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Abstract
We propose a new technique called node sampling to

speed up the probability-based power estimation methods.
It samples and processes only a small portion of total nodes
to estimate the power consumption of a circuit. It is
different from the previous speed-up techniques for
probability-based methods in that the previous techniques
reduce the processing time for each node while our method
reduces the number of nodes actually processed. In
addition, it is also different from the previous statistical
sampling simulation techniques for simulation-based
methods in that the previous methods sample the input
vectors while our method samples the nodes in the network.
The experimental results are very encouraging. The
proposed method shows on the average more than 80% and
60% reductions of simulation run time under 20% and 5%
error bounds, respectively.

1. Introduction
The continuing decrease in feature size and the

corresponding increase in the number of devices on a chip,
combined with the growing demand for portable
communication and computing equipments, have made the
power consumption one of the major concerns in VLSI
circuits and systems design. To minimize the power
consumption, we need accurate and efficient power
estimation tools.

Existing power estimation techniques at the gate level
can be classified into two groups [1]: probability-based
and simulation-based methods. In this paper, we deal with
the probability-based techniques. The probability-based
techniques rely on the probability information (such as the
mean activity of the input signals and their correlations)
about the input stream to estimate the internal switching
activities of the circuit. Though these are more efficient
than the simulation-based methods, they are less accurate.
There have been several works [3-8] to improve the
accuracy by taking into account the effects coming from
simultaneous input changes, spatial and temporal
correlations, glitch generation and propagation under
various delay models, etc. However, the accuracy
improvement is obtained at the expense of estimation speed
degradation. Since the estimation speed is one of the most
important merits of the probability-based method, we have
to devise a technique to keep it efficient even with the
treatments for accuracy.

We have two choices for the reduction of simulation run
time of the probability-based method. One is to reduce the
processing time for each node, and the other is to reduce
the number of nodes that are actually processed. For the

former, there have been several works with the approach of
using a local BDD in place of a global BDD that
significantly reduces the run time for each node [9-11].
However, for the best of our knowledge, there has been no
reported work for the latter. In this paper, we investigate
the second approach; we focus on how to reduce the
number of actually processed nodes in order to speed up
while losing the accuracy minimally. Briefly speaking, we
employ a statistical sampling technique to sample and
process only a small portion of the total nodes, and then
elicit the total power consumption from the sample’s power
consumption. We call this node sampling technique. Notice
that the proposed technique can be applied together with
the previous methods of reducing the processing time for
each node in order to reduce the simulation run time further
because they are independent of each other.

At this point, we would like to compare the proposed
method with the statistical sampling techniques used in
[12], [13], which are for the simulation-based power
estimation methods. The simulation-based power
estimation methods use conventional logic simulators with
input vectors (randomly generated or user-given) at the
circuit inputs to monitor the power dissipation. Sampling
techniques are used to sample input vectors from the total
input vector sequences as shown in Fig. 1-(a). In contrast,
the proposed method samples nodes from the network, not
the input vectors, to speed up the probability-based power
estimation methods. This is illustrated in Fig. 1-(b). In
short, the proposed technique and the previous ones are
different in 1) for which estimation method the statistical
sampling technique is applied, i.e., simulation-based versus
probability-based, and 2) what are sampled, i.e., input
vectors versus nodes in the network.
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Fig. 1: Comparison with previous methods
The target probability-based method to which we apply

the node sampling technique in this paper is the symbolic
simulation method [2] (Notice that this is just for a more
specific explanation of the proposed technique. The node
sampling technique can be similarly applied to other
probability-based power estimation methods). It builds a
symbolic network composed of symbolic nodes each of
which represents a possible glitch of a gate in a logic
circuit. Though, the estimates provided by the symbolic



simulation are accurate, it has not been widely used due to
the slow estimation speed. In this work we show that the
node sampling technique can reduce the CPU-time of the
symbolic simulation method significantly.

The rest of the paper is organized as follows: Section 2
briefly reviews the preliminaries: statistical sampling
simulation and symbolic simulation method. In Section 3,
the details of the proposed method is explained. We present
the experimental results in Section 4 and Section 5
concludes the paper.

