
Hardware/Software Co-Design of an Avionics
Communication Protocol Interface System:

an Industrial Case Study

François Clouté
Laboratoire d'Electronique LEN7

ENSEEIHT, 2 rue Camichel
31071 Toulouse Cedex 07, France

33.5.61.58.84.36

cloute@len7.enseeiht.fr

Pascal Pampagnin
AEROSPATIALE Aéronautique
 Direction Systèmes et Services

 31060 Toulouse Cedex 03, France
33.5.61.18.38.40

pascal.pampagnin@avions.aerospatiale.fr

Jean-Noël Contensou
Laboratoire d'Electronique LEN7

ENSEEIHT, 2 rue Camichel
31071 Toulouse Cedex 07, France

33.5.61.58.82.84

contenso@len7.enseeiht.fr

Philippe Pons
AEROSPATIALE Aéronautique
 Direction Systèmes et Services

 31060 Toulouse Cedex 03, France
33.5.61.93.01.70

philippe.pons@avions.aerospatiale.fr

Daniel Esteve
Laboratoire d'Electronique LEN7

ENSEEIHT, 2 rue Camichel
31071 Toulouse Cedex 07, France

33.5.61.58.84.11

esteve@len7.enseeiht.fr

Yves Favard
AEROSPATIALE Aéronautique
 Direction Systèmes et Services

 31060 Toulouse Cedex 03, France
33.5.61.93.55.55

yves.favard@avions.aerospatiale.fr

ABSTRACT
Hardware/Software co-design is not a new idea, since designers
have been used to mixing programmable and specific hardware
components for algorithms implementation. However, with the
growing complexity of systems, a computer-aided co-design
methodology becomes essential.

This paper presents an application of the avionics domain: the
ARINC communication protocol interface system. The co-design
approach is based on the POLIS framework, coupled with the
Esterel specification language.

Keywords
Co-design, avionics, ARINC, Esterel, POLIS.

1 INTRODUCTION
The major constantly growing factor that limits the development
of complex systems is not the sili con technology manufacture, but
the lack of a system-level design methodology. The increasing
widespread of embedded systems in the domains of vehicle,
avionics, communication, etc, emphasizes that need.

Unlike a general-purpose computer, an embedded system has to
realize a well -defined set of specific tasks. The required
specialization should alter minimally its flexibilit y, to get a
maximum design re-use [6].

Thus an embedded system typically consists of some VLSI
hardware components, li ke ASIC or FPGA, and software
supported by standard programmable components, li ke RISC or
DSP.

In a modern commercial aircraft, the avionics (i.e. the set of on-
board hardware and software electronics equipment) consists of
about a hundred of computers communicating between them and
the environment Each of these computers is dedicated to a specific
avionics function. Such criti cal systems require a certified
development.

Currently, the design of an embedded system is not optimal:

1. the system specification is written in a natural language,
eventually without abstraction of architectural details;

2. the architectural decisions are made a priori, following the
architect's experience or/and the past product versions;

3. the hardware and software parts are developed too
separately;

4. the software is tested only after the hardware/software
integration on a real prototype;

An hardware/software co-design methodology aims at solving all
those issues [5, 7, and 10]. Co-design is defined as a methodology
for designing software and hardware concurrently, thus reducing
the design time and time-to-market. Hardware/software co-design
of embedded systems includes co-specification,
hardware/software partitioning, architecture selection, co-
synthesis and co-verification.

There are different approaches of co-design, related to the type of
the target applications. The taxonomy of embedded systems
distinguishes two main domains: control-oriented and data-
dominated applications.

In data-flow applications, e.g. digital signal processing, the
behavior of the system is scheduled at a fixed rate, and the main
complexity of the design comes from the mathematical operations
on data. In control-oriented reactive applications, the system
reacts continuously to the environment. Then, the monitoring of

the different tasks is crucial, especially as there are real-time
constraints [2, 12]. The distinction is trivial, since very complex
systems deal with both. But designing them requires a separate
point of view.

This paper describes the hardware/software co-design of an
avionics embedded control-dominated system: the ARINC
protocol interface system. The next section provides some
background about the ARINC protocol interface. Section 3
considers the system specification with an Esterel overview.
Section 4 presents the POLIS co-design approach. Section 5
highlights some experimental results about the hardware/software
design space exploration. Section 6 concludes and discusses
future work.

2 THE AVIONICS ARINC PROTOCOL
INTERFACE
In a modern commercial aircraft, the avionics consists of about a
hundred of computers communicating between them and the
environment.

