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Abstract

A semi-synchronous circuit is a circuit in which every
register is ticked by a clock periodically, but not nec-
essarily simultaneously. A feature of semi-synchronous
circuits is that the minimum delay between registers may
be critical with respect to the clock period of the circuit.
In this paper, we discuss a delay insertion method which
makes such a semi-synchronous circuit faster. The max-
imum delay-to-register ratio of the cycles on the circuit
gives a lower bound of the clock period. We show that
this bound is achieved in the semi-synchronous frame-
work by the proposed gate-level delay insertion method
on the assumption that the delay of each element on the
circuit is unique.

1 Introduction
Semi-synchronous circuits are expected to achieve
a high-performance by removing the constraint of
complete-synchronous circuits that every register is
ticked by a clock simultaneously. Among various objec-
tives in the synthesis of high-performance circuits, the
clock period minimization is one of the most important
subjects.

For given signal delays between registers, it is known
that the minimum clock period in the semi-synchronous
framework is obtained in polynomial time [2, 1, 6]. To
achieve the optimal clock period, each register should be
ticked by a clock at its own due clock-timing. A clock-
tree synthesis algorithm that realizes a due clock-timing
for each register was proposed in [5]. A clock-driven
layout methodology that minimizes both the clock period
and the clock-tree length was proposed in [7].

The purpose of these studies are in the improvemen-
t of the performance of a given circuit in the semi-
synchronous framework. Although the performance of
a circuit is improved more or less by these methods, a
circuit should be synthesized taking account of the effect
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of the semi-synchronous framework to make the best use
of it. In the semi-synchronous framework, the increase
of the minimum delay between registers may lead to the
clock period minimization, which does not lead to the
clock period minimization in the complete-synchronous
framework.

In this paper, we discuss a delay insertion method
which makes semi-synchronous circuits faster. The
maximum delay-to-register ratio of the cycles on the
circuit gives a lower bound of the clock period. We
show that this bound is achieved in the semi-synchronous
framework by the proposed gate-level delay insertion
method if the delay of each element on the circuit is u-
nique (That is, max delay=min delay for each element).

2 Preliminaries
In this paper, we consider a circuit consisting ofregisters
andgates, andwiresconnecting them. Both registers and
gates are referred toelements. A circuit is represented by
thecircuit graphGwhere a vertexv 2 V (G) represents
an element and a directed edge(u; v) 2 E(G) does the
signal propagation from the output of elementu to the
input of elementv along the wire. The weight of an edge
is the sum of the delay due to the corresponding wire
and the delay due to the corresponding end element. We
assume that each wire delay and element delay is unique.
The circuit graph of the circuit shown in Fig. 1 is shown
in Fig. 2. The clock-tree of the circuit is not represented
in the circuit graph.

Let Vr(G) = fr1; r2; . . .; rnr
g � V (G) be the set

of registers. Aregister-pathfrom registerri to register
rj on G is a directed path fromri to rj without other
registers. LetEr(G) be the set of ordered register pairs
(ri; rj) such that there is a register-path fromri to rj.
A maximum (minimum) register-path fromri to rj is a
register-path fromri torj with the maximum(minimum)
weight. The maximum (minimum) delay fromri to rj
is the weight of a maximum (minimum) register-path
from ri to rj, and denoted bydmax(ri; rj) (dmin(ri; rj)).
The delay between registers is not unique, because there
are various paths between these registers, even if each
wire delay and element delay is unique. For example, in
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Figure 1: A semi-synchronous circuit (minimum clock
period= 9)
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Figure 2: Circuit graphG

Fig. 2,dmax(r2; r4) = 8, dmin(r2; r4) = 6.
In the following, we assume that the weight of each

edge can be increased independently by delay insertion
to the circuit. Moreover, we assume that the clock input
timing of each register is controlled as we design.

3 A lower bound of the clock period
of a circuit

Thedelay-to-register ratioof a directed cycleL in G is
defined as

sum of edge weights overL
number of registers inL

:

Clearly, the delay-to-register ratio of any directed cy-
cle onG gives a lower bound of the clock period ofG.
Let TB(G) be the maximum delay-to-register ratio of
the directed cycles onG. TB(G) also gives a “lower
Bound” of the clock period, and plays an important role
in the following discussion. Notice thatTB(G) can be
obtained in polynomial time [3]. Notice also that no
circuitG works with clock period less thanTB(G), even
if retiming techniques or semi-synchronous techniques
are applied, unless delays of elements are reduced or the
number of registers in a cycle is increased.

In the following, we discuss a lower bound of the
clock period of a circuit in the complete-synchronous
framework and the semi-synchronous framework, re-
spectively.

3.1 Complete-synchronous circuits

Since a complete-synchronous circuit has the premise
that a clock ticks all the registers simultaneously, the
maximum delay of any path between registers must be
smaller than the clock period. Thus, a lower bound of
the clock period of a complete-synchronous circuit is
given as max(ri;rj)2Er (G)(dmax(ri; rj)). To reduce this
value, retiming relocates registers of a given circuit while
preserving its functionality. Since it does not change the
delay-to-register ratio of any cycle, a lower bound of the
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Figure 3: Constraint graphGcg(G; T ) of G

clock period achieved by retiming is given byTB(G)

[4].

3.2 Semi-synchronous circuits
In semi-synchronous circuits, the clock input timing of a
register may be different from other registers. Theclock-
timing s(ri) of registerri is defined as the difference in
clock arrival time betweenri and an arbitrary chosen
reference register.

We assume that a circuit works correctly with clock
periodT if the following two types of constraints are
satisfied [2].
No-Double-Clocking Constraints
s(rj) � s(ri) � dmin(ri; rj) for 8(ri; rj) 2 Er(G)

No-Zero-Clocking Constraints
s(ri)� s(rj) � T � dmax(ri; rj) for 8(ri; rj) 2 Er(G)

These two types of constraints must be satis-
fied in complete-synchronous circuits, too. How-
ever no-double-clocking constraints in the complete-
synchronous framework could be ignored, sinces(ri) =
s(rj) = 0 anddmin(ri; rj) � 0 are considered to hold.

We define theconstraint graphGcg(G; T ) as fol-
lows: a vertex corresponds to a register inVr(G), and
an edge corresponds to either type of constraints. An
edge which corresponds to the no-double (no-zero, re-
spectively) clocking constraint is called D-edge (Z-edge,
respectively) and the weight of the edge isdmin(u; v)
(T � dmax(u; v), respectively). The sets of D-edges and
Z-edges are denoted byEd(G) andEz(G), respective-
ly. For example, the constraint graphGcg(G; T ) for the
circuit graph shown in Fig. 2 is shown in Fig. 3.

It is known that the circuit works with clock peri-
od T in the semi-synchronous framework if and only
if the constraint graph contains no negative weight di-
rected cycles [6]. Note that if the circuit works with
clock periodT , then the circuit works withT 0 such
thatT 0 � T . Let TS(G) be the minimumT such that
Gcg(G; T ) contains no negative weight directed cycle.
This gives a lower bound of the clock period ofG in
semi-synchronous framework. We can determine the
minimum clock periodTS (G) and the clock-timing of
each register in polynomial time [2, 1, 6].

It is easy to see the following lemma.

Lemma 1 TS(G) � TB(G)

The constraint graphGcg(G; TB(G)) is denoted by
Gcg(G) for simplicity. If TS(G) > TB(G), there are
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Figure 4: A negative cycle onGcg(G) (TB(G) =

7; TS(G) = 9)

r

r

4

8 8

r 2

2 2 r

2

5 5

5

Clock Source

9

11

Inserted Delay

1

3

42

Figure 5: Circuit after delay insertion(TS (G) = 7)

negative cycles inGcg(G) (Fig. 4).

4 Delay Insertion
We show that a circuit which works with clock peri-
od TB(G) is obtained fromG by delay insertion. An
example of the obtained circuit is shown in Fig. 5.

The Z-edgeez(rj; ri) of the constraint graph corre-
sponds to a maximum register-path fromri to rj onG.
Similarly, The D-edgeed(ri; rj) corresponds to a mini-
mum register-path fromri to rj. Note that the direction
of the D-edge is the same as that of a corresponding
minimum register-path, but the direction of the Z-edge
is opposite to that of a corresponding maximum register-
path. So, a directed cycle on the constraint graph does
not always correspond to the directed cycle on the circuit
graph. The circuit shown in Fig. 6 corresponds to the
cycle shown in Fig. 4.

Lemma 2 If TS(G) > TB(G), all negative cycles on
Gcg(G) have a D-edge.

Because all negative cycles onGcg(G) have D-edges,
we may improve the clock period by delay insertion
on the circuit corresponding to D-edges. But we must
not change the maximum delay-to-register ratio of the
cycles in the circuit, because we cannot decrease it by
delay insertion.
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Figure 6: Circuit corresponding to the cycle onGcg(G)

Algorithm 1

Inputs : Circuit graphG , Negative cycleC on
Gcg(G)

Output : Circuit graphG0 after delay insertion

Step 1: Find an unmarked D-edge(ri; rj) onC,
and mark the edge.

Step 2: Let e1; e2; . . .; en be the edges on a mini-
mum register-path fromri to rj onG. Insert
the delay with the same amount of delay-
slack of each edge frome1 to en. Here the
delay-slack ofel is calculated after delay in-
sertion ofel�1, because the delay-slack of
each edge is changed by delay insertion to
another edge.

Step 3: If all D-edges onC are marked, then out-
put the resultant circuitG0 else go to Step 1.

Figure 7: Delay insertion to negative cycles

Theallowable-delayof a cycleL onG is defined as
TB(G)� (number of registers inL):

As a result of the delay insertion, if the weight of any
cycle on the circuit graph is at most the allowable-delay
of the cycle, the delay-to-register ratio remains same as
the original circuit.

Thecycle-slackof L onG is defined as
(allowable-delay ofL) � (total delay ofL):

Thedelay-slackof an edge(vi; vj) on the circuit graph
is the minimum of cycle-slacks of all cycles that contain
(vi; vj).

The delay insertion less than or equal to the delay-
slack of an edge(vi; vj) doesn’t change the maximum
delay-to-register ratio.

We insert the delays to the edges on the register-path
corresponding to a D-edge by Algorithm 1 shown in
Fig. 7.

Theorem 1 LetG0 be the graph obtained by Algorithm
1. The weight of cycleC onGcg(G

0; TB(G)) becomes
non-negative or at least one minimum register-path cor-
responding to a D-edge inConG becomes non minimum
register-path onG0. That is, a delay is inserted on at
least one edge onG.

If the delay between elements is not unique, the delay
of a minimum register-path corresponding to a D-edge
has a certain range. Theorem 1 does not always hold
in such a case.

The clock period of a semi-synchronous circuit is de-
creased to a lower bound of clock periodTB(G) by
Algorithm 2 shown in Fig. 8.

When Algorithm 2 terminates, clearlyTS(G0

) =

TB(G). So, we prove only that Algorithm 2 terminates
in polynomial time.

Theorem 2 Algorithm 2 terminates in polynomial
time.



Algorithm 2

Inputs : Circuit graphG
Outputs : Circuit graphG0 after delay insertion

Step 1: CalculateTB(G), and letG0

= G.

Step 2: CalculateTS(G0

).

Step 3: If TS (G0

) = TB(G), outputG0 and ter-
minate.

Step 4: Find the negative cycle C on
Gcg(G

0; TB(G)), and letG0 be the circuit
obtained by Algorithm 1 with inputG0 and
C, and go to Step 2.

Figure 8: Delay insertion algorithm

Table 1: Experimental results : clock period reduction
circuit Gates MD Initial Final ID

s1423 657 59 54 53 5987
s298 119 9 6 5.33 78
s344 160 20 17 14 225
s349 161 20 17 14 225
s444 181 11 7 6.58 57
s526 193 9 6 5.5 110

Proof: The number of times of repetition of Step 4 is at
most the number of edges onG since the delay-slack of
at least one edge becomes zero at each repetition.2

5 Experimental Results
Algorithm 2 is applied to benchmark circuits in L-
GSynth91. We assume that each gate has unit delay, and
routing delays are zero. The clock period is reduced in 6
out of 24 circuits. Theminimum clock periods before de-
lay insertion of the other 18 circuits in semi-synchronous
framework are equal to the maximum delay-to-register
ratio of each circuit. The results of improved circuits are
shown in Table 1. Here, the number of gates is denoted
by Gate, the maximum delay-to-register ratio is denoted
by MD, the clock period of the semi-synchronous circuit
before delay insertion is denoted by Initial, the clock pe-
riod after delay insertion is denoted by Final, and the
amount of inserted delay is denoted by ID.

6 Conclusions
We prove that the minimum clock period of a circuit
in semi-synchronous framework achieves the maximum
delay-to-register ratio by delay insertion if the delay of
each edge is unique.

As future works, the reduction of the amount of the
inserted delay in Algorithm 2, more practical delay as-
sumption (the delay of each edge is not unique), delay
realization method such as detour of routing wire or de-
lay element insertion, and the combination of retiming

and delay insertion technique to minimize the area and
clock period, should be investigated.
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