2. Preliminaries
2.1. Statistical Sampling Simulation

In a statistical sampling simulation, we build samples
from a population and then simulate them to obtain the
property of samples from which the property of the
population is elicited [14]. According to the central limit
theorem, as the sample size approaches to infinity, the
density of samples’ property tends to be a normal curve. In
practice, a sample size of 30-50 ensures normal sample
density for well-behaved combinational circuits. For a
desired error tolerance in the estimate ε, with a given
confidence level 1 - α, a sample mean ηT, and a sample
standard deviation sT, the number of required samples N
can be estimated as 
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the t distribution with (N - 1) degrees of freedom.
In selecting samples, the stratified random sampling is

preferred to the simple random sampling because of the
following advantages [14]: 1) The sample variance
decreases, and thus the simulation run time can be
decreased, and 2) the sample distribution is more likely to
be a normal distribution. The stratified random sampling
partitions the population into disjoint subpopulations so
that the property within each subpopulation is more
homogeneous than in the original population. Then, a
sample is made by selecting some elements from each
subpopulation.

2.2. Symbolic Simulation Method
The concept and algorithm of the symbolic simulation

method was proposed in [2]. It constructs the Boolean
functions describing the gate outputs at discrete time points
implied by the delay model under a pair of input vectors.
The inputs to the created Boolean functions are the circuit
input lines at time instances 0- and �. For each gate output
i, the Boolean function fi(t+τ) evaluates to 1 if the gate
output is 1 at time t+τ. Boolean functions describing the
logic values of a node at two consecutive time instances are
XORed to determine whether a transition occurs at a
boundary between time instances. The output of the XOR
gate evaluates to one exactly when the node makes a
transition between the two time instances. Summing up the
signal probabilities of these XOR gates gives the average
switching activity. We call this Boolean network symbolic
network. The node in the symbolic network, i.e., Boolean
function fi(t+τ), is called symbolic node. In calculating the
signal probability of a symbolic node, BDD is used. The
minimum number of symbolic nodes used as variables of a
BDD are called support-nodes [9-11].

3. Proposed Method
3.1. Overview

In this section, we explain the overall procedure of
applying the node sampling technique to the symbolic
simulation method with the help of Fig. 2 which shows one
pass of the proposed method.
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Fig. 2: One pass of proposed method
First, the given logic circuit is translated into a symbolic

network considering the given delay model. Second, a
sample composed of n symbolic nodes is built using a
sampling technique which will be explained later. The
nodes in a sample, black circles in Fig. 2, will henceforth
be called sampled-nodes. Third, an extra-set is built, which
consists of the minimum number of nodes that should be
processed by the symbolic simulator to estimate the power
consumption of the sampled-nodes. Those nodes in the
extra-set, shaded circles in Fig. 2, will be called extra-
nodes. The necessity and details of this step will be
explained in Section 3.2. Fourth, the symbolic simulator
processes the sampled-nodes and extra-nodes, and
computes the power consumption of the sample. Lastly, the
stopping criterion is tested with the mean and the variance
of the power samples. If it is unsatisfied, we repeat the
above procedures from the second step. If satisfied, we
convert the mean of the power samples into the total power
of the entire network and finish the simulation. The pseudo
code of the overall procedure is shown in Fig. 3.

  /* NLC   : given logic circuit  */
  /* NSYM : symbolic network */
  NSYM = symbolic network translator(NLC);
  iter = 0; /* # of iteration (# of samples) */
  repeat {
      {ns1, ns2, …, nsn} = sampling(NSYM); /* n sampled nodes */
      {ne1, ne2, …, ner} = extra node search(NSYM, {ns1, ns2, …, nsn});
      symbolic simulation(NSYM, {ns1, ns2, …, nsn}, {ne1, ne2, …, ner});
      PS = power calculation of a sample(NSYM, {ns1, ns2, …, nsn});
      calculate ηP, sP; /* mean and STD of power samples */
      Flag = TRUE if stopping criterion is met;
      iter = iter + 1;
  } until (Flag == TRUE && iter > LowLImit);
  PTOTAL = convert(ηP); /* Total power */

Fig. 3: Pseudo code of overall procedure

3.2. Algorithm details
We use a stratified random sampling to select symbolic

nodes for a sample. Our stratification scheme is based on
the results of [13]. It suggested that the following scheme is
efficient: 1) The number of strata, k, is set to 10. An
increase in k beyond 10 is seldom profitable. 2) The
construction of strata on the basis of equalization of WiSi

and equal sample size allocation to the strata leads to a
good stratification. (Wi is the ratio of the size of the i’th
stratum to the size of total population, and Si is the standard
deviation of the i’th stratum). We complied with the first
one, i.e., k = 10. However, to follow the second one, we
have to use low-cost prediction. Though we can employ
fast estimation techniques like TSTD in [8] or zero-delay



estimation as a predictor, it may increase the total run time.
Hence, in this work we do not use such a scheme but
employ other simple but efficient scheme. We first group
all the symbolic nodes corresponding to a node in the logic
circuit into one group as shown in Fig. 4. In the figure, the
first node of a logic circuit has four possible transitions.
Hence it is mapped into a group of four symbolic nodes
which constitute the first group, G1. Stratification is done in
such a way that the symbolic nodes in a group belong to the
same stratum. The rationale of this grouping is as follows.
One of the largest factors to the variance of individual
node’s power consumption in a logic circuit is the glitch
power. All the glitches of a node in a logic circuit are
transformed and represented by a group of symbolic nodes
where each symbolic node represents the possible glitch at
each time instance. Hence, if we make a sample by
selecting evenly from different groups of symbolic nodes
corresponding to a different node of the logic circuit, the
sample tends to include a portion of the glitch power
evenly from all the nodes of the logic circuit. This is
beneficial in reducing the sample variance.
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Fig. 4: Grouping of symbolic nodes
Then, we arrange the symbolic nodes into a nodeList

where the symbolic nodes in the same group are adjacent to
each other and a group corresponding to the primary input
(PI) side node of a logic circuit precedes that corresponding
to the primary output (PO) side node. Then the
stratification is performed in such a way that the number of
groups contained in each stratum is adjusted to include as a
similar number of symbolic nodes as possible, and the
number of strata is equal to 10 as mentioned earlier. This
process is illustrated in Fig. 5 where Gi is the i’th group and
Si is the i’th stratum. Because of the listing order of the
nodeList, i.e., from PI side to PO side, a stratum includes
the groups corresponding to the nodes of the logic circuit
whose depths from PI side are similar to each other. This is
important due to the following reason. In general, PO side
node in a logic circuit has more glitches than PI side one.
Thus, if we sample the symbolic nodes corresponding to
the nodes of the logic circuit mainly from one side, the
sample can not represent the property of the entire
symbolic network properly. The ordering heuristics
prevents such a sampling, and enables us to build a sample
that are selected evenly from both sides because the
ordering makes the similar depth groups be included in the
same stratum. Note that more sophisticated stratification
techniques can be applied for better sampling for other
target probability-based methods. For example, as
mentioned before we can use a low-cost predictor and the
sophisticated stratification method of [13] for better
sampling. However, in general, appropriateness depends on
the target probability-based method and the detailed
selection guide is beyond the scope of this paper.

We build a sample composed of n symbolic nodes by
selecting equal number of symbolic nodes randomly from

each stratum. For such a sampling to be a valid one, each
power sample has to be an independent random variable.
To meet this requirement, we restart the random number
generation for each sampling. Then, the sampled-nodes
become independent of the previous ones, and hence the
sample also does. Thus, the corresponding power sample
can be independent of the previous ones.
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Fig. 5: Stratification
After selecting n symbolic nodes for a sample, we search

the nodeList starting from PO side to PI side in order to
find extra-nodes. The extra-nodes are the minimum number
of nodes whose signal probability has to be calculated to
estimate the power consumption of a sample: As explained
in Section 2, we have to know at least the signal probability
of support-nodes to estimate the power consumption of a
node. The procedure is as follows: During the search from
PO side to PI side, if we meet a sampled-node or an extra-
node that was not processed in the preceding iterations, we
examine all the support-nodes of the node. If the support-
node is neither a sampled-node nor an extra-node and was
not processed in the preceding iterations, it becomes an
extra-node. This step repeats until we search all the nodes
in the nodeList. The extra-nodes are used as the variables
of a BDD for calculating the power consumption of a
sampled-node.

After selecting sampled-nodes and finding extra-nodes,
we use the symbolic simulator to estimate the power
consumption of a sample. In the symbolic simulation, only
the sampled-nodes and extra-nodes are processed. More
precisely, among them only those that have not been
processed in the preceding iterations are actually processed.
For the nodes that have been processed in the preceding
iterations, the results in the preceding iterations are used.
Note that as the iteration goes on, the number of nodes
whose power consumption has already been calculated in
the preceding loops increases. Therefore, the number of
nodes actually processed in each iteration usually decreases
as iteration goes on.

From the symbolic simulation results, we obtain the
power consumption of a sample, i.e., a power sample. We
calculate the mean and standard deviation of all the power
samples, and then we test the stopping criterion. Note that
the stopping criterion is tested only after a predefined
minimum number of iterations, in order to prevent a wrong
premature stopping. If the stopping criterion is not met, one
more iteration is started. If met, we convert the mean of the
power samples, ηS, to the total power consumption of the
network

4. Experimental Results
We implemented the proposed node sampling technique

in the symbolic simulation package of the SIS program and
used the ISCAS’85 benchmark circuits as our input
circuits. In all the symbolic simulations, the local BDD



[11] is used in place of the global BDD. Sample size is set
to 30 based on the result in [13].

First, we show the simulation run time ratio and
estimation error obtained by the proposed method in Fig. 6.
We experimented with two sets of user-given constraints:
1) 20% error bound with 95% confidence level, and 2) 5%
error bound with 99% confidence level.
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Fig. 6: Estimation error and simulation run time
ratio of the proposed method (R20_95, E20_95:
run time ratio and estimation error respectively
under 20% error bound with 95% confidence level;
R5_99, E5_99: run time ratio and estimation error
respectively under 5% error bound with 99%
confidence level).

Under 20% error bound with 95% confidence level, the
average estimation error was 5.6%, which satisfies the
given error bound well, and the average simulation run
time ratio is 0.188 which means that the proposed method
uses only about 20% of the simulation run time of the
conventional symbolic simulation, i.e., 80% reduction. For
5% error bound with 99% confidence level, the average
estimation error was 1.8% and the average simulation run
time ratio is 0.365, i.e., more than 60% reduction. The
average error is much less than the given error bound. This
can be explained from the normal deviation, z, of a normal
curve under the given confidence level [14]. The normal
deviation under 99% confidence level is 2.57. Thus, the
theoretic average error for 5% error bound is 1.94% which
is almost the same with the experimental result, 1.8%.

Second, we show the typical convergent behavior of the
proposed method in Fig. 7. The figure shows that the power
estimate from three different runs converging to the average
power as iteration goes on.
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Fig. 7: Convergent behavior for C880
Lastly, we show the effect of the stratified random

sampling compared to the simple random sampling in
Table 1. It shows the average and the maximum reductions
in percentage in the number of required samples and in the
simulation run time. We can see that the stratified random
sampling shows better results than the simple random
sampling.

5. Conclusions
In this paper, we proposed a node sampling technique to

speed up the probability-based power estimation methods.
It samples only a small portion of the total nodes in
estimating the power consumption of a circuit using the
statistical sampling technique. It is different from the
previous speed-up techniques for the probability-based
methods and the previous statistical sampling simulation
techniques for the simulation-based methods. The
experimental results show that the proposed method
applied to the symbolic-simulation based power estimation
method significantly reduces the simulation run time under
a given estimation accuracy and confidence level.

20% err, 95% conf. 5% err, 99% conf.
# samples sim. time # samples sim. time

Avg Max Avg Max Avg Max Avg Max
14 38 3 15 25 51 12 15

Table 1: Reductions in percentage obtained by the
stratified random sampling compared to the
simple random sampling
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