Automatic Detection of Recurring Operation Patterns

Marnix Arnold and Henk Corporaal
Computer Architecture Laboratory
Department of Electrical Engineering
Delft University of Technology
{marnix,heco}@cardit.et.tudelft.nl
http://cardit.et.tudelft.nl/MOVE/

Abstract

An important problem in the area of processor design
for embedded systems is determining the proper in-
struction set architecture. Trade-offs have to be made
between programmability and reusability of dedicated
hardware for special functionality on the one hand, and
a high performance dedicated instruction set on the
other hand. This paper addresses the question of how to
find specialized ISA extensions for a set of applications.

We describe the application of a new pattern
matching technique to the problem of the identification
of recurring patterns of operations. By implementing
frequently occurring operation patterns in hardware,
and using this hardware as special function units, a
fine-grained hardware/software partitioning can be
found. The fine granularity, and the fact that patterns
are taken from a number of different target applications
rather than a single one, increase the opportunities for
reuse of the special-purpose hardware. We illustrate
our technique with experiments on a number of bench-
marks from the DSP domain.

keywords: pattern matching, co-design, design
space exploration, instruction set synthesis.

1 Introduction

Hardware/software co-design is often performed on a
per-application basis, yielding systems that are highly
application-specific. The approach taken is usually a
coarse-grained one: entire functions of the applica-
tion are mapped either in hardware or software [4].
Any hardware thus generated is only reusable by other
applications if those include the same function. For
application-specific systems this is obviously not a prob-

lem. For application-domain-specific, reprogrammable
systems, however, we may want to increase the gran-
ularity of the hardware/software partition, to increase
the chances of hardware reuse. It is with this in mind
that we consider a partitioning approach that centers
on groups of instructions rather than entire functions.
In this paper, we present a new algorithm for the au-
tomatic, on-the-fly detection of groups (patterns) of in-
structions as they occur in the application(s) that we
want to generate an execution engine for. Patterns that
occur frequently among the target applications can then
be considered for implementation in hardware.

Section 2 discusses work from the related areas of
instruction set synthesis, technology mapping and code
generation. An overview of the algorithm used for the
detection of recurring operation patterns is given in sec-
tion 3. Experiments and their results are described in
section 4. We conclude this paper with section 5.

2 Related Work

Pattern matching techniques have been around for quite
some time, originating from the string matching prob-
lem [1]. Keutzer [5] first applied pattern matching tech-
niques to the problem of technology mapping, noting
similarities with the code generation problem [2]. Re-
cent work by Kukimoto [6] extended these techniques
to allow for rooted-DAG-shaped subject graphs, as op-
posed to tree-shaped graphs. Liao et.al. [7] use a binate
covering technique that allows the subject graph to have
any geometry. However, no matching techniques are
available that deal with patterns that are not trees or
single-output DAGs [9]. We would like to detect and ex-
ploit such patterns, though, so we were forced to come
up with a new matching algorithm [3].

The work in this paper is somewhat related to the
field of instruction set synthesis. Liem e.a. [8] use
matching and covering techniques to identify recurring
instances of patterns from a predefined library, rather
than constructing this library automatically, as we will
do. The search for new operation patterns as described

in [10] is limited to chains (sequences) of operations,
whereas we consider patterns of any shape.

3 Algorithm Overview

For the matching of pattern graphs that are not trees,
conventional techniques are not suitable. For this rea-
son, we have come up with a new matching algorithm,
based on the principle of incremental matching. In this
section we will give a brief overview of the matching
algorithm and how it can be extended to automatically
construct a library of recurring patterns. The cover-
ing algorithm we employ in section 4 will not be dis-
cussed, for the purposes of this paper it will suffice to
say that it is a heuristic method, based around the dy-
namic programming approach taken in tree covering.
A comprehensive description of the algorithms can be
found in [3].

3.1 Incremental Matching

Given a subject graph Gy, and a library of pattern
graphs PatLib = {Gpas; }, as shown in figure 1, we it-
erate over all operation nodes in Gy (nodes I, IT and
III), in no particular order. Each of the subject graph’s
operation nodes Ng,; is matched against the pattern
graphs’ operation nodes Np,; that have the same op-
code. Each time a pair of operation nodes (Nsyp, Npat)
meets certain matching criteria, which we will not go
into here, a partial match is created. In figure 2, the par-
tial matches my and ma constructed for pattern graph
Gpata are shown (there would, of course, also be par-
tial matches for the other patterns). As can be seen, a
match is really nothing more than two reference vectors
that refer to subject operations and operands, respec-
tively. The position a refence occupies in a reference
vector indicates with which pattern operation (operand)
it corresponds to.

