
A Hardware/Software Partitioning Algorithm for
Processor Cores of Digital Signal Processing

Nozomu Togawa Takashi Sakurai Masao Yanagisawa Tatsuo Ohtsuki

Dept. of Electronics, Information and Communication Engineering, Waseda University
E-mail: togawa@ohtsuki.comm.waseda.ac.jp

Abstract|A hardware/software cosynthesis system for processor
cores of digital signal processing has been developed. This paper
focuses on a hardware/software partitioning algorithm which is
one of the key issues in the system. Given an input assembly
code generated by the compiler in the system, the proposed hard-
ware/software partitioning algorithm �rst determines the types
and the numbers of required hardware units, such as multiple func-
tional units, hardware loop units, and particular addressing units,
for a processor core (initial resource allocation). Second, the hard-
ware units determined at initial resource allocation are reduced one
by one while the assembly code meets a given timing constraint
(con�guration of a processor core). The execution time of the as-
sembly code becomes longer but the hardware costs for a processor
core to execute it becomes smaller. Finally, it outputs an optimized
assembly code and a processor con�guration. Experimental results
demonstrate that the system synthesizes processor cores e�ectively
according to the features of an application program/data.

1 Introduction

A general digital signal processor is mainly composed of a mi-
cro processor core and several hardware units for digital signal
processing such as multiple memory banks, addressing units, and
hardware loop units [6], [8]. However, if a particular application
program is run on a general digital signal processor, some hard-
ware units can be often used and other hardware units can never
be used. We consider that an appropriate con�guration for dig-
ital signal processors is required according to requirements for a
given application program as well as hardware costs for required
hardware units.
Hardware/software codesign is to design a hardware part and

a software part of a processor and/or a system simultaneously
according to a given application program. The researches on
hardware/software codesign are classi�ed into (1) design for an
overall system including an existing processor core and its periph-
eral hardwares, (2) simultaneous simulation for a hardware part
and a software part of a given system, and (3) design of a mi-
cro processor core or ASIP (Application-Speci�c Instruction set
Processor). We can consider the problem to obtain a processor
con�guration for digital signal processing application to be one of
ASIP design problems. With respect to ASIP design the systems
called COACH [1], PEAS [2], [3], [10], and ASIA [5] have been
presented. Several basic researches have been also reported as in
[7], [11]. However, there have been very few researches on over-
all synthesis for digital signal processors including memory bank
design and hardware unit design, though there have been several
reports on individual hardware unit design for digital signal pro-
cessors.
Based on the above discussion, we have developed a hard-

ware/software cosynthesis system for processor cores of digital
signal processing [12]. This paper focuses on a hardware/software
partitioning algorithm which is one of the key issues in the sys-
tem. Given an application program written in the C language and
a set of application data, the system synthesizes a processor core
ranging from a RISC core to a DSP core by selecting the required
hardware units, such as multiple functional units, hardware loop
units, and particular addressing units, based on the application
program/data and the hardware costs. Given an input assembly
code generated by the compiler in the system, the proposed hard-
ware/software partitioning algorithm �rst determines the types
and the numbers of required hardware units to execute it (initial
resource allocation). Second, the hardware units determined at
initial resource allocation are reduced one by one while the as-
sembly code meets a given timing constraint (con�guration of a
processor core). The execution time of the assembly code becomes
longer but the hardware costs for a processor core to execute it be-
comes smaller. Finally, it outputs an optimized assembly code and
a processor con�guration. The experimental results demonstrate
that the system synthesizes processor cores e�ectively according
to the features of an application program/data.

P-Bus X-Bus

Shifter

Reg

DSP kernel

Y-Bus Mult

Loop

Addr

Mult
Add

ALU

RISC kernel

ALU

Addr

Figure 1. Processor kernels and hardware units added to
them.

