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Abstract
This paper presents a new structural approach for diagnosing

board interconnects using boundary-scan. While existing diagnosis
approaches assume only wired-AND or wired-OR bridging fault
model, we consider a more complex bridging short fault model in
CMOS circuit environment. The diagnostic test set is generated
based on graph theoretic technique and the adjacency fault model
is adopted. Both one-step and two-step diagnosis algorithms are
given. They guarantee the complete diagnosis of multiple inter-
connect faults with no aliasing and confounding. The algorithms
have been evaluated by simulation on several benchmark layouts
and randomly generated layouts. Simulation results show that
more than 50% reduction in the number of tests can be achieved
for two-step diagnosis when the fault rate is very small, such as in
a matured product line. This can significantly save the diagnosis
cost for boundary-scan testing.

1 Introduction
The packaging density of a printed circuit board (PCB) or

multichip module (MCM) has been increasing due to the miniatur-
ization of digital circuits and current technologies. With such a high
density and complexity, shorts are more likely to happen among
interconnect nets. As a result, testing and diagnosis for interconnect
faults is an important problem in VLSI, PCB and MCM
manufacturing. In general, there are three types of faults commonly
associated with nets on a PCB. They are stuck-at-faults, open faults,
and bridging faults. In all cases, all nets involved in a short will have
the same resulting logic value.

With IEEE Std 1149.1 boundary-scan architecture [1], these
interconnect faults can be tested and diagnosed under full
controllability and observability conditions. In a boundary-scan
environment, test sets are scanned in, the saving in the number of
tests and the test application time is particular important. A variety
of approaches [2]-[10] has been proposed for generating diagnostic
test sets based on boundary-scan architecture. They differ with each
other in their diagnostic resolution. In general, these approaches fall
in two basic categories: the behavioral testing and the structural
testing strategy. It is important to note that the previous diagnosis
approaches assume only wired-AND or wired-OR bridging fault
model, no matter the fault involves two nets or multiple nets.
However, in a CMOS circuit environment, the fault model for
bridging faults is rather complex than the wired-OR or the wired-
AND model [11]. This is because a shorted net may settle to an
indeterminate voltage level which makes prediction of the resulting
logic levels very difficult. Recently, a new ‘n+1’ Algorithm [12] has
been proposed to overcome this deficiency. It can completely
diagnose any multiple interconnect faults, regardless of the type of
bridging faults. The drawback of this method is the large number of
test vectors. This problem is especially severe if boundary-scan
testing is employed, in which each parallel test vector has to be
serially scanned into the board under test, resulting in a total test
time of n × (n+1), where n is the number of nets.

In this paper, we propose a new structural diagnostic approach
for board interconnect testing with boundary-scan. This approach
not only tackles multiple faults, but also deals with more complex
issues such as CMOS bridging faults. The test set is generated by a
simple yet effective one-step diagnosis algorithm based on graph
theoretic technique. The adjacency fault model in which two nets can
be shorted only if they terminate at adjacent pins or their tracks are
adjacent within a predetermined distance, is adopted [7]. A two-step
algorithm is further proposed for test generation and diagnosis.
Compared with one-step diagnosis, the two-step diagnosis algorithm
can further reduce the number of test vectors while retaining the
same level of diagnostic resolution. Both algorithms guarantee the
complete diagnosis of multiple interconnect faults with no aliasing
and confounding. Simulation results for benchmark layouts and
randomly generated layouts show a 18% to 45% savings in the
number of tests for one-step diagnosis. For two-step diagnosis, more
than 50% reduction in the test length can be achieved when the short
fault rate is very small. We shall also show the adjacency fault model
has a major impact on the efficiency of the two-step diagnosis.

