
Timing Optimization of Logic Network Using Gate Duplication
Chun-hong Chen# and Chi-ying Tsui*

 # Department of Information Engineering, *Department of EEE,
 Zhejiang University of Technology, The Hong Kong University of Science & Technology

 HangZhou, Zhejiang Clear Water Bay, Kowloon,
 People Republic of China Hong Kong

Abstract

We present a timing optimization algorithm based on
the concept of gate duplication on the technology-
decomposed network. We first examine the
relationship between gate duplication and delay
reduction, and then introduce the notion of
duplication gain for selecting the good candidate
gates to be duplicated. The objective is to obtain the
maximum delay reduction with the minimum
duplications. The performance of the algorithm is
demonstrated with experiments on benchmark
circuits. Our approach can also be combined with
other technology-independent timing optimizers
(such as speed-up) to achieve further delay
improvement.

1 Introduction

Timing optimization has been an important goal in logic
synthesis. In the technology-independent phase, the
internal structure of a Boolean network is restructured
to obtain a logically equivalent network with the
reduced maximum logic level or reduced longest path
delay under a given delay model. In the technology-
dependent phase, technology mapping for minimum
delay improves the circuit timing by selecting gates with
appropriate size and driving capability from the library,
and building fanout-trees for the gates with heavy loads
to reduce the delay. After technology mapping, timing
driven layout and/or transistor sizing can be used to
further reduce the delay.

In the technology-independent phase, the exact delay
information is unknown, but experience shows that the
structure of the input Boolean network constrains, to a
large extent, the technology-dependent phase in terms of
the circuit performance. The simplified delay models
used in the technology-independent phase can also give
reasonably good correlations with the actual delays after
technology mapping. With these in mind, many
approaches for technology-independent timing
optimization have been proposed [1-4]. They are
typically based on a variety of transformations to speed
up the network, with the goal of obtaining the maximum
delay improvement with a minimum area penalty. The
level reduction [2,3], and delay-driven clustering and
collapsing [4] are examples of such transformations
(more detailed survey of the timing optimization
techniques can be found in [5]). However, most existing
transformations do not consider the effect of the large
fanout nodes of the transformed Boolean network on the
timing delay of the final mapped circuit. For the
technology-decomposed network which is the

immediate input to the technology mapping process, if
there are many gates on the critical paths having large
number of fanouts, the mapper becomes less effective in
improving circuit performance since potentially the
large fanout nodes will remain in the mapped circuit.
Large fanout is generally associated with heavy loading
and long delay. Therefore, it is desirable to reduce the
large fanouts right before technology mapping.

In this paper we look at how to reduce the fanouts of the
critical nodes in the technology-decomposed network of
an optimized Boolean function. We propose to use gate
duplication to reduce the number of fanouts driven by
the critical nodes. For a critical node driving large
fanouts, some of the fanouts lie on the critical path while
the rest do not. By duplicating the node to reduce the
fanout load of the node that drives the critical path, the
delay of the critical path can be reduced. Here, given a
network of 2-input gates and inverters, we develop an
effective algorithm for choosing the good candidate
nodes, which have large fanouts to duplicate, based on
the analysis of the slacks at all, gates in the network. The
algorithm uses the unit-fanout delay model, and trades
area for speed by modifying the topological structure of
the network step by step. Our results show that the
proposed technique can improve the circuit performance
and can be combined with other timing optimizers such
as speed-up [3] to further reduce the delay.

In the next section we first introduce some definitions.
Then, we describe our gate duplication algorithm in
Section 3, and report the experimental results in Section
4. Finally, in Section 5, we give the conclusion together
with the possible future work.

2 Definitions

A combinational circuit can be represented as a Boolean
network where each node, v, denotes a gate (or a
primary input/output) in the circuit, and each directed
arc from vi to vj denotes a connection from the output of
vi to an input of vj. In this case, vi is called a fanin of vj ,
and vj a fanout of vi . The fanin set and fanout set of vi

are denoted by FIi and FOi , respectively. If there is a
path from vi to vj , vi is called a transitive fanin of vj ,
and vj a transitive fanout of vi . The gates in the network
are assumed to be single output gates. In the following,
gate and node are used interchangeably.

