
Acceleration of Linear Block Code Evaluations
Using New Reconfigurable Computing Approach

Hidehisa Nagano, Takayuki Suyama and Akira Nagoya
NTT Communication Science Laboratories

2-4 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0237 JAPAN
Tel: +81-774-93-{5276, 5272, 5270}

Fax: +81-774-93-5285
{nagano, suyama, nagoya}@cslab.kecl.ntt.co.jp

Abstract
This paper presents an approach to performing ap-
plications using reconfigurable computing (RC). Our
RC approach is achieved by effective use of design
automation systems. Logic circuits specialized for
each individual application task are automatically
implemented on FPGAs. Such circuits can quickly
perform tasks that are time-consuming for general
purpose computers. Decoding of binary linear block
codes for the evaluation is taken up as an example
application. Experimental results show that the time
for decoding of the code specific decoding circuit im-
plemented on FPGAs, in which computations are ex-
ecuted in parallel, is much shorter than that of the
software decoder.

1 Introduction
Recently, due to advances in Field Programmable
Gate Array (FPGA) technologies, users can easily
create their original logic circuits and reconfigure
them. In addition, as these extensions of FPGAs
and increasing demands for high performance com-
puting, reconfigurable computing (RC) systems us-
ing FPGAs are receiving much attention [1]. Many
RC systems adapted to target applications have been
proposed and developed, such as reconfigurable co-
processors and special–purpose machines.

In this paper, we present an RC approach to per-
forming applications using logic synthesis systems.
In our approach, we use the circuit specialized not
for the application but for an individual application
instance that is the task which users want to per-
form. These circuits utilizing features of individ-
ual instances are automatically designed and imple-
mented by using design automation systems and the
reconfigurability of FPGAs. In this paper, the eval-
uation of binary linear block codes is taken up as an
example application in order to confirm the effective-
ness of our approach. Generally, in this evaluation,
each of many codes is evaluated by computer sim-
ulation. This simulation is to decode many times
using the software decoder, but it takes for a long
time. Therefore, we accelerate these simulations by
using decoders implemented on FPGAs. These de-
coders are automatically designed for each of codes
and implemented by utilizing the reconfigurability of
FPGAs. Experimental results show that decoders on
FPGAs can significantly reduce the simulation time
by utilizing the parallel computability of the decod-
ing procedure.

The rest of this paper is organized as follows: Sec-

tion 2 describes our RC approach generally. In Sec-
tion 3, our approach to code evaluations is discussed.
Section 4 gives experimental results for the example
application. We conclude this paper in Section 5.

2 RC Approach

In this section, we generally describe our RC ap-
proach to performing applications. Many ordinary
RC systems (e.g. reconfigurable coprocessors and
special-purpose machines) are reconfigured for the
target applications. We call this RC approach the
application specific approach. On the other hand,
our RC approach reconfigures FPGAs for an instance
(an individual task of users) of the application. We
call our RC approach the instance specific approach.
Fig. 1 shows the distinguishing characteristics of our
approach. In our approach, first, we give an appli-
cation instance to the Circuit Generator Program
(CGP). The CGP analyzes the instance and auto-
matically generates a high level behavioral descrip-
tion of a circuit specialized for the instance. This
description is written in an HDL. Then, we use high
level logic synthesis systems and design automation
systems in order to implement the circuit on FPGAs.

For our approach, a CGP for the target applica-
tion should be developed first. Next, whenever an
instance is given, the circuit specialized for the in-
stance should be synthesized. This approach, how-
ever, has an advantage. The CGP can analyze spe-
cific features of a given instance (e.g. parallel com-
putability) and generate a hardware description of a
circuit exceedingly utilizing such features. Thus, the
circuit specialized for an instance can achieve higher
performance. For the problem discussed in Section 3,
performing an instance is time-consuming. In addi-
tion, many instances must be performed. Therefore,
this advantage of our approach is significant.

3 Acceleration of Linear
Block Code Evaluations

In this section, we discuss the acceleration of the eval-
uation of binary linear block codes. This application
is a good example for showing the effectiveness of our
RC approach. First, the evaluation of binary linear
block codes is described. Then, we explain the ar-
chitecture of the circuit performing an instance, and
the developed CGP is described.

individual task
 of users

Ðöëñåâðæð

(Ìòï�ÞííïìÞàå)

Ðöëñåâðæð

íâïãìïêð�Þë�ÞííéæàÞñæìë�æëðñÞëàâ

íâïãìïêð�ñåâ�ÞííéæàÞñæìë

¾ííéæàÞñæìë�ðíâàæãæà

ÀÄÍ

ÞííïìÞàå

ÆëðñÞëàâ�ðíâàæãæà
ÞííïìÞàå

¾ííéæàÞñæìë�

ðíâàæãæà�àæïàòæñ

ÃÍÄ¾ð

àìëãæäòïÞñæìë

ÃÍÄ¾ð

ÆëðñÞëàâ�

ðíâàæãæà�àæïàòæñ

ïâàìëãæäòïÞñæìë

ÅÁÉ

æëðñÞëàâ

æëíòñ

¾ííéæàÞñæìë

æëðñÞëàâ

¾ííéæàÞñæìë

æëðñÞëàâ

ÅÁÉ

Fig. 1: RC approach to the application.