The ARINC (Aeronautical Radio Inc.) is an international standard
which specifies the communication protocol between the different
embedded systems on board. Thus embedded systems designed by
different manufacturers can communicate in the same aircraft. The
standard protocol defines the type of the data frames and the
exchange format of those data. However, the requirements do not
force the implementation.

The ARINC protocol is a serial communication protocol with a
rate of 100 Kbits per second. Data packets are 32 bits, added to 4
bits for the synchronization. A data packet consists of an 8-bit
identification field, a 23-bit data field, and one parity bit. An
ARINC bus is a set of channels, each carrying data packets.

The ARINC interface system is in charge of the acquisition of the
data packets received on several parallel input channels. For each
channel, after the synchronization bits, the recognition and the
parity checking, the message is received. For each message true to
the ARINC pattern, an address is computed from the identification
field to store the data field and dating information. A pre-
programmed memory is used for the addressing. Concurrently, the
environment asynchronously requests the ARINC interface to
return the available data.

The ARINC interface system represents a criti cal real-time
embedded system, both with a complex control based on data
values and soft/hard timing constraints.

The use of a co-design methodology aims at providing a rigorous
design, ended in a final prototype with an adequate
hardware/software architecture. The methodology we used is
supported by POLIS [1], a co-design framework developed at the
Berkeley University. The specification language is Esterel [3], a
reactive synchronous programming language from the INRIA
Institute of Sophia-Antipolis, France.

3 THE ESTEREL SPECIFICATION
Esterel is a textual, imperative, synchronous language, oriented
towards the specification of control-dominated reactive systems.

Programming in Esterel is facilit ated by a concurrent and modular
decomposition, and an explicit definition of the control by the use
of program constructs for concurrency, pre-emption, and
exception. Unlike other synchronous languages [8], li ke Lustre
[9] or Signal [11] dedicated to the computational systems, Esterel

is restricted to the addition of a header file in C for the definition
of procedures or functions.

In Esterel, the basic element is the signal, valued or not, emitted
by the system or the environment, and at the same time received,
according to the synchronous semantics. Time is a multi form
concept, based upon the nature of the signals (time, distance,
temperature, etc).

The functionality of the ARINC interface was decomposed into 9
different modules, with some eventually instantiated more than
once (i.e. PACKET CONTROL and RAF). The first step was to
write each module in Esterel and to verify it by simulation with a
graphical debugger.

The figure 1 presents the functional decomposition of our
model of the ARINC interface system.

Figure 1. Model of the ARINC interface system

The data packets coming from each channel are detected, tested
with respect to the ARINC pattern in each concurrent module
PACKET CONTROL. Any accepted packet awakes the process of
the module SCANNER, which under some conditions, enables the
access to the pre-programmed memory with a priority mechanism
fixed by the module ARBITRER. The module ACQ performs the
storage addressing, annotated with both dating coming from
DATER, and other information which commands the modules
RAF, WRITE, R/W and MERGE to make the relevant processing to
the data in RAM. The module R/W reacts also to any read request
from the environment.

For example, the code shown in figure 2 gives a part of an Esterel
module. The reactive behavior is an infinite loop that tests the
presence of the signal START_RAF. Inside the loop, a down
counting is performed from the last value of the signal
START_RAF, with an exception handling if the internal variable
VALEUR is equal to zero. The corresponding trap maintains a
signal BIT_DEFAUT_DE_RAF emitted, unless a new signal
START_RAF is received.

INPUT CHANNELS

ARBITERROM

PACKET

CONTROL

PACKET

CONTROL

SCANNER

DATER

RAF

RAF

ACQ

WRITE
R/W

MERGE RAM

READ REQUEST

...
 %loop
 every START_RAF do
 var VALEUR : integer in
 %initialization
 VALEUR := ?START_RAF;
 %exception handling
 trap DEFAUT_DE_RAF in
 every CLK_20MS do
 VALEUR:=VALEUR-1;
 if VALEUR=0 then exit
DEFAUT_DE_RAF; end if
 end every
 handle DEFAUT_DE_RAF do
 sustain BIT_DEFAUT_DE_RAF;
 end trap
 end var
 end every
end module

Figure 2. Esterel code

We can compile an Esterel program into a deterministic and
sequential finite-state-machine. The table 1 shows the complexity
of the ARINC interface, by analogy with the finite-state-machine
parameters.