2 Preliminaries
This section will first give the basic definitions and notation.

Parallel Test Vector (PTV): the vector applied to all nets of a
wiring network in parallel. Sequential Test Vector (STV): the
vector applied to a net, over a period time, by a sequence of PTVs.
Test Set S: the collection of all STVs. Each column of S is a PTV
and each row of S is a STV. Sequential Respond Vector (SRV):
the response of a net to a STV. Syndrome: the SRV of a faulty net.
Aliasing syndrome: if a syndrome in the presence of a fault is the
same as the fault free response of a net, then it is impossible to
determine whether or not this net is also part of the short. The
response in this case is referred to as an aliasing syndrome.
Confounding syndrome: the bridge fault between a pair of nets may
produce the same syndrome as between another net pair, so it is
impossible to determine whether or not there is a short between
which pair of nets. The response is called a confounding syndrome.

Given the layout of nets and the criteria for the short faults, the
structure of the interconnect can be modeled by using an adjacency
graph Gad to reflect all the possible faults under consideration. The
adjacency graph is given by Gad=(V,E), where each node in the set V
identifies a net and an edge eij ∈ E if a short can exist between ni and
nj as they are adjacent in the layout of the interconnect [13]. For
each node v ∈ V, its degree with respect to Gad is defined to be the
number of other nodes adjacent to it in Gad. Let D be the maximum
degree of the nodes in Gad. The edge-distance between two nodes in
Gad is the number of edges on the shortest edge path between the
two nodes. A k-coloring of an arbitrary graph Gad=(V,E) is a
mapping f:V→  {C1, C2, …, Ck} which assigns a color Ci to each
node in such a way that no two adjacent nodes receive the same
color [14]. A primary net is defined as the particular net under
consideration, while Primary Shorting Nets (PSNs) are the nets
which are likely to be shorted to the primary net, i.e., for a node ni in



Gad all the nodes nj such that eij ∈ E. The set of Secondary Shorting
Nets (SSNs) is defined as the primary shorting nets to the PSNs, but
excluding the primary net itself.

The bridging short fault model under consideration is
summarized as follows. For a given short fault, if the number of nets
driving a logic 1 is larger than that driving a logic 0, then logic 1
dominates. Similarly, if the number of nets driving a logic 0 is larger
than that driving a logic 1, then logic 0 dominates. As a matter of
fact, this assumption is valid for most of the CMOS circuits. In the
case where half of the shorted nets driving a logic 1 and the other
half driving a logic 0, it reduces to a wired-AND short fault model. It
is also assumed that both open and short faults do not exist on the
same net.

3 One-step Diagnosis
The basic idea behind the one-step diagnosis algorithm is to

reduce the number of test vectors by exploiting the net adjacency
relationships in the layout. Unlike the conventional graph coloring
problem [8]-[10], [14], where each node is assigned a color in such a
way that no two adjacent nodes receive the same color, we made the
problem more restricted in our algorithm in order to diagnosis all the
multiple interconnect faults under our fault model.

Basically, the algorithm utilizes the test set from the ‘n+1’
algorithm [12]. Instead of using n+1 PTVs, the number of PTVs
can be reduced to k+1, where k is the number of colors used when
our algorithm is applied to Gad and k is generally less than n. Each
color Ci is first associated with a unique k+1 bits STV {bk+1, bk, …,
b2, b1}, where bj = 0 when j ≤ i and bj = 1 when j > i. As a
consequence, the net with color C1 is assigned with a STV
{111...110}, while the net with color Ck is assigned with a STV
{100...000}, where Ck denotes the largest color to be assigned. The
test set S will be equal to (STV1, …, STVn)

T. With this test set, all
stuck-at-faults can be detected since all STVs are different and
contain at least one zero and one. Open faults can also be detected
as this test set includes PTVs with all zeros and all ones. In addition,
every STV contains different number of ones with a covering
relationship. We say net a covers net b if and only if the STV for net
a contains ones wherever STV for net b has ones. In other words,
net with a lower color covers net with a higher color. Due to this
covering relationship, two important behaviors with respect to this
test set are observed under our fault model.

First, if two nets are wired-AND shorted, the resulting fault
syndrome will be the same as the STV of one of the faulty nets that
assigned with the higher color. Suppose for k = 6, if net with C2 and
net with C5 are shorted, then the SRV for both nets will be equal to
{1111100}∩{1100000}, where ∩ denotes the wired-AND opera-
tion. As a result, the fault syndrome becomes {1100000}.