3.1 Features of Linear Block Code
Evaluations

In this paper, we take up simulations of decoding
binary linear block codes for the evaluation which
suppose soft decision maximum likelihood (SDML)
decoding. These simulations are to decode for many
received sequences assuming the real data transmis-
sion. However, these simulations have two trouble-
some features.

(1) The simulation for a code takes for a long time
(e.g. several hours or days) to obtain statisti-
cally reliable results, because the simulation us-
ing the software decoder executed on a general
purpose computer, which cannot utilize the par-
allel computability of the decoding procedure, is
time-consuming.

(2) Simulations for many codes should be done in
order to find good codes suitable for particular
situations.

These features, however, can be overcome by our RC
approach discussed in Section 2. In order to reduce
the evaluation time, we use the SDML decoder imple-
mented on FPGAs instead of the software decoder.
The decoder on FPGAs specialized for each code is
automatically implemented.

3.2 SDML Decoding
Here, we explain SDML decoding for a binary linear
block code using its L-section trellis diagram [2]–[4].
The binary phase shift keying modulation, the 8-level
quantization and the additive white Gaussian noise
channel are supposed [5].

Let N be a multiple of L. The L-section trellis dia-
gram for a binary linear block code of length N is the
state transition diagram of a finite state automaton
accepting all codewords of the code. A branch of the
diagram has a branch label representing N/L code
bits. For example, the 4-section trellis diagram for

s0 sf

00

00 00

00
00 00

1111

11
11 11

11

01 01 01 01

01 01

1010 10
10 10

10

s1,0

s1,1s1,2

s1,3 S’ 1
2-nd section1-st section

Fig. 2: 4-section trellis diagram for the first-order
RM code of length 8.

the first-order Reed-Muller (RM) code of length 8 is
shown in Fig. 2. In this trellis, two adjacent states are
connected by a single branch with a branch label rep-
resenting two code bits. The initial state is denoted
s0 and the final state is sf . For an L-section trellis
diagram, sub-graphs are called sections as shown in
Fig. 2. Let i be an integer (1 ≤ i ≤ L). S′i denotes
the set of all states at the end of the i-th section. For
convenience, S′0 = {s0} and S′L = {sf}. The states
in S′i are numbered as S′i = {si,0, si,1, . . . , si,|S′

i
|−1}.

A set of all branches between the same two adjacent
states in a section is called a parallel branch set, and
the set of all branch labels of a parallel branch set is
called a parallel label set.

SDML decoding is resolved into the shortest path
problem in the trellis. Let the branch label of a
branch b in the i-th section be denoted lb (lb =
(lb,1, lb,2, . . . , lb,N/L)). r = (r1, · · · , rN) is the 8-level
quantized receive sequence. (i.e. rj is an integer and
0 ≤ rj ≤ 7 for 1 ≤ j ≤ N .) The branch metric of b,
denoted BM(b), is calculated as follows.

BM(b) =

N/L∑
j=1

f(lb,j , rN
L

(i−1)+j),

f(x, y) =

{
7− y if x = 1
y if x = 0.

For a path from s0 to si,j , its path metric is the sum
total of the branch metrics of all branches on the
path. The state metric of si,j , denoted SM(si,j), is
the smallest (shortest) path metric of path metrics of
all paths from s0 to si,j . SDML decoding is to find
the path giving SM(sf) and choose the branch label
sequence of it as the decode word. The standard
decoding procedure is as follows.
(Step 1) For each of all parallel branch sets, calculate
branch metrics and find the branch with the smallest
branch metric in the parallel branch set.
(Step 2) From the 1-st section to the L-th section,
calculate the state metrics of all states in S′i after
finding the state metrics of all states in S′i−1 in the
following manner.

For a state si,j in S′i,

SM(si,j) = min
si−1,k∈CS(si,j)

(SM(si−1,k) +

MB(si−1,k, si,j)).

If the path through si−1,k gives SM(si,j),
the state number k is stored at si,j .