PatLib
Gpatl Gpa2 gpam . ’Gpa(S ~ Gsub
ol 02 ‘ol o2 ‘ol 02 iiol 02 | a b
| S| o o I ;
: {/’“\; —~ N : R" /D/\\ : . o
;'K*\ () () 3:‘/+\M|d\: ./
‘i T/ nl\T/ n]fT/ Uit n2 T/ ; /. N
: ;) i 1 {)
1 o30) ! o030 03] 04 ‘ o030 o4l] : I\\\///
,,,,,, N '
Gpat3 .~) (+) ct d
| ol\f | HZ\T/ | /D
! ! ! \ -
) 05 [: N N
NETRN . g \ /
P [+] ([Id)
n—" 1 AN
I " 1

i eh 1

Figure 1: Example of pattern and subject graphs.

Looking at the partial matches shown in figure 2, we
notice that the matches m; and msy share the reference
to subject operand node c. These two matches can be

combined into a new match mg, which is the union of
the two. This match has no empty spaces in its refer-
ence vectors and is said to be complete. In the same
manner, we can combine partial matches for other pat-
terns into complete matches, regardless of the shape of
those patterns. Indeed, pattern graph Gpees, which is
a multiple-output DAG, is matched in the exact same
way as graph Gpqts from our example.

(Epat4 ,,,,,,,,, Gsub

fol o2 a b

. R/

i ! ml{l . Hab;’ci‘b % |

! Done[. 11][. . cde

| [FO“: ‘\;/, c d}|
n2 m8[l Il][abcdel I |||
05 ; e f O

Figure 2: Partial matches m; and m, merge into the
complete match ms.

3.2 Library Construction

Another drawback of using a conventional matching al-
gorithm is that it requires the pattern library to be de-
fined beforehand. This implies that we need some ad-
vance knowledge of which patterns to expect, but such
knowledge may not be available. We will show that this
problem can be overcome by extending the incremental
matching algorithm to include automatic library con-
struction capabilities.

As before, we start with a subject graph G, and a
library of pattern graphs PatLib = {Gpat, }, as shown
in figure 3. The difference with the previous example
is that the initial pattern library now only contains a
minimal set of patterns: just the ones with a single
operation node. When we start processing the subject
graph’s operation nodes, we will initially only construct
matches for the single-operation pattern graphs. When-
ever we finish constructing partial matches on an oper-
ation node, we can now look for opportunities to create
new pattern graphs.

In the example of figure 3, after we finish processing
operation nodes I and IT (again in an arbitrary order),
we see that two matches m; and ms both contain a
reference to operand node c. Note that now the matches
refer to different patterns, which was not the case in
the example of figure 2. By combining the matches
my and my into a new match mg, we have a recipe for
constructing a new pattern! By copying all the nodes
(operations and operands) referenced in mj3 into a new

Gpatl Gpat2 Gsub
ol 02 ‘ol o2
R 7R 7 oL
AN SN Q r]
(=)0 00+) m(Gpatl)[I}[a b c] B
nf /i n]}‘/‘ r/* 3
oaé @l me(Gpat2)[11][c d e] I‘\\f)
Gp"“olT n8(..)[I I1][abc d el chl dil
| YR 77N TN
n‘fld/ \\+/] \/Id
_ N
OZL 1 FL 11 r-|_‘
————— e f

Figure 3: Pattern construction by combining matches.

pattern and adding it to the library, we will be able to
log all future occurrences of this pattern.

4 Experiments

We execute our method for detecting recurring patterns
of operations on a number of well-known benchmarks
from the DSP domain. In this paper, we limit the size
of the patterns to two operation nodes, even though the
pattern detection and matching algorithms can handle
patterns of arbitrary size. An overview of the bench-
marks, with their dynamic operation counts, is given in
table 1.

Name Description #ops
bspline FIR Filter 6149
compress Compression (dct 2d) 163513
dft Discrete FFT 6666
edge Edge detection 268717
expand Decompression (idct 2d) 151083
feowf 5th Order Elliptic Wave 13067
fir 35 pt. Lowpass FIR 30459
flatten Level histogram of image 33960
iir IIR highpass filter 10794
pse Sehwa’s FIR filter 6917
smooth Convolution w. 3x3 kernel 83365

Table 1: DSP benchmarks.