Second, for a short involving m nets, m > 2, if we have a list
contains the colors of these m nets in ascending order, then the
resulting fault syndrome will be the same as the STV of the net with
the (m/2 + 1)th color in the list. For example, for k = 6, if nets with
colors C1, C3 and C4 are shorted, the syndrome becomes the STV of
the net with the second color in the list (1 3 4) and is equal to
{1111000}, i.e., the STV assigned to the net with C3. Similarly, if
nets with colors C1, C3, C4 and C6 are shorted, the color list is (1 3 4
6) and the syndrome will then become {1110000}.

Based on these two behaviors, we come up with the following
two corollaries which form the basic elements in our algorithm.

Corollary 1  For a graph Gad, color C1 can be reassigned to a node
which has at least an edge-distance of 3 from those nodes already
assigned with C1 such that no syndrome equal to the STV assigned
to the net with C1 exists.
Proof: Since any two nodes with C1 are separated by at least two
other nodes with different colors, a short involving p (p ≥ 2) nodes

with C1 contains at least p other nodes with different colors. By the
above test set behavior, no resulting syndrome is equal to the STV of
net with C1. Thus, no aliasing and confounding.

Corollary 2  For a graph Gad, color Ck (the largest assigned color)
can be reassigned to a node which has at least an edge-distance of 4
from those nodes already assigned with Ck such that no syndrome
equal to the STV assigned to net with Ck exists.
Proof: Since any two nodes with Ck are separated by at least three
other nodes with different colors, a short involving q (q ≥ 2) nodes
with Ck contains at least (q + 1) other nodes with different colors. By
the above test set behavior, the resulting syndrome is not equal to the
STV of net with Ck. Even in the case where there are only two nets
short, each involving a node with Ck, aliasing and confounding do
not exist since there always exists at least one node separating these
sets of shorted nodes.

With these two corollaries, the number of colors used can be
reduced by reassigning C1 and Ck to the nodes in Gad. However,
colors between the lowest and the highest color cannot be reassigned
since it cannot guarantee aliasing and confounding free due to the
complicated short fault model. In addition, although these two
corollaries are sufficient for full diagnosis, they may not be
necessary.

In some cases, there may be one set of nets which are not
shorted to another set of nets under the adjacency fault model. Thus,
it is necessary to find (if any) the disjoint graph component Gad from
the adjacency list. There are three phases in the one-step algorithm.
Phase 1, 2 and 3 are repeated for each connected adjacency graph
Gad until all the nets are assigned with colors and the number of
colors or test vectors is minimized. It is important to note that the
one-step algorithm can also be applied when the wired-OR two nets
short fault model is assumed, by taking the complement of the STVs
in the above test set.

In Phase 1, the nodes in Gad are sorted according to their
degrees. The node with the highest degree will be first assigned with
a color and Phase 1 will exit if all nodes have been assigned with
colors. For each node, the algorithm will check all its PSNs (Primary
Shorting Nets) and SSNs (Secondary Shorting Nets). A node is
assigned with C1 if and only if its PSNs and SSNs are not already
assigned with C1. Otherwise, the next lowest color is assigned. With
this assignment scheme, the edge-distance for every pair of nodes
with C1 will be at least equal to 3 after Phase 1. This follows
Corollary 1 and no aliasing and confounding exist. The time
complexity of Phase 1 is O(n ×  D + n ×  D2) = O(n ×  D2).

The goal of Phase 2 is to reduce the number of colors by
assigning each node originally with the highest color k to the next
highest color k-1, but with the constraint that all the edge-distances
between nodes with Ck and nodes with Ck-1 should be at least equal
to 4. If this condition fails, Phase 2 will exit. The edge-distance
between such a pair of nodes is computed by the breadth first
search algorithm for shortest path problem [14]. After each
successful iteration, the number of colors used is reduced by one,
while the number of nodes with the updated highest color k is
increased by one. The time complexity of Phase 2 is O(m ×  n2),
where m is the total number of edges E in Gad. In case where Gad

is a complete graph, the time complexity becomes O(n4). However, m
« n(n-1)/2 under our adjacency fault model since Gad is relatively
sparse as D « n.