2 A Hardware/Software Cosynthesis System for
Processor Cores of Digital Signal Processing

2.1 Processor Model for Digital Signal Processing

We consider a target architecture model ranging from a general-
purpose RISC processor to a general digital signal processor.
Based on [9], Fig. 1 shows processor kernels and a part of hardware
units which will be added to them. A processor core is constructed
by adding several hardware units to a processor kernel. Processor
kernels and hardware units added to them are de�ned as follows:
A processor kernel is (i) a RISC-type kernel or (ii) a DSP-

type kernel. A RISC-type kernel has the �ve pipeline stages com-
posed of IF (instruction fetch), ID (instruction decode), EXE (ex-
ecution), MEM (memory access), and WB (write back) stages
based on [4]. A DSP-type kernel has the three pipeline stages
composed of IF, ID, and EXE stages based on [6], [8], [9]. A pro-
cessor kernel has a Harvard architecture and consists of (c-i) an
instruction memory, (c-ii) a data memory (X data memory), (c-
iii) a register �le, and (c-iv) an ALU (Arithmetic Logic Unit) and
a barrel shifter. In (c-i) and (c-ii), data bus width can be changed
and address bus width is �xed to 16 bits. A RISC-type kernel has
�ve pipeline stages and can run faster compared with a DSP-type
kernel. On the other hand, it is hard to control addressing units
and hardware loop units. A DSP-type kernel has three pipeline
stages and can run slower compared with a RISC-type kernel. On
the other hand, hardware units for digital signal processing can
be added to it.
Y data memory can be added to a processor kernel. If Y data

memory is added to a processor kernel, we can load two data from
the two data memories (X data memory and Y data memory) or
store two data to the two data memories simultaneously.
The types and the numbers of functional units added to

a processor kernel can be changed.
An addressing unit can execute the addressing operations

of (i) no operation, (ii) post increment, (iii) post decrement, (iv)

index add, (v) modulo add, and (vi) bit reverse.1 The addressing
operations are realized by address registers for (ii) and (iii), index
registers for (ii){(iv) and (vi), and modulo registers for (v). An
addressing unit executes the operations required by an application
program and data.
A hardware loop unit can execute a �xed number of loops

without disturbing any pipeline streams. It is realized by loop
registers.
The number of registers can be changed. Registers refer to

(a) general-purpose registers in a register �le, (b) address registers,
index registers, and modulo registers in addressing units for X and
Y data memories, and (c) loop registers in a hardware loop unit.
Data bus width of a data memory can be changed. It

is the same as the bit width of the int type of an application
program written in C. The bit width of the int type is set by

1See [6], [8] for detailed functions of the addressing operations (i){(vi).

a designer in an application program. The bit width of general-
purpose registers and functional units is also set to the bit width
of the int type.
Data bus width of an instruction memory is determined

based on a synthesized instruction set.

Each hardware unit has its hardware cost. Here a hardware
cost refers to an area. A processor core with more hardware units
requires more hardware costs and thus it increases a chip area.
Con�guration of a processor core is to determine a processor core
by adding hardware units to a processor kernel.

2.2 Instruction Set

A processor core synthesized by our hardware/software cosynthe-
sis system has basic instructions and parallel instructions. The
basic instructions are those in a general digital signal processor
[9], such as ADD and MAC, and correspond to processor kernels
and/or hardware units. A parallel instruction executes more than
one basic instructions. All the combination of basic instructions
cannot be a parallel instruction but the hardware/software cosyn-
thesis system determines which combination of basic instructions
should be a parallel instruction based on an application program.
The combination of basic instructions executed by distinct hard-
ware units can be a parallel instruction.
A processor core synthesized by our hardware/software cosyn-

thesis system requires minimum instructions so that it can func-
tion as a general processor. The minimum instructions in basic in-
structions are called necessary instructions and will be synthesized
whatever application program is given. In hardware/software
cosynthesis, required basic instructions are extracted and parallel
instructions are synthesized in addition to necessary instructions.

2.3 The Hardware/Software Cosynthesis System

Fig. 2 shows the proposed system. The system synthesizes a pro-
cessor core of digital signal processing in the following way:
Compile and application analysis: First the system con-

siders a processor core to which all the hardware units are added
and complies an application program on the processor core. In
this process, an assembly code with the maximum number of par-
allel instructions is generated since there are no limitations of
hardware units but only data dependency constraints in the ap-
plication program. The execution time of a generated assembly
code is short but the required area for the processor core to exe-
cute it becomes large. At the same time, the application data is
given to the application program and how many times each basic
blocks are executed in the application program is analyzed.
Hardware/software partitioning: Second, the system re-

places a part of hardware with software by eliminating hardware
units added to a processor kernel. The execution time of the
assembly code becomes longer but the required area for the pro-
cessor core to execute it becomes smaller. The system repeats
this process while the execution time of the assembly code satis-
�es the timing constraint and obtains a processor core satisfying
the timing constraint with a small hardware cost.
Hardware and software generation: Finally, the system

generates a hardware description of the processor core, the object
code of the application program run on the processor core, and
software environment.

The proposed approach has the two advantages: First, func-
tions of addressing units and hardware loops can be correspond
to a part of the high-level codes of an application program. By
much utilizing those functions in compiling, the system can obtain
an assembly code whose execution time is the shortest. Second, a
complicated hardware/software partitioning process can be sim-
pli�ed since it is considered independent of a compiling process of
an application program,

3 A Hardware/Software Partitioning Algorithm

In our system, one of the key issues is hardware/software parti-
tioning. In this section, we de�ne a hardware/software partition-
ing problem and propose a hardware/software partitioning algo-
rithm.

3.1 De�nitions

Consider that a basic block B 2 Bapp in an input assembly

code is executed NB
exe times. NB

exe is computed by the appli-

cation analyzer by our system. Let NB
cycle be the number of

Application
source
(C)

Application
data

Timing
constraints

Application analyzer

Analyzed
results

Arch.
templates

Compiler
(full resources)

Assembler
code

(fastest)

HW/SW partitioner

Compiler
Area/Time
estimator

Binary
code HDL

Assembler
code

Instruction
set

Hardware generatorSoftware generator

Compiler

Arch.
parameters

Simulator

Figure 2. The hardware/software cosynthesis system for pro-
cessor cores of digital signal processing.

clock cycles to execute B. The number of the total clock cy-
cles Ncycle to execute an input assembly code can be computed

by Ncycle =
P

B2Bapp
NB
exe �N

B
cycle. Then the execution time Tapp

of an assembly code is de�ned as Tapp = Ncycle � Tcycle, where
Tcycle is a clock period of a synthesized processor core. Let Tmax

app

be the maximum execution time of an application program. Then
a timing constraint is given by Tapp � Tmax

app .

De�nition 1 A hardware/software partitioning problem is, for

given an assembly code generated by the compiler, NB
exe for each

basic block B 2 Bapp, the timing constraint, and available hard-
ware units for a processor core, to obtain a processor core, an
assembly code run on the generated processor core, and an instruc-
tion set under the timing constraint so as to minimize hardware
costs for a processor core.

3.2 The Algorithm

Several hardware/software partitioning algorithms for processor
cores has been proposed [2], [3], [5], [10]. Those algorithms are
based on simulated annealing or the branch-and-bound method
and obtain optimum solutions. However, if the size of a given
problem is larger, they may require much computation time.
Those algorithms can be applicable to only a simple and small
problem. Since there are many available hardware units in pro-
cessor cores of digital signal processing, we consider that those
algorithms are not appropriate for our hardware/software parti-
tioning problem.
Our hardware/software partitioning is realized by the following

approach. First, the types and the numbers of required hardware
units are determined to execute the input assembly code (ini-
tial resource allocation). Second, the hardware units determined
at initial resource allocation are reduced one by one and the as-
sembly code is rescheduled while the assembly code satis�es the
timing constraint (con�guration of a processor core). Since this
approach is heuristic, we can obtain only a suboptimum solution.
However, it optimizes the types and the numbers of all the hard-
ware units simultaneously and then we expect that it can obtain
better results in a practical computation time.

