
Communication and Interface Synthesis on a Rapid Prototyping
Hardware/Software Codesign System

Yin-Tsung Hwang Yuan-Hung Wang
Department of Electronic Engineering

National Yunlin University of Science & Technology
Touliu, Yunlin 64045, Taiwan, R.O.C

E-Mail: hwangyt@cad.el.yuntech.edu.tw

Abstract
In this paper, we propose the target board architecture

of a rapid prototyping embedded system based on
hardware software codesign. The target board contains a
TMS320C30 DSP processor and up to four Xilinx
XC4025E FPGAs. Various communication channels
between the C30 and the FPGAs are provided and a
master-master computing paradigm is supported. HW/SW
communication protocols, ranging from handshaking,
batch to queue controlled, as well as the corresponding
interfaces are described in VHDL and C codes
respectively and can be easily augmented to the mapped
design. A codesign implementation example based on
G.728 LD-CELP speech decoder shows the proposed
communication protocols and interfaces lead to very
small time and circuitry overhead.

1. Introduction

HW/SW codesign has been a common practice adopted
in embedded system designs for applications such as
personal communication, automotive control and
consumer electronics. Since various processing blocks in
an embedded system must interact with one another, they
cannot be designed independently. An important issue in
HW/SW codesign is the synthesis of HW/SW
communication interfaces. Efficient interface will reduce
the communication overheads across the HW/SW
boundary and thus enhance the entire system performance.
In this paper, we first propose a rapid prototyping target
board as the co-design platform. The target board
architecture is flexible enough to accommodate the
computing and communication needs for various
embedded signal processing applications, in particular, in
the signal compression areas. We next propose a
communication interface synthesis scheme which maps
various communication primitives into the target board.

Numerous work [1-8] on codesign system architectural
templates and the associated communication interfaces

have been presented. The architectural templates usually
consist of a microprocessor for the software section, plus
some programmable logic devices or co-processor for the
hardware section. The communication between the HW
and SW sections is achieved by shared memory, FIFO or
handshaking protocols. They can support either master-
master (where both sections can work concurrently) or
master-slave (where only one of the two sections is active
at a time) computing paradigm. Table 1 summarizes
previous approaches as well as our proposed architecture.

Target
architecture

Com
pstyle

Host
Interf

Batch
com

HS
com

FIFO
com

[1] generic template - - - Yes Yes
[2] i860+XC4008 M-S AT bus Yes No No
[3] Sparc+XC4025s M-S S bus No No No
[4] 68000+XC4005 M-M - No Yes No

[5,6] Sparc+co-proc M-S S bus No Yes No
[7,8] generic template - - No No Yes
Ours C30+XC4025s M-M PCI bus Yes Yes Yes

Table 1. Comparison of different target architectures

2. The target board architecture

As shown in Figure 1, our target board architecture
contains 5 basic modules, i.e.
z a TI TMS320C30 DSP processor which implements as

much as possible of the signal processing and control
functions of the system;

z an FPGA array which is a programmable hardware
accelerator consisting of four Xilinx XC4025Es to
implement time critical functions of the system;

z a peripheral block which is for communicating with
the data acquisition and playback devices;

z a 16M shared memory module which holds the
program/data accessible to the DSP processor, the
FPGA array and the host machine;

Address
Decoder

T M S 3 2 0 C 3 0

PCI Control ler
A M C C S 5 9 3 3

Shared Mmeory
8 M S D R A M

BUS
Contro l

Unit
EPM7096

FPGA Group
4025E X 4

Interrupt
Control

Uni t

Queue
Decoder

pr imary address bus (24)

pr imary data bus (32)

Peripheral
Bus

Connector

Serial
Ports

Connector

PCI bus

expansion data bus (32)

expansion address bus (13)

XD[0. .31]

XD[0. .31]XA[0. .12]

~ C S

R / ~ W

A[0. .24] D[0. .32]

Fig 1. Block diagram of the target board

z a PCI bus based host communication interface through
which the target board can be initialized and
communicate data with the host machine.