For a network represented in terms of 2-input gates, it is
reasonable to assign unit delay to each gate in the
technology-independent stage. To account for the effect
of fanout loads on the signal delay, each gate can be
associated with an additional delay which, under the

unit-fanout delay model [3], is δ units for each fanout. The node-delay for (internal) node vi is defined to be di

vi

v1

v2

v3

a11= 1 .0

r11= 3 .8

ai =3.8

ri =3.8

a 1 = 5 .0
r 1 = 5 .0

a 2 = 6 .2
r 2 = 8 .0

a 3 = 5 .0

r 3 = 10 .0

a21= 5 .0

a31=3.0

ai1= r i1= 2 .2

ai2= r i2= 2 .2

vi , v1 — cri t ical nodes
min imum s lack s min= 0

(a) before duplicat ion

vi

v1

v2

v3

a11= 1 .0
r11= 3 .8

ai =3.8

ri =6.8

a 1 = 4 .8
r 1 = 5 .0

a 2 = 6 .2
r 2 = 8 .0

a 3 = 5 .0

r 3 = 10.0

a21= 5 .0

a31=3.0

ai1= 2 .4
ri1= 2 .6

ai2= 2 .4
ri2= 2 .6

vi ’, v1 — critical nodes
m inimum slack smin= 0.2

(b) after duplication

ai ’= 3 .6

ri ’= 3 .8
Vi ’

Figure 1. The Example of Gate Duplication

 = 1+δ⋅fi , where fi is the number of its fanouts. Given
the required time at each primary output and the arrival
time at each primary input in the network, the arrival
time ai and the required time ri of node vi are given by

)1(
)(min

)(max







−=

+=

∈

∈

jjFOvi

ij
FIv

i

drr

daa

ij

ij

respectively. This recursive computation is called a
delay trace. The slack at node vi , denoted by si , is the
difference between ri and ai , i.e., si = ri − ai . If the slack
at a node is non-positive, the node is said to be on a
critical path and, hence, called a critical node.
Similarly, the minimum slack, smin , corresponds to the
most critical path and the most critical node (the false
path problem [6] is ignored here). An ε-network is a
sub-network in which all the nodes have a slack no more
than smin+ε , where ε ≥ 0. The ε-network is the circuit
region to be restructured for timing optimization.

3 Gate Duplication for Timing Optimization

3.1 Gate duplication and delay reduction

We first show how gate duplication can reduce the
delay. The rationale is to decrease the arrival times at
some critical nodes and/or increase the required times at
the others, both of which can lead to the increase of the
slack time at the critical nodes and hence reduce the
critical path delay. The penalty is the possible circuit
area increase. Figure 1 shows an example. Assuming
that the arrival times at the input and the required times
at the outputs are available, we can derive ais and ris at
other nodes using equation (1) under the unit-fanout
delay model (assuming δ = 0.2), as shown in Figure
1(a). vi and v1 are the critical nodes because their slack
times are the minimum of zero. If a new gate vi’ is
duplicated from gate vi , as shown in Figure 1(b), the
arrival time of v1 is reduced, and the required time of vi

is increased. As a result, the minimum slack time is
increased by 0.2, which reduces the critical path delay.

3.2 The gate duplication algorithm

The outline of our Gate Duplication Algorithm is shown
in Figure 2. Input to the algorithm is a technology-
decomposed Boolean network. The output of the
algorithm is an optimized decomposed network. The
main idea of the algorithm is to obtain the maximum
delay reduction by duplicating as few gates as possible.

Figure 2. Outline of the Gate Duplication Algorithm

To do this, each critical node is associated with a
duplication gain, which denotes the potential delay
reduction, if this node is duplicated. The nodes with the
maximum duplication gain are good candidates to be
duplicated first. When a gate is duplicated, the structure
of the network is locally modified by changing the
fanins/fanouts at the related nodes. The arrival/required
times at all nodes of the network are globally updated
using the update-time procedure. The process of delay
trace, duplication gain computation, gate duplication and
delay information updating is iterated until no further
delay improvement can be made.

To reduce the delay by gate duplication effectively, a
critical node (i.e., v1 in Figure 1) is isolated (or split)

gate_duplication (network, ε)
 do {
 delay_trace();
 generate an ε -network;
 smin = current_minimum_slack;
 critical_node_set = all nodes in ε -network;
 foreach node ∈ critical_node_set
 compute_duplication_gain (node);
 ordered_node_set = sort (critical_node_set);
 foreach node ∈ ordered_node_set
 do {
 node_duplicate (node);
 modify_network_structure ();
 update_time ();
 } while (duplication_gain (node) > 0
 && slack (node) ≤ (smin+ε))
 } while (delay decreases && runtime allows)

from the fanouts of vi as the only one fanout of
duplicated gate (i.e., vi’ in Figure 1(b)). That will, to the
largest extent, reduce the arrival time at vi’ by δ ⋅(fi – 2),
where fi is the number of fanouts of vi . Since the arrival
time at v1 depends on the maximum of its two fanin’s
arrival times, the difference between the two fanin’s
arrival times prior to gate duplication is another
important factor that affects the arrival time at v1 after
duplication. For example, when this difference value is
less than δ ⋅(fi – 2), the reduction of the arrival time at v1

is determined by the former instead of the latter.
Similarly, the potential increase of the required times at
vi’s fanins due to gate duplication depends on fi as well
as the difference between the required times at vi’s
fanouts prior to duplication. More specifically, assume
that vmin1 and vmin2 are such two fanouts of the critical
node vi that

)2(
)(min

)(min

)(
2min

1min

1min






−=

−=

−∈

∈

jjvFOv

jj
FOv

drr

drr

ij

ij

We define the required time difference of vmin2 and vmin1

as rdif = rmin2 − rmin1 ≥ 0. Also, let vn be the other fanin
(apart from vi) of vmin1. We define the arrival time
difference of vmin1’s fanins as adif = ai – an (obviously,
adif ≥ -ε because vi is critical). It can be seen that, if fi <
3, no delay improvement can be made using gate
duplication at node vi . As long as fi ≥ 3 and gate
duplication is performed on vi (see Figure 1), the
minimum of adif and δ ⋅(fi – 2) is the decrease of the
arrival time of node vmin1 . If vmin1 has only one fanin,
adif = ∞ which means the number of vi’s fanouts
dominates the arrival time of vmin1 during gate
duplication. On the other hand, gate duplication at vi

potentially increases the required times at vi’s fanins by
the minimum of (rdif +δ) and δ ⋅(fi – 1) and, at the same
time, increases the arrival times at vi’s fanins by δ .
Therefore, the net effect of gate duplication on the slack
times at vi’s fanins depends upon min{rdif , δ ⋅(fi – 2)}
instead of min{rdif +δ , δ ⋅(fi – 1)}. The above
observations lead us to the following definition for the
duplication gain:

)3()}2(,min{

)}2(,min{)(

−⋅⋅+

−⋅⋅=−

idif

idifi

fa

frvgainnduplicatio

δβ

δα

where α and β accounts for the contribution of the
increased required times at vi’s fanins and the reduced
arrival time at vmin1 to the circuit delay improvement,
respectively. Both α and β provide the duplication gain
with a good global view. Intuitively, we can use the
numbers of vi’s transitive fanins and vmin1’s transitive
fanouts which are critical nodes to account for the
contributions. For the computational simplicity, we set
α and β to be the number of levels of vi from the
primary inputs and the primary outputs, respectively.

In order to select just the true critical nodes for gate
duplication, it is necessary to update the arrival/required
times of the nodes in the network dynamically. Without
loss of generality, we assume that, as a result of gate
duplication, the arrival time (aj) at some node vj is

decreased by ∆a, and the required time (rk) at some node
vk is increased by ∆r. The updating operation is
performed recursively using the forward/backward
propagation algorithms as shown in Figure 3.