3.2.1 Phase 1. Initial Resource Allocation

We can determine whether Y data memory is used or not and
which addressing operations are used in addressing units according

Input: Assembly code generated by the compiler, timing constraint,
and execution pro�le
Output: Assembly code, con�guration of a processor core, and
instruction set

Step 0. Assume that a processor kernel is DSP-type or RISC-type
and apply Steps 1{6 to each kernel.

Step 1. Insert NOP instructions so that they resolve the data hazard
between instructions.

Step 2. For each hardware unit which is currently added to a pro-
cessor kernel, try to eliminate it or reduce its function and check
how much the execution time of an assembly code will be in-
creased.

Step 3. For the hardware unit which gives the minimum hardware
cost of a processor core without violating the timing constraint
after eliminating it or reducing its function, eliminate it or re-
duce its function.

Step 4. Reschedule an assembly code.

Step 5.While there exists a hardware unit which meets the condi-
tion in Step 3, repeat Steps 1{4. Otherwise �nish.

Figure 3. The con�guration algorithm of a processor core.

to an input assembly code. If an input assembly code uses Y
data memory, it is initially allocated. If an input assembly code
uses some addressing operation, an addressing unit to execute the
addressing operation is initially allocated. As described earlier,
data bus width of data memories is set to the bit width of the
int type in an application program. The number of registers are
given by the maximum number of registers used in each functions
in an input assembly code. The required types and the numbers
of functional units are determined by the maximum number of
instructions executed concurrently.
For example, if the assembly code below is given, six registers,

one adder, and one multiply and add unit are allocated. In the
�rst instruction, two additions are concurrently executed using
the adder and the multiply and add unit.

ADD R1, R2, R3

|| ADD R4, R5, R6 // R3 = R1 + R2; R6 = R4 + R5;

ADD R3, R6, R1

|| MAC R3, R6, R2 // R1 = R3 + R6; R2 = R3 * R6 + R2;

3.2.2 Phase 2. Con�guration of a Processor Core

Fig. 3 shows a procedure to con�gure a processor core. In the
procedure, we �rst assume a DSP-type kernel or a RISC-type
kernel in Step 0. Then Steps 1{5 are applied to each processor
kernel. Step 1 and Step 2 are trivial. In Step 4 we execute a
scheduling process under the constraint of current hardware unit
con�guration so as to minimize the number of clock cycles in each
basic block.
In con�guring a processor core, the key issues are Steps 2 and

3 where an assembly code is updated according to recon�guration
of hardware units and the hardware cost of a processor core and
execution time of an assembly code are estimated.

Update of an assembly code according to recon�guring
hardware units: For each hardware unit which is currently
added to a processor core, we eliminate it or reduce its function.
At the same time, we update an assembly code. We consider (1)
Y data memory, (2) functional units, (3) addressing units, and (4)
registers as hardware units.
Here we describe here how to eliminate one addressing unit. Let

us consider the address operations of (i) no operation, (ii) post in-
crement, (iii) post decrement, (iv) index add, (v) modulo add, and
(vi) bit reverse in addressing units. If one of those address opera-
tions is eliminated, it is executed using general-purpose registers.
An assembly code is updated based on the following procedure for
X data memory (the similar procedure can be applied to Y data
memory).

1. Allocate general-purpose registers for address registers, index regis-
ters, and modulo registers.

2. Apply 3. and 4. to each instruction using an addressing unit.

3. Replace an instruction using an addressing unit with (1) preprocess-
ing for the address operation, (2) a memory access instruction, and

Table 1. Hardware unit libraries.
Bit Clock Area Delay

Hardware unit width cycles [�m2] [ns]

Kernel DSP-type 32 | 798225� |
RISC-type 32 | 985668� |

Functional ALU 32 1 434107 5.0
Unit Shifter 32 1 447567 5.0

Multiplier 32 1 401450 12.0
MAC 32 1 979717 15.0

Addressing (i) 16 1 79624 5.0
unit (i){(iii) 16 1 100876 5.0

(i){(iv) 16 1 143876 5.0
Hardware loop | | 111696 |

Register
General

(DSP-type)
32 | 178304 |

General
(RISC-type) 32 | 97644 |

DP, DN
and DMX

16 | 57250 |

Loop 16 | 408695 |

Addressing unit (i): no operation, (ii): post increment, (iii): post
decrement, and (iv): index add

�n = 2, m = 1 and there are an ALU, a shifter, and two registers in the
processor core

Table 4. Comparison of the synthesized processor cores and
existing processors.

Clock cycles to run app. programs
Processor DCT Matrix Hu�man

Ours1 4357 2:11� 106 1164

Ours2 3014 1:12� 106 1164

MMX Pentium (133MHz) 12954 13:04� 106 1702

Pentium II (300MHz) 4080 3:15� 106 1377

Micro Sparc II (110MHz) 34760 34:54� 106 1254

Turbo Sparc (170MHz) 19040 25:33� 106 1336

Ultra Sparc (167MHz) 15865 15:50� 106 982

PA8000 (gcc, 160MHz) 27360 20:48� 106 821

PA8000 (HP C, 160MHz) 4544 3:98� 106 904

Ours1 and Ours2: The maximum number of basic instructions executed
concurrently is one and two, respectively

In our system, the clock cycles are shown when the tightest timing
constraints are given. Note that the clock frequency of our processor core

varies according to an application program. See Tables 2{3.

(3) postprocessing for the address operation, using general-purpose
registers.

Estimation of the hardware cost of a processor core: The
hardware cost of a processor core is estimated by adding the hard-
ware cost of a processor kernel and the hardware costs of hard-
ware units. Let U be a set of hardware units for current con-
�guration of a processor core. Let t be a type of a processor
kernel (t is RISC-type or DSP-type), b be bit width of a general-
purpose register, n be the maximum number of basic instruc-
tions executed concurrently, m be the number of memory banks
(m = 1; 2). The hardware cost of a processor kernel can be de-
noted as ck(t; b;m; n;U). Let c(u) be the hardware cost of a hard-
ware unit u 2 U . Then the hardware cost of a processor core can
be computed as c = ck(t; b;m;n; U;R) +

P
u2U

c(u):

Estimation of the execution time of an assembly code:

In each basic block B 2 Bapp, the number of clock cycles N
B
cycle to

execute B can be given by the number of steps when scheduling
the instructions in B. Then the total number of clock cyclesNcycle

can be obtained according to Section 3.1. A clock cycle Tcycle is
estimated by the maximum delay in all the pipeline stages for a
DSP-type kernel or a RISC-type kernel.
Based on Ncycle and Tcycle, we can obtain the execution time

of a current assembly code.

4 Experimental Results

The system has been implemented in the C language on Sun Ul-
tra 1. The system was applied to the two-dimensional discrete
cosine transform (for 8� 8 pixels), the matrix multiplication (for
two 100�100 matrices), and the Hu�man encoding (8�8 pixels).
The maximum number of basic instructions executed concurrently
was set to be 1 and 2. The timing constraint ranged from the min-
imum possible execution time to the maximum possible execution

Table 2. Experimental results 1 (The maximum number of basic instructions executed concurrently is one).
Timing Area T Hardware con�guration CPU

consts [�s] [�m2] [ns] Kernel Y mem #FUs #Regs Addr unit time [s]

DCT 135 8346460 31 DSP Yes (1,1,0,1) (6,10,3) (i)+(ii)+(iii) 4.8
200 7729246 31 DSP No (1,1,0,1) (6,12,3) (i)+(ii)+(iii) 6.8
300 5937686 31 DSP No (1,1,0,1) (7,12,0) (i)+(ii)+(iii) 9.2
400 3823499 20 RISC No (1,1,0,1) (10,0,0) | 18.1
500 3725855 20 RISC No (1,1,0,1) (9,0,0) | 27.1
577 3725855 20 RISC No (1,1,0,1) (9,0,0) | 31.0

Matrix 0:65� 105 7363570 31 DSP Yes (1,1,0,1) (6,2,3) (i)+(ii)+(iii)+(iv) 1.6

1:01� 105 6849050 31 DSP No (1,1,0,1) (6,3,3) (i)+(ii)+(iii)+(iv) 2.1

2:02� 105 5057490 31 DSP No (1,1,0,1) (7,3,0) (i)+(ii)+(iii)+(iv) 2.8

3:03� 105 3823499 20 RISC No (1,1,0,1) (10,0,0) | 5.7

4:04� 105 3628211 20 RISC No (1,1,0,1) (8,0,0) | 10.8

5:05� 105 3530567 20 RISC No (1,1,0,1) (7,0,0) | 15.2

6:05� 105 3432923 20 RISC No (1,1,0,1) (6,0,0) | 18.4

Hu�man 11.6 3039070 10 RISC No (1,1,0,0) (12,0,0) | 68.2
coding 15 3039070 10 RISC No (1,1,0,0) (12,0,0) | 68.2

20 3039070 10 RISC No (1,1,0,0) (12,0,0) | 69.8
25 3039070 10 RISC No (1,1,0,0) (12,0,0) | 123.2

28.6 3039070 10 RISC No (1,1,0,0) (12,0,0) | 87.4

Table 3. Experimental results 2 (The maximum number of basic instructions executed concurrently is two).
Timing Area T Hardware con�guration CPU

consts [�s] [�m2] [ns] Kernel Y mem #FUs #Regs Addr unit time [s]

DCT 93 7863540 31 DSP Yes (1,1,0,1) (6,7,3) (i)+(ii)+(iii) 4.8
100 7863540 31 DSP Yes (1,1,0,1) (6,7,3) (i)+(ii)+(iii) 6.7
200 6071980 31 DSP Yes (1,1,0,1) (7,7,0) (i)+(ii)+(iii) 6.9
300 4216843 20 RISC No (1,1,0,1) (11,0,0) | 11.5
400 3823499 20 RISC No (1,1,0,1) (10,0,0) | 20.1
500 3725855 20 RISC No (1,1,0,1) (9,0,0) | 29.2
577 3725855 20 RISC No (1,1,0,1) (9,0,0) | 33.8

Matrix 0:35� 105 7410324 31 DSP Yes (1,1,0,1) (6,2,3) (i)+(ii)+(iii)+(iv) 1.6

1:01� 105 5618764 31 DSP Yes (1,1,0,1) (7,2,0) (i)+(ii)+(iii)+(iv) 2.2

2:02� 105 5517306 31 DSP No (1,1,0,1) (7,3,0) (i)+(ii)+(iii)+(iv) 2.9

3:03� 105 3725855 20 RISC No (1,1,0,1) (9,0,0) | 9.1

4:04� 105 3628211 20 RISC No (1,1,0,1) (8,0,0) | 12.8

5:05� 105 3530567 20 RISC No (1,1,0,1) (7,0,0) | 17.3

6:05� 105 3530567 20 RISC No (1,1,0,1) (7,0,0) | 17.4

Hu�man 11.6 3039070 10 RISC No (1,1,0,0) (12,0,0) | 85.6
coding 15 3039070 10 RISC No (1,1,0,0) (12,0,0) | 85.6

20 3039070 10 RISC No (1,1,0,0) (12,0,0) | 69.1
25 3039070 10 RISC No (1,1,0,0) (12,0,0) | 122.7

28.6 3039070 10 RISC No (1,1,0,0) (12,0,0) | 85.5

T [ns]: Clock period of the synthesized processor core
#FUs: (#ALUs, #Shifters, #Multipliers, #MACs)