To ensure the target board adaptable to a wide range of
applications, a universal shared bus architecture is
adopted. The 32-bit primary bus facilitates a basic shared
memory communication model between the hardware and
the software sections. The C30 processor is assigned
higher priority than the FPGAs. The 16-bit expansion bus
aims to provide a streamline port-to-port communication
between the C30 and the FPGA array. With an addressing
mechanism, multiple FIFO communication channels can
be implemented over it. Inside the FPGA array, four
4025E FPGAs are connected as a ring structure as shown
in Figure 2. This bus is employed for the point-to-point

direct connection across FPGAs. Each FPGA is also
associated with a 2K local memory module which can also
be accessed by the C30’s DMA controller

3. Communication protocols and interfaces

In our target board design, five types of
communications are supported, they are:
1. asynchronous communication by handshaking: This is

performed over the primary data bus. It is suitable for
small amount of data exchange and for simple control
transfer between the C30 and the FPGAs.

2. asynchronous communication by queue: This is
performed over the expansion data bus. The queue
itself and the access control are implemented in the
FPGA hardware. This is suitable for in order, constant
data rate communication.

3. batch communication: The batch communication is
carried out by the C30’s DAM controller to move a
block of data between the shared memory and the local
memory of an FPGA. It is thus suitable for burst mode
data communication.

4. synchronous communication: It is supported only in
intra-HW communication via the local interconnection
bus between FPGAs. The send and receive signals are
both latched. The scheme is suitable for pipelining the
data path implementation across multiple FPGAs.

5. direct communication: This is similar to the case of
synchronous communication except the signals are not
latched.

C30R/W

CS_ASYS1

ACT1

IRQ1

ACK1

DMA3

Expansion Data BUS (32)

Primary Data BUS (32)

Primary Address BUS (24)

IACK

BUSY

BRQ1

GRANT1

DMA1

BRQ3

GRANT3

ACT3

ACK3

IRQ3

BUS_idl
e

R/W

XR/W

RDY

Q_CS4 Q_CS2

DMA2DMA4 M U X M U X M U X M U X

Local
Memory 4
2K X 32

LA[0..10] LD[0..31]

R/W

Local
Memory 3
2K X 32

LA[0..10] LD[0..31]

R/W

M U X M U X

Local
Memory 2
2K X 32

LA[0..10] LD[0..31]

R/W

M U X M U X

Local
Memory 1
2K X 32

LA[0..10] LD[0..31]

R/W

C30R/W

CS_ASYS3

ACT2

IRQ2

ACK2

ACT4

IRQ4

ACK4

Intercollection BUS (50)

Xilinx FPGA 4
XC4025EPG223-4

XR/W

XD[0..31]

LR/WQ_CS4

LA[0..10] LD[0..31]

FULL

EMPTY

ACT

ACK

IRQ

Xilinx FPGA 3
XC4025EPG223-4

ACT

BUS_idle

R/W

BUSY

BRQ

GRANT

RDY

ACK

IACK

A[0..23] D[0..31]

LR/W

IRQ

LA[0..10] LD[0..31]

CS_ASYS

C30R/W

Xilinx FPGA 2
XC4025EPG223-4

XR/W

XD[0..31]

LR/WQ_CS2

LA[0..10] LD[0..31]

FULL

EMPTY

ACT

ACK

IRQ

Xilinx FPGA 1
XC4025EPG223-4

ACT

BUS_idl
e

R/W

BUSY

BRQ

GRANT

RDY

ACK

IACK

A[0..23] D[0..31]

LR/W

IRQ

LA[0..10] LD[0..31]

CS_ASYS

C30R/W

Fig 2. Block diagram of the FPGA array

Specific communication protocols must be observed for
handshaking, queue and batch type communications.
Basically, software protocols are coded in C routines while
hardware protocols are described in synthesizable VHDL
codes which contain both control FSM and interface
circuitry. Table 2 outlines the features of these protocols.
The readers are referred to [9] for the details. Figure 3
shows the FPGA implementation model which consists of
a data path, communication interfaces (e.g. queues, shared
memory access port, hardware send/receive ports), and
their associated FSM controllers. For the data path FSM
controller, the state diagram is shown in Figure 4. The
original FSM of the data path controller is encapsulated in
the execution state. Note that since these interfaces are
implemented in FPGAs, they are included only when the
corresponding communication schemes are employed.