Figure 3. Updating the Arrival/Required Times

4 Results

Our gate duplication algorithm was implemented in the
SIS framework [7]. In the experiments, we used example
circuits from the MCNC benchmark set. We first
optimized each circuit using the standard script
(script.rugged) and then technology-decomposed it into
network of 2-input NAND gates and inverters. We then
applied our gate duplication algorithm to reduce the
circuit delay. We compared our results with the
networks that are optimized by the speed-up algorithm
[3]. Also, we compared the results of optimizing the
circuit first by speed-up and followed by using gate
duplication. The delay-optimized networks are finally
mapped by the SIS technology mapping (under the
minimum delay mode) to get the circuit area and delay.

Table 1 shows the circuit delay and area obtained before
and after using our algorithm. We see that, on average,
our algorithm reduces the circuit delay by 13.8% with
the area increase of 5.5%. Also listed in this Table are
the results obtained with speed-up algorithm for
comparison. On average, speed-up is about 2% better
than ours in terms of the delay. However, the area
penalty is high, on average 17.6% more than the original

update_time
 /* do forward arrival-time propagation */
 forward_propagate (vj , ∆a);
 /* do backward required-time propagation */
 backward_propagate (vk , ∆r);

forward_propagate (vj , ∆a)
 if (vj is primary_output || ∆a = 0) return;
 aj = aj − ∆a ; sj = sj − ∆a ;
 foreach node vn∈FOj

 if (|FIn| < 2)
 forward_propagate (vn , ∆a);
 continue;
 endif
 ;)(max_ ni

FIv
n daaanew

ni

+−=∆
∈

 forward_propagate (vn , new_∆a);

backward_propagate (vk , ∆r)
 if (vk is primary_input || ∆r = 0) return;
 rk = rk + ∆r ; sk = sk +∆r ;
 foreach node vm∈FIk

 if (|FOm| < 2)
 backward_propagate (vm , ∆r);
 continue;
 endif
 ;)(min_ mii

FOv
rdrrnew

mi

−−=∆
∈

 backward_propagate (vm , new_∆r);

Table 1. Comparison of Our Algorithm and Speed-up Algorithm on Delay/Area

Before opt. Opt. by gate duplication algorithm Opt. by speed-up algorithm
Circuit delay area delay area delay

improv.
area

penalty
delay area delay

improv.
area

penalty
9symml 14.6 24956 12.8 29578 12.3% 18.5% 13.1 29040 10.3% 16.4%

C432 44.9 35717 39.6 45702 11.8% 28.0% 36.4 39440 18.9% 10.4%
C880 40.1 45862 24.5 46562 38.9% 1.5% 21.0 69167 47.6% 50.8%

C1908 29.1 56285 26.5 58230 8.9% 3.5% 23.3 71852 19.9% 27.7%
C3540 44.6 194649 49.5 208503 −11.0% 7.1% 36.1 208469 19.1% 7.1%
C5315 31.1 169862 26.4 169879 15.1% 0.0% 26.7 205544 14.1% 21.0%
C7552 48.3 284461 46.0 290257 4.8% 2.0% 46.5 273693 3.7% -5.0%
alu2 30.2 44032 26.4 44657 12.6% 1.4% 28.4 57504 6.0% 30.6%
alu4 34.5 80106 30.9 82914 10.4% 3.5% 31.1 97793 9.9% 22.1%

apex6 20.2 83652 17.3 84183 14.4% 0.6% 20.4 81315 −1.0% −2.8%
apex7 12.1 24677 9.5 25319 21.5% 2.6% 11.1 24999 8.3% 1.3%
f51m 18.7 13023 17.7 13912 5.3% 6.8% 16.8 20031 10.2% 53.8%
frg1 14.7 21784 9.6 20972 34.7% −3.7% 8.7 20686 40.8% −5.0%

Average − − − − 13.8% 5.5% − − 16.0% 17.6%

one. Actually, our algorithm is not intended to serve as
a substitute for speed-up. Instead, it can be combined
with speed-up as well as any other timing optimization
algorithm to provide a further delay reduction. The
results of using our gate duplication algorithm based
on the network optimized by speed-up are shown in
Table 2. It can be shown that, on average, our
algorithm achieves a further delay reduction of 8.9%
with an area penalty of 3.5%. The maximum delay
improvement is as high as 24%. This indicates that our
gate duplication algorithm is very effective for
reducing the circuit delay.