The number of colors can be further reduced by going through
Phase 3 of the algorithm. In Phase 3, the edge-distance between each
node with color Ck and node with color other than C1 and Ck-1, say
Cj, is computed. j is first selected to be k-2. If all the computed edge-
distances are at least equal to 4, then nodes with Ck-1 will be
assigned with Cj while nodes with Cj will be assigned with Ck-1,



otherwise, j is reduced by one and the edge-distance computation
procedure is processed again. If there is a successful color swapping,
the edge-distance among all the nodes with Ck and Ck-1 will then be
at least equal to 4 and node with Ck can be assigned with color Ck-1.
Thus, the number of colors can be reduced by one. The entire
procedure is repeated again with the current j and updated k until
there is no more node with color other than C1 and Ck-1 satisfying the
above requirements. The time complexity of Phase 3 is O(m ×  n3).

Note that the time complexity of executing Phase 3 appears to
be high for a large number of nets under test. But the test generation
process is a one-time off-line computation for a specific board or
module. Its cost becomes of little concern if the resulted compact test
sequence can save the cost in on-line testing. One alternative
approach for testing thousands of nets is to execute Phase 1 and
Phase 2 only. Test length can be reduced to a reasonable time.

4 Two-step Diagnosis
Instead of diagnosing the set of all interconnect faults using the

one-step diagnosis algorithm, we have proposed another algorithm
for fault diagnosis based on a two-step process. Two-step diagnosis
refers to the process that diagnosis is done by applying two test
sequences. The results of the first test sequence is used in generating
the second test sequence. As the same with one-step diagnosis, the
adjacency fault model is assumed. The two-step diagnosis algorithm
is shown in Figure 1.

In the first step, test set is generated to detect the presence of
faults as well as identifying if each individual net is either fault free
or faulty. Besides, both open faults and stuck-at-faults can be
detected. Conventional graph coloring is applied to Gad such that no
two adjacent nodes receive the same color. The STV assignment is
the same as that in one-step diagnosis. It has been shown that for an
arbitrary graph G=(V,E) with maximum degree D, the number of
colors used is less than or equal to (D+1) [13]. Thus, the first step
yields a low test length as D « n under our adjacency fault model.

With this simple coloring, if there is a short between two
adjacent nodes in Gad, then one of the nodes will receive the fault
syndrome as these two nodes are assigned with difference STVs. In
other words, if a node receives a syndrome after applying the first
test set to the interconnects, then all the edges associated with this

node are susceptible to faulty and all the nodes associated with these
edges may involve in a short. A fault list is built to store all these
nodes. As a result, a edge in Gad is considered to be fault free only
when the two nodes associated with this edge are not in the fault list.
The remaining task in the first step is to delete all the fault free edges
from Gad and find (if any) the disjoint graph components of the new
Gad.

In the second step, the one-step algorithm is applied to the
resulted graph components for the full diagnosis of interconnect
faults. With two-step diagnosis, the test length can be further
reduced as Gad is decomposed into a number of disjoint graph
components with reduced number of nodes, especially when the fault
rate is low.

5 Simulation Results
The proposed one-step diagnosis algorithm was implemented

using Cadence SKILL code [15]. The program is tested on a set of
real PCB layouts whose adjacency graphs are known. Each board
layout contains one power and one ground net, for which no test
vectors are needed. The simulation results are shown in Table 1.
Note that the power and ground nets are excluded in the test vector
generation. The proposed one-step diagnosis approach has also been
evaluated by simulation on different size random interconnects with
varying maximum degree D. For example, referring to Table 2,
r100_4  is a randomly generated adjacency graph with 100 nets and
D equal to 4, while r200_8  contains 200 nets and D equal to 8.
Table 2 shows the simulation results.

For the PCB layouts, the percentage reduction of the test length
are less than 30%. One major reason is that their adjacency graphs
Gad are relatively dense with high number of edges and high D. For
randomly generated adjacency graph with D=4, the test length can
be reduced by more than 40%. However, for random Gad with D=8,
they show a relatively lower percentage reduction. This is due to the
fact that in general, adjacency graph constructed with low D is
relatively sparse as compared to that with high D. Moreover, the
execution time is different. As a result, the adjacency fault model has
a large impact on the complexity of the proposed approach and the
generated test sequence length.

To evaluate the proposed two-step diagnosis algorithm, we

Example # of net
test length of

‘n+ 1’
algorithm

test length of
proposed
approach

% reduction

ir232 20 21 16 24%
68hc11 91 92 74 20%
sram8 118 119 92 23%
cperi24 269 270 227 16%

Table 1.  Simulation results for benchmark layouts.

Example
test length of

‘n+ 1’
algorithm

test length of
proposed
approach

% reduction

r100_4 101 56 45%
r200_4 201 118 41%
r500_4 501 277 45%
r1000_4 1001 771 23%
r100_8 101 83 18%
r200_8 201 164 18%
r500_8 501 406 19%
r1000_8 1001 813 19%

Table 2.  Simulation results for random interconnects.

Algorithm  Two-step Diagnosis
Input: Adjacency Graph Gad

Task1. Sort the adjacency list D × |V|
Task2. For q = D downto 1, select a current uncolored node w that 

has the degree of q
Task3. Check all the PSNs of w

assign the lowest color number to w as possible
Task4. If there is any uncolored node, then goto Task2
Task5. Assign STV to each node

apply the test and analyze the responds
if there is no faulty responds, then exit

Task6. Let {F} be a list with nodes that are susceptible to faulty
foreach faulty node u ∈ V

{F} ← u
find all v ∈ V such that {u, v} ∈ E
{F} ← v

Task7. Remove all edges eij from Gad

iff ni ∉ {F} and nj ∉ {F}
Task8. Find the disjoint graph components Gad

Task9. For each Gad, execute the One-step Diagnosis Algorithm

Figure 1.  Algorithm for two-step diagnosis.



perform the simulations by randomly injecting faults to the four PCB
layouts and random interconnects. The short fault rate is defined as
the probability of the existence of a short fault for an edge in the
adjacency graph Gad. Figure 2 and Figure 3 show the simulation
results for the test length versus short fault rate for the four PCB
layouts and the random interconnects respectively. Note that the
number of tests for detection required for ir232, 68hc11, sram8
and cperi24 in the first step of the two-step diagnosis are 4, 7, 5
and 8 respectively.

The following conclusions can be drawn from the simulation
results. The number of tests using the proposed two-step process
shows a direct dependency with the short fault rate for diagnosis.
With a short fault rate above 20%, it is shown that the test length for
all the PCB layouts and the random interconnects with D equal to 8
are almost equal to that obtained by one-step diagnosis. Thus, two-
step diagnosis is not necessary in this case for test length reduction.
However, when the short fault rate is very low (<5%), at least a 50%
reduction in the test length compared with [12] can be achieved. It
can be shown in Figure 3 that random interconnects with different D
exhibit different characteristics. Simulation results show that a 50%
reduction in the test length can be achieved with a short fault rate of
as high as 60% for random interconnects with D=4. Again, this is
related to the fact that random Gad with low D is relatively sparse as
compared to that with high D. As a result, in addition to the short
fault rate, the adjacency fault model affects the performance of the
two-step diagnosis process.

6 Conclusions
This paper has presented a new approach for test vector

generation and diagnosis of interconnects for boundary-scan testing.
By considering a more complex bridging short fault model in CMOS
circuit environment, the test set is generated using graph coloring
technique based on the net adjacency relationships in the layout. Our
proposed structural approach guarantees the complete diagnosis of
multiple interconnect faults and is applicable to both one-step and
two-step diagnosis. Simulation results show that the two-step
diagnosis approach performs very well when the short fault rate is
very small. Besides, for a board in a matured product line, the
number of possible primary shorting nets for each net can be
reduced under the adjacency fault model. As a result, the test length
can be further decreased. This can save the cost for boundary-scan
testing.
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