Each benchmark is trace simulated, and the pattern
detection experiments are performed on the dataflow
graph of the execution trace. The detected patterns
for all benchmarks are then put into a unified pattern
library. This library is then used to cover the execution
trace of each benchmark, to get a feeling for how much
each pattern would help reduce the operation count of
that benchmark. These coverings can be seen as the
best results the covering algorithm can attain with an
unbounded pattern library (after all, all patterns ever
detected in any of the benchmarks are there).

The reason we use an execution trace rather than
the static object code for our experiments is that a trace
effectively masks control flow, making pattern matches
visible that reach across basic block or even loop bound-
aries. If we cover the trace with the patterns we found,
then the matches that cross control flow boundaries
would seem to indicate that code motion (speculative
execution, loop unrolling, etc.) could be beneficial.

Constructing a unified library After covering, we cal-
culate how often each pattern was used for each bench-
mark. Note that it is misleading to just count the
matches for that pattern, as it is unknown how many
of those (likely to be mutually exclusive) matches will
be chosen for the cover. The patterns can now be
sorted according to how much they contributed to the
unbounded-library covering (i.e. as a percentage of the
total number of matches that were chosen for the cover).
Since we are most interested in patterns that contribute
to the operation count reduction of the entire applica-
tion domain, rather than just one application, we sort
the patterns by the average of their contributions to
the per-benchmark coverings. The reason we average
the contributions of the patterns (a percentage) rather
than the absolute share in the coverings (a number of
pattern instantiations) is that we do not want to skew
our results towards the larger benchmarks. This yields a
unified, sorted pattern library in which all benchmarks
are represented equally.

Unbounded library covering analysis In figure 4, we
see the (cumulative) contribution to the individual
benchmarks’ coverings of pattern libraries that consist
of the top-x patterns of the unified library. As can
be seen, some benchmarks get a better-than-average
contribution (bspline, pse) and some get a worse-than-
average contribution (foewf). This can be interpreted
as follows: the more an application’s contribution graph
pulls towards the upper-left corner of the figure, the
more ’average’ or representative for the application do-
main the application is. As a consequence of this, fig-
ure 4 can also be used to judge how well the appli-
cations fit together on the same instruction set, some-
thing which is difficult to determine by inspection of
the benchmarks’ source code alone. A final remark on
figure 4: it can be seen that from the top-80 patterns
onward, there is no additional contribution to the cover-
ing of any of the benchmarks (the 100% mark has been
reached). This implies that none of the patterns added
to the library from that point onward are ever actually
used in the coverings of any of the benchmarks.

Covering with partial libraries Now that we have
found a ranking of patterns in the unified library, we
can check if there is a relation between the contribution

100 s

smooth
expand -
compress ——
edge ----
average

% of total implemented matches

flatten ----- 7

% op count reduction

50 T T T T T T
bspline —
dft -

< flatten -
smooth
expand -
compress
edge ----
average

0 I I I I I I

30 60 70 80
top-x patterns in library

Figure 4: The contribution of patterns to the coverings.

of the patterns in the top-x libraries to the ’ideal’ (un-
bounded library) covering, and the actual results of the
covering algorithm for each of the top-x libraries. For
this, it is necessary to re-cover each of the benchmarks
using each of the top-x pattern libraries. The results
of these coverings can be found in figure 5. It can be
expected that if a library has a lower-than-average con-
tribution (in figure 4), then the operation count reduc-
tion will also be below average. This is confirmed by
the curve for the foewf benchmark. Similarly, bench-
marks with a higher-than-average contribution should
have a higher-than-average operation count reduction.
The operation count reduction curves for the bspline
and pse benchmarks confirm this.

Note that the curves in figure 5 do not increase
monotonously, which is what we would expect if we
give the covering algorithm an extra pattern to work
with each time. These occasional dips are due to the
fact that the covering algorithm is a heuristic method,
which every once in a while gets confused and yields
a sub-optimal result. Also note that 50% operation
count reduction is a hard limit: since, for the purposes
of this experiment, we only use patterns that are no
larger than two operations, the best result we can theo-
retically get is obtained if all operation are replaced, in
pairs, with two-operation patterns. In addition, it must
be noted here that, since the covering algorithm oper-
ates on execution traces and hence ignores control flow,
the operation count reduction figures must be seen as
upper bounds for the operation count reduction that a
compiler can achieve when performing code generation
(when control flow is taken into account).

90

3 0 50 60
top-x patterns in library

Figure 5: Operation count reduction for the incremental
pattern libraries.

Analysis of the top 10 patterns The top ten patterns
of the unified library are shown in figure 6. The most
popular pattern (nr.1) is an integer add, followed by
another integer add. In hardware, this can be imple-
mented as an add, followed by an accumulate on the
same unit, or as a 3-input, 2-output unit that can ex-
ecute the pattern in a single processor cycle [11]. The
second pattern is a conditional jump, where the condi-
tion is calculated by the greater-than node. Patterns 5
and 7 are array references, where the address calcula-
tion consists of a base-plus-offset calculation. Pattern
6 is the well-known multiply-add, pattern 8 the almost
equally well-known add-shift. Note that pattern 9 per-
forms the same calculation on both nodes! It looks as if
the compiler missed an optimization opportunity, pos-
sibly hidden by control flow.

It can be seen that the top 10 patterns are not proper
trees, since most also export their intermediate values.
However, with the exception of pattern 9, none of the
patterns represent operations that execute in parallel.
It is quite possible that this is an artifact of the covering
heuristic, which favors chains of operations. It will be
interesting to see whether this situation changes if we
come up with a different covering strategy.

5 Conclusion and Future Work

We presented a technique for identifying common op-
eration patterns across a range of applications, using
a new pattern matching algorithm. This algorithm is
innovative in that it can handle patterns of arbitrary
shape, widening the scope of the search for operation
patterns that can be implemented in hardware. Newly

70

Figure 6: The top 10 patterns.

discovered patterns are added to the pattern library on-
the-fly, resulting in a single pattern detection (finding
new patterns) and matching (marking occurrences of
patterns) pass.

Using the new technique, we found patterns of op-
erations common to a set of benchmarks, which, when
covering is applied, indicate that a substantial opera-
tion count reduction is possible (e.g. 20 patterns yield
an average operation count reduction of 40%). Further-
more, we were able to incrementally construct a library
of new operations (patterns) and analyze the influence
of each new operation on the average operation count
as well as on the operation count of each benchmark
separately.

The covering heuristic, which was based on dynamic
programming, still leaves something to be desired. The
influence of the covering algorithm on the selection of
the patterns of various shapes is not well understood
at this point. Different algorithms may yield different
top-x pattern libraries, which is something that needs
to be investigated.

It has already been noted that our method operates
on (dynamic) execution traces rather than (static) code.
The absence of control flow in an execution trace can be
seen as both an advantage (patterns invisible in static
code can be detected) and a disadvantage (covering re-
sults are upper bounds, rather than actual, attainable
values). In the future, we will concentrate on how to
apply our current techniques to the problem of code
generation.

References

[1] A. Aho and M. Corassick. Efficient string match-
ing: An aid to bibliographic research. Communi-
cations of the ACM, 18(6):333-340, June 1975.

[2] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ull-
man. Compilers: Principles, Techniques and
Tools. Addison-Wesly Series in Computer Sci-
ence. Addison-Wesly Publishing Company, Read-
ing, Massachusetts, 1985.

[3] Marnix Arnold and Henk Corporaal. Match-
ing and covering with multiple-output
patterns. Technical Report 1-68340-

44(1999)-01, Delft University of Technology,

http://cardit.et.tudelft.nl/MOVE /papers/Arnold99a.ps,

1999.

[4] Peter M. Athanas and Harvey S. Silverman.
Processor reconfiguration through instruction
set metamorphosis. IEEE Computer, (0018-
9162/93/0300-0011):11-18, 1993.

[5] K. Keutzer. Dagon: Technology binding and local
optimization by dag matching. In DAC, Proceed-
ings of the Design Automation Conference, pages
617-623, May 1987.

[6] Yuji Kukimoto, Robert K. Brayton, and Prashant
Sawkar. Delay-optimal technology mapping by dag
covering. In Proceedings of the Design Automation
Conference, 1998.

[7] Stan Liao, Srinivas Devadas, Kurt Keutzer, and
Steve Tjiang. Instruction selection using binate
covering for code size optimization. In Proceed-
ings of 1995 International Conference on Comput-
erAided Design, pages 393-399, 1995.

[8] Clifford Liem, Trevor May, and Pierre Paulin.
Instruction-set matching and selection for dsp and
asip code generation. In Proceedings of EDAC-
ETC-EUROASIC, pages 31-37, 1994.

[9] Giovanni De Micheli. private communication, 1998.

[10] Frederick Onion, Alexandru Nicolau, and Nikil
Dutt. Compiler Feedback in ASIP Design. Techni-
cal report, University of California, Irvine, Septem-
ber 1994.

[11] Stamatis Vassiliadis, James Phillips, and Bart
Blaner. Interlock Collapsing ALU’s. IEEE Trans-
actions on Computers, 42:825-839, July 1993.

	Main Page
	CODES'99
	Front Matter
	Table of Contents
	Session Index
	Author Index