Table 1. Functional decomposition of the complexity of the
ARINC interface system

A top-level description was specified in Esterel, with the
acquisition of four input channels, and a simple model of pre-
programmed memory which infers two storage addresses. The
Esterel synchronous specification was verified by simulation. For
giving an approximate idea of the system complexity, the
generation of one single equivalent finite-state-machine could not
normally terminate under a SPARC IPX Station with 32 Mbytes
of ROM. Nevertheless, the generation of a sorted circuit code in C
is the right alternative for an all software implementation.

As the final ARINC interface system has to cope with up to 80
input channels concurrently, hardware should be essential to meet
the timing constraints. Thus our Esterel modules were entered in
the POLIS co-design flow.

4 THE POLIS CO-DESIGN
ENVIRONMENT
The POLIS co-design framework is oriented towards control-
dominated reactive embedded systems, with a generic target
architecture composed of one microcontroller and some hardware
coprocessors.

The POLIS environment is based on a formal model called Co-
design Finite State Machine (CFSM). A network of CFSMs, with
an asynchronous communication model between CFSMs

represents a system. Each CFSM is specified by an Esterel
module, locally synchronous.

The POLIS design flow is ill ustrated by the figure 3, and the main
steps are described below:

Figure 3. The POLIS system

1. Translation of the system-level language like Esterel into
the CFSM model;

2. Formal verification of the specification after the
translation of a CFSM into a finite-state-machine formalism;

3. Manual hardware/software partitioning. The granularity
level is the CFSM;

4. Hardware/software co-simulation based on the Ptolemy
simulation framework [4]. Related to the hardware/software
partitioning, the microprocessor selection, and the scheduler
selection, the architectural trade-offs are explored and evaluated,
relying on code size and performance estimates of the processor;

5. Hardware synthesis of the CFSM sub-network by
mapping into the BLIF (Berkeley Logic Intermediate Format)
format. Each transition function is a combinational circuit,
optimized by logic synthesis techniques, and states variables are
implemented by registers. An XNF netlist can be generated to get
a FPGA Xili nx prototype;

6. Software synthesis of the CFSMs sub-network into a C
code structure which includes one procedure for each CFSM and
a real-time operating system;

7. Synthesis of the interfaces between the different
implementation domains: hardware, software, and the
environment.

Modules Instances States Functions Signals Variables Actions Halts Calls
ctrl packet 4 5 6 10 16 35 4 17
scanner 1 34 0 11 7 13 10 6817
arbiter 1 3 7 26 46 85 2 546
acq 1 3 0 11 12 6 2 28
date 1 3 0 2 3 7 2 14
raf 2 5 0 5 4 7 4 24
r/w 1 10 1 10 13 21 6 972
write 1 3 1 6 10 10 2 11
merge 1 3 0 6 10 10 2 15

5 THE EXPLORATION OF THE
HARDWARE/SOFTWARE DESIGN SPACE
The Esterel specification of the ARINC interface was modified to
be used as a front-end language in the POLIS system, as regards
to its asynchronous communication model. We altered the code of
some CFSMs that react to events coming from at least two distinct
CFSMs, in order to get a correct scheduling. Moreover, the
MERGE module was added. The Ptolemy graphical user interface
enables to connect the CFSMs, before functional simulation.

POLIS/Ptolemy provides to the user a rich library of components
for the test bench. Many simulation scenarii were applied in the
Ptolemy debug mode. The ARINC interface system with four
input channels and two-storage index was verified by functional
simulation.

The performance analysis of the system is the key to select an
architecture that meets the timing constraints. The performance
simulation relies on the C generated models of each CFSM, the
hardware/software partitioning, the scheduling policy chosen for
the operating system, and the timing and cost model of the
processor. The user can choose a scheduler between a static round
robin, a static priority with preemptive, or a static priority non-
preemptive mechanism.

We present in the table 2, for each module and for the whole
system, the estimated results of the code size in bytes, and the
minimum and maximum number of execution cycles of the
selected processor. The two 32-bit microcontrollers are the MIPS
RISC R3000, and the Motorola 68332.

Table 2. Performance and cost estimated results.

The system must both perform the data acquisition of each input
channel at a speed of 10 µs, and respond to the asynchronous read
request at a minimum interval of 6 µs. The hard timing limit for
the return of a data is 3 µs. We performed worst case simulations,
i.e. with a maximum rate of true ARINC packets, concurrently,
over the four channels.