(Step 3) Choose the label sequence of the path that
gives SM(sf) as the decode word. 2

In Step 2, CS(si,j) is the set of states in S′i−1 that are
connected to si,j , and MB(si−1,k, si,j) is the smallest
branch metric between si−1,k and si,j calculated in
Step 1. Note that for any two parallel label sets,
p and p′, in a section, p ∩ p′ = φ or p = p′ [4].
Therefore, calculations in Step 1 for parallel branch
sets in a section with the same parallel label set are
done only once.

3.3 Architecture of SDML De-
coder

Here, we explain the architecture of the SDML de-
coder implemented on FPGAs.

3.3.1 Structure and Behavior

First, we explain the structure and behavior of the
SDML decoder shown in Fig. 3. The decoder is con-
structed from hardware components stated in Sec-
tion 3.3.2. BRANCH SETi,j is the hardware com-
ponent that calculates the branch metrics of a par-
allel label set, denoted pi,j , in the i-th section with
the input receive sequence and outputs the small-
est branch metric. These correspond to calculations
for a parallel branch set in Step 1 stated in Sec-
tion 3.2. STATEi,m is the hardware component for
the state si,m. STATEi,m calculates path metrics by
adding input state metrics and branch metrics in se-
quence and finds SM(si,m) as Step 2 in Section 3.2.
BRANCH SETi,j is connected to STATEi,m if a par-
allel branch set with the parallel label set pi,j in the
i-th section is connected to the state si,m. STATEi,m
and STATEi−1,m′ are connected if si,m and si−1,m′

are connected by branches in the trellis. Calcula-
tions in Step 1 of the decoding procedure can be
executed in parallel for all parallel label sets in all
sections. In order to utilize this parallel computabil-
ity, all BRANCH SETs for all sections work in paral-
lel. In Step 2, state metrics can be found in parallel
for all states in S′i after finding all state metrics of
states in S′i−1. For utilizing this parallel computabil-
ity, STATEs for states at the end of each section work
in parallel. These parallel executions reduce the de-
coding delay. They are achieved by implementing the
circuit specialized for an instance code. The trellis
structure is code specific.

3.3.2 Submodules for Decoder

Here, hardware components (which we call submod-
ules) of the SDML decoder are explained.

1. BRANCH SETi,j is the submodule that calcu-
lates the branch metrics of a parallel label set
pi,j in the i-th section with the input receive
sequence and find the smallest branch metric
as Step 1 stated in Section 3.2. After finding
the smallest branch metric, BRANCH SETi,j
holds it and the number of branch label giving
it. For requirements from connected submod-
ules (e.g. STATEi,m), BRANCH SETi,j out-
puts the smallest branch metric of pi,j . These

BRANCH_SETi,j

BRANCH_SETi,j’

STATEi,m

STATEi,m’

STATEi-1,q

STATEi-1,q’

state metric

branch metric

state metric

receive sequence

si,m

si,m’
Correspondence
between the trellis
and submodules

Concurrent search
for state metrics

Concurrent processing
for branch metrics

s0

S’i-1 S’i

Fig. 3: Structure and behavior of the decoder.

functions of BRANCH SETi,j are constructed
from an adder, a comparator, registers holding
the metric and the label number and a small
functional unit to generate branch labels.

2. STATEi,m is the submodule for the state si,m.
STATEi,m calculates path metrics by adding
input state metrics and branch metrics in se-
quence and finds SM(si,m) as Step 2 in Sec-
tion 3.2. After finding SM(si,m), STATEi,m
holds SM(si,m) and the previous state num-
ber giving it. The number of the parallel la-
bel set between these states is also stored. For
requirements from connected submodules (e.g.
STATEi+1,m′), STATEi,m outputs SM(si,m).
These functions of STATEi,m are constructed
from registers, an adder and a comparator.

3.4 CGP
We have developed a CGP which generates behav-
ioral descriptions of decoders for given codes. Each
decoder description is code specific and utilizes par-
allel computability based on the code specific trellis
structure previously stated. In addition, the CGP
is indispensable to using respective decoders for the
evaluation of many codes while reconfiguring FP-
GAs. We use an HDL called SFL [6] for the descrip-
tions of decoders. SFL is a purely behavioral and
object oriented language not mixed with connection
descriptions. For the SFL description, submodules
stated in Section 3.3.2 are presented as objects and
the complex code specific connections in Fig. 3 are
presented as simple behaviors of objects. Therefore,
SFL lessen the burden of developing a CGP which
flexibly generates code specific descriptions.

Now, we explain the developed CGP. A binary lin-
ear block code is defined by its generator matrix.

Table 1: Evaluation results.