#Regs: (#General registers, #Data pointers, #Loop registers)
Addressing unit (i): no operation, (ii): post increment, (iii): post decrement, and (iv): index add

time for each application program. Table 1 shows a part of our
hardware unit libraries. They are synthesized using the Synop-
sis Design Compiler with the VDEC libraries (CMOS and 0:5�m
technology).
Tables 2{3 shows the synthesized processor cores for each appli-

cation program. The tables indicate that, particularly when the
tight timing constraint is given, processor cores with a DSP-type
kernel are synthesized for the DCT and the matrix multiplica-
tion because those application programs have high parallelism for
source codes and require many addressing operations and loops.
On the other hand, processor cores with a RISC-type kernel are
synthesized for the Hu�man encoding because those application
programs have low parallelism for source codes and do not have
addressing operations.
In order to compare our results with the existing processors,

Table 4 shows the results of the clock cycles to run each application
program. In our system, the clock cycles are shown when the
tightest timing constraints are given in Tables 2{3. The results
show that processor cores synthesized by our system achieve the
minimum number of clock cycles for the DCT and the matrix
multiplication.

Acknowledgments

The authors would like to thank M. Hamabe, T. Kawasaki, A.
Nose, T. Nakamura, Y. Kataoka, and D. Yoshizawa of Waseda
University for their implementations and valuable discussions.

References
[1] H. Akaboshi and H. Yasuura, \COACH: A computer aided design tool

for computer architects," IEICE Transactions on Fundamentals of
Electronics, Communications and Computer Sciences, vol. E76-A, no.
10, pp. 1760-1769, 1993.

[2] A. Alomary, T. Nakata, Y. Honma, M. Imai, and N. Hikichi, \An ASIP
instruction set optimization algorithm with functional module sharing
constraint," in Proc. ICCAD-93, pp. 526{532, 1993.

[3] N. N. B��nh, M. Imai, A, Shiomi, and N. Hikichi, \A hardware/software
partitioning algorithm for designing pipelined ASIPs with least gate
count," in Proc. 33rd DAC, pp. 527{532, 1996.

[4] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quan-
titative Approach, Morgan-Kaufman, 1990.

[5] I.-J. Huang and A. M. Despain, \Synthesis of instruction sets for
pipelined microprocessors," in Proc. 31st DAC, pp. 5{11, 1994.

[6] P. Lapsley, J. Bier, A. Shoham, and E. A. Lee, DSP Processor Fun-
damentals: Architectures and Features, Berkeley Design Technology,
Inc., 1994{1996.

[7] C. Liem, P. Paulin, and A. Jerraya, \Address calculation for retargetable
compilation and exploration of instruction-set architectures," in Proc.
33rd DAC, pp. 597{600, 1996.

[8] V. K. Madisetti, Digital Signal Processors, IEEE Press, 1995.

[9] NEC, http://www.ic.nec.co.jp/micro/micro.html.

[10] J. Sato, A. Y. Alomary, Y. Honma, T. Nakata, A. Shiomi, N. Hikichi,
and M. Imai, \PEAS-I: A hardware/software codesign system for ASIP
development," IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences, vol. E77-A, no. 3, pp. 483{
491, 1994.

[11] A. Sudarsanam and S. Malik, \Memory bank and register allocation in
software synthesis for ASIPs," in Proc. ICCAD-95, pp. 388{392, 1995.

[12] N. Togawa, T. Sakurai, M. Yanagisawa, and T. Ohtsuki, \A hard-
ware/software cosynthesis system for processor cores of digital signal
processing," IEICE Tech. Rep., VLD97-115, 1998 (in Japanese).

	Main Page
	ASPDAC99
	Front Matter
	Table of Contents
	Session Index
	Author Index