We showed that an architecture with an all -software
implementation on a MIPS R3000 would require a clock
frequency of 230 MHz, so as not to miss deadlines. Such a
microcontroller do not exist.

A more realistic architecture with the four modules (called
CONTROL PACKET, controlli ng the acquisition of ARINC data
packets over each channel) mapped to hardware, a MIPS R3000 at
a clock frequency of 133 MHz, and a static priority preemptive
scheduler, the timing constraints were met.

6 CONCLUSION AND FUTURE WORK
This paper presented the hardware/software co-design of an
industrial example: the avionics ARINC interface system. The
first step of our work was to get a system-level executable
specification, abstracting the implementation details.

Programming in Esterel requires a conceptual approach different
from a traditional mono-thread sequential language. The
synchronous Esterel modules were modified with respect to the
POLIS model used for distributed systems.

The POLIS system is convenient for control-dominated systems.
The future work will consist of extending the POLIS library with
another microcontroller model with better performance. The
design space exploration at the system-level could also include the
memory. A double port RAM was used by now, without studying
the effect of other types of memory. Finally, the co-synthesis and
the prototyping of a software/hardware architecture of the ARINC
interface system with the POLIS co-design flow represent another
work axis.

7 ACKNOWLEDGEMENTS
We would like to thank all the members of the Internet groups of
Esterel and POLIS for their precious help.

8 REFERENCES
[1] F. Balarin, M. Chiodo, P. Giusto, H. Hsieh, A.

Jurecska, L. Lavagno, C. Passerone, A. Sangiovanni-
Vincentelli , E. Sentovich, K. Suzuki, et B. Tabbara.
"Hardware-Software Co-Design of Embedded Systems,
The POLIS approach" Kluwer Academic Publishers,
1997.

[2] F. Balarin, L. Lavagno, P. Murthy, and A.
Sangiovanni-Vincentelli . Scheduling for Embedded
Real-Time Systems, IEEE Design & Test of
Computers, pp. 71-82, January 1998

[3] G. Berry, G. Gonthier. The Esterel Synchronous
Programming Language: Design, Semantics,
Implementation, Science of Computer Programming
Vol. 19, N°2, pp. 87-152, 1992.

[4] J. Buck, S. Ha, E.A. Lee, and D.G. Masserschmitt.
Ptolemy: a framework for simulating and prototyping
heterogeneous systems. International Journal of
Computer Simulation, special issue on Simulation
Software Development, January 1990.

[5] R. Ernst. Codesign of Embedded Systems: Status and
Trends, IEEE Design & Test of Computers, pp. 45-54,
Avril 1998

[6] R. Ernst. Target Architectures, in W. Wolf and J.
Staunstrup Hardware/Software Co-Design: Principles
and Practice, Kluwer Academic Publishers, 1997.

[7] D. Gajski, F. Vahid, S. Narayan, et J. Gong.
Specification and Design of Embedded Systems,
Prentice Hall , 1994.

[8] N. Halbwachs. Synchronous Programming of Reactive
Systems, Kluwer Academic Publishers, 1993.

[9] N. Halbwachs, P. Caspi, and D. Pilaud. The
Synchronous Dataflow Programming Language
Lustre. Another look at Real Time Programming,
Proceedings of the IEEE, Special Issue, September
1991.

[10] J.-M. Laporte. Hardware/software Codesign Study
Report, Annual Conference of European Multimedia,
Microprocessor System and Electronic
CommerceMSEC'97, November1997.

Module
min time max time code size min time max time code size

ctrl packet (x4) 27 436 1613 43 907 1645
scanner 30 279 10102 55 1100 8790
arbiter 39 495 2237 124 983 2419
acq 38 162 326 112 496 243
dater 28 125 222 66 290 163
raf (x2) 27 148 452 43 379 367
r/w 27 251 1760 43 832 1568
write 27 83 207 64 277 161
merge 25 79 227 54 296 162
whole system 254 1227 15849 / / /

MIPS R3000 Motorola 68332

[11] P. Le Guernic, M. Le Borgne, T. Gauthier, and C. Le
Maire. Programming Real-Time Applications with
Signal. Another look at Real Time Programming,
Proceedings of the IEEE, Special Issue, September
1991.

[12] C.L. Liu and J.W. Layland. Scheduling algorithms for
multiprogramming in a hard-real-time environment.
Journal of the ACM, Vol.20, N°1, pp. 46-61, January
1973.

	Main Page
	CODES'99
	Front Matter
	Table of Contents
	Session Index
	Author Index