Code RM(32, 6) RM(32, 26)

CY CLE 38 185

FPGAs CLK (MHz) 11.5 6.08

DELAY (µs) 3.31 30.4

Software DELAY (µs) 76.2 211.5

Given a generator matrix (text file) and a parameter
L, the CGP analyzes the L-section trellis structure
and determines submodules used in the behavioral
description of the decoder. Next, the CGP gener-
ates the SFL description of code specific submodules
used in the description. Finally, the behavioral de-
scription following the decoding procedure stated in
Section 3.2 is generated. Parallel executions stated
in Section 3.3.1 are presented by parallel activation
of objects in SFL.

4 Experiments
Our top down implementation flow of decoders is
shown in Fig. 4. Assuming the FPGAs are Altera
FLEX 10K, we evaluated decoders on FPGAs with
Altera’s FPGA mapping tool, MAX+plus II. A high
level logic synthesis system called PARTHENON[6]
was used to synthesize SFL descriptions of decoders.
Decoding delays (the time for decoding a codeword)
of decoders on FPGAs were evaluated by comparison
with software decoders. For software decoders, all
steps of the decoding procedure stated in Section 3.2
is executed in sequence. The software decoder is writ-
ten in C language and executed on Sun Ultra2 (Ultra
Sparc 200MHz). The first-order RM code of length
32, denoted RM(32,6), and the third-order RM code
of the same length, denoted RM(32,26) were taken up
as example codes and the 4-section trellis diagrams
for these codes were used.

The experimental results are shown in Table 1. For
decoders on FPGAs, CY CLE, CLK and DELAY
denotes the number of clock cycles required for de-
coding a codeword, the clock frequency and the de-
coding delay, respectively. DELAY of the software
decoder is also shown. From this table, we see that
DELAY of the decoder on FPGAs for RM(32,6) is
about 1/23 of that of the software decoder. The same
value for RM(32,26) is approximately 1/7. As a re-
sult, using the decoder implemented on FPGAs for
each code instead of the software decoder reduces the
simulation time.

These experiments are for the early stage of our
work. The parallel computability of the decoding
procedure not stated in Section 3.3.1 still remains.
Utilizing it, decoders on FPGAs can achieve more
high performance.

5 Conclusion
In this paper, we have presented an approach to per-
forming applications using RC. Our RC approach
is realized by using design automation systems and

Generator matrix
(text file)

CGP

Behavioral description

Netlist

High level logic synthesis system
(PARTHENON)

FPGA mapping tool
(MAX+plus II)

FPGA mapping data

 parameter L
(the number of
 sections of the
 trellis)

FPGAs
(FLEX 10K)

of the decoder
(written in SFL)

Fig. 4: Implementation flow.

brings high performance computing. By developing
a CGP, logic circuits specialized for each application
instance are automatically implemented on FPGAs.
Such circuits can perform an instance fast, which are
time-consuming for general purpose computers. Ex-
perimental results show that an example application,
the evaluation of binary linear block codes, can be
performed extremely fast by using code specific cir-
cuits.

We are planning on tackling other problems to con-
firm the effectiveness of our approach and applying
dynamically reconfigurable computing.

References
[1] Miyazaki T., “Reconfigurable Systems: A Sur-

vey,” Proc. of ASP-DAC ’98, pp. 447–457,
Feb. 1998.

[2] Wolf, J., “Efficient Maximum Likelihood Decod-
ing of Linear Block Codes Using a Trellis,” IEEE
Trans. Inf. Theory, vol. IT-24, no. 1, pp. 76–80,
Jan. 1978.

[3] Forney, G.D., Jr., “Coset Codes—Part II: Bi-
nary Lattices and Related Codes,” IEEE Trans.
Inf. Theory, vol. 34, no. 5, pp. 1152–1187,
Sep. 1988.

[4] Kasami, T., Takata, T., Fujiwara, T. and
Lin, S., “On Structural Complexity of the L-
section Minimal Trellis Diagrams for Binary
Linear Block Codes,” IEICE Trans. Fundamen-
tals, vol. E76-A, no. 9, pp. 1411–1421, Sep. 1993.

[5] Clark, G.C., Jr. and Cain, J.B., Error-
Correction Coding for Digital Communications,
Plenum Press, 1981.

[6] Nakamura, Y., Oguri, K., Nagoya, A., Yuk-
ishita, M. and Nomura, R., “High-level synthe-
sis design at NTT Systems Labs,” IEICE Trans.
Inf & Syst., vol. E76-D, no. 9, pp. 1047–1054,
Sep. 1993.

	Main Page
	ASPDAC99
	Front Matter
	Table of Contents
	Session Index
	Author Index