5 Conclusion and Future Work

We proposed a gate duplication algorithm for delay
optimization at the technology-independent logic
synthesis stage. The basic relations between the gate
duplication and the delay reduction were described.
Our approach, especially when combined with other
timing optimization algorithms, produces significant
reductions in circuit delay with a small area penalty.
Currently, we plan to extend our gate duplication
scenario to technology-dependent timing optimization.

References
[1] K. C. Chen and S. Muroga. Timing Optimization for

Multi-Level Combinational Circuits. In Proceedings of
the Design Automation Conference, pp.339-344, 1990.

[2] G. De Micheli. Performance-Oriented Synthesis of Large
Scale Domino CMOS Circuits. IEEE Trans. on
Computer-Aided Design, vol. CAD-6, pp.751-765, 1987.

[3] K. J. Singh, A. R. Wang, R. K. Brayton, and A.
Sangiovanni-Vincentelli. Timing Optimization of
Combinational Logic. In Proceedings of the International
Conference on Computer-Aided Design, pp.282-285,
1988.

Table 2. Performance of the Combination of
 Speed-up and Our Algorithm

Speed-up Speed-up + Our Algorithm
Circuit delay / area delay / area delay

improv.
area

penalty
9symml 13.1 / 29040 11.9 / 31040 10.7% 6.9 %

C432 36.4 / 39440 36.3 / 41267 0.3% 4.6%
C880 21.0 / 69167 20.8 / 71606 1.0% 3.5%
C1908 23.3 / 71852 21.9 / 75499 6.0% 5.1%
C3540 36.1 / 208469 34.9 / 211566 3.3% 1.5%
C5315 26.7 / 205544 24.6 / 210860 7.9% 2.6%
C7552 46.5 / 273693 43.2 / 273639 7.1% 0.0%
alu2 28.4 / 57504 21.7 / 62641 23.6% 8.9%
alu4 31.1 / 97793 28.4 / 99017 8.7% 1.3%

apex6 20.4 / 81315 15.5 / 82866 24.0% 1.9%
apex7 11.1 / 24999 9.8 / 25286 11.7% 1.1%
f51m 16.8 / 20031 15.3 / 20561 8.9% 2.6%
frg1 8.7 / 20686 8.5 / 21777 2.3% 5.3%

Average − − 8.9% 3.5%

 [4] H. J. Touati, H. Savoj, and R. K. Brayton. Delay
Optimization of Combinational Logic circuits by
Clustering and Partial Collapsing. In Proceedings of
the International Conference on Computer-Aided
Design, pp.188-191, 1991.

[5] M. Fujita and R. Murgai. Delay Estimation and
Optimization of Logic Circuits: A survey. In Proceedings
of Asia and South Pacific Design Automation
Conference, pp.25-30, 1997.

[6] H. Chen and D. H. C. Du. Path Sensitization in Critical
Path Problem. IEEE Trans. on Computer-Aided Design,
vol. 12, pp.196-207, 1993.

[7] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R.
Murgai, A. Saldanha, H. Savoj, P. R. Stephan, R. K.
Brayton, and A. Sangiovanni-Vincentelli. SIS: A
System for Sequential Circuit Synthesis. Memorandum
No. UCB/ERL M92/41, Electronics Research
Laboratory, College of Engineering, University of
California, Berkeley, CA 94720, May 1992.

	Main Page
	ASPDAC99
	Front Matter
	Table of Contents
	Session Index
	Author Index