Comm types protocols Basic operations Interface ckt
SW snd
SW rcv

Mem mapped
I/O + polling

HW snd interrupt FSM+I/O port
Hand-
shaking

HW rcv polling FSM+I/O port
SW read
SW write

Flag polling +
mem mapped
I/O

Queue
control

HW read
HW write

FSM control FSM + queue

SW init SW snd + DMAbatch
HW init HW snd + DMA FSM+I/O port

Table 2. List of communication protocols

F S M o f
F P G A

F S M o f
s h a r e d

m e m o ry

F S M o f
qu e u e

I /P queue
port

O/P queue
port

shared
memory

port

Da ta
path

Asynchronous Por t

Fig 3. The FPGA implementation model

In Table 3, we list the estimated communication delays of
the proposed communication protocols. The numbers are
derived from the FPGA implementation and from
counting the C30 execution cycles. (each cycle is 60 ns)
They, however, do not include the wait delay incurred
from the mismatch between the send and receive
operations. Among all, the FPGA local memory access
has the least communication overhead while the

handshaking scheme takes the longest time. In Table 4,
the FPGA interface circuitry overheads are compiled. The
interface circuitry occupies only about 7% of the CLB
resources.

B a t c h
wr i t e

B a t c h
r e a d

H a r d w a r e
s e n d

H a r d w a r e
e x e c u t e

Id le

m a i n
M e m .

read /w r i t e

Q u e u e
read /w r i t e

A C T = 1
: I A C K < = 1

BUS_ id le=1
: B R Q < = 1

R D Y = 1
: B R Q < = 0
: B U S Y < = 0

A C K = 1
: I R Q < = 0 H a r d w a r e

r e c e i v e

A C T = 1

Fig 4. The state diagram of FPGA implementation model

Handshake C30
S. Mem

FPGA
S. Mem

FPGA
L. Mem

type HÆS SÆH read Wr read write read write
cycle 8 4 2 3 3 4 1 1

SW Queue HW Queue Batch
type read write read write setup delay/w
cycle 3 4 1 1 4 2

Table 3. The estimated communication delays

DP
FSM

Queue
/FSM

async
port

s.
mem
port

local
mem

avail
-able

%
used

CLBs 10 24/8 32 0 2 1024 7.4
I/Os 0 32/0 0 32+24 32+11 192 52, 39

Table 4. FPGA interface circuitry overheads

4. LD-CELP decoder example and summary

To demonstrate the proposed communication protocols
and interfaces, a large and practical codesign example for
the LD-CELP speech decoder based on CCITT G.728
recommendation is investigated. Figure 5 shows the
simplified block diagram of the speech decoder system.
The system specification is described in VHDL as a
collection of concurrent processes. To model the
communication among processes, a process
communication graph (PCG) is first constructed. The
PCG of the LD-CELP speech decoder is shown in Figure 6.
A system profiling is next conducted to extract each
process’s hardware and software implementation
attributes. Each edge is also labeled as either collective or
discrete mode communication. A PCG edge is then
mapped to a particular communication subject to the

partitioning results and the rules given in Table 5.

communicationAssignment conditions
batch HW-SW collective
queue HW-SW discrete invoc. freq > 1
handshake HW-SW discrete invoc. freq ≤ 1
sync intra-HW inter-iteration
direct intra-HW intra-iteration

Table 5. Assignment of communications

The total communication time overheads are compiled
in Table 4. For both processes, the communication
overheads consume less then 1% of the computing
iteration time. The average delays for transferring one
word of data are 180 ns and 127 ns, respectively. These
figures are approximately only equal to the delays for the
C30 processor to perform one off-chip memory access.
The proposed communication protocols are therefore
considered very efficient. Both the target board
architecture and the LD-CELP speech decoder are
currently still under development. Further refinements are
expected before its real implementation. We have written
the interface codes in both VHDL and C codes. For the
LD-CELP decoder example, we have completed the entire
system simulation and successfully implemented the
Levinson-Durbin Recursion module on three XC4025E
FPGAs. In summary, in this paper, we have presented a
novel embedded prototyping system based on
hardware/software co-design. The target board is carefully
designed so that various communication protocols can be
implemented efficiently with very little time and circuitry
overhead. The communication interfaces are described in
VHDL code and C communication routines and can be
easily augmented to the HW and SW section designs,
respectively. Our experiment with an LD-CELP speech
decoder system fully exhibits the efficiency of the
proposed communication protocols and interfaces.

References

[1] M. Theiβinