interlanguage Communication Synthesis
and clasdcd Hardware/Software Codesign flow.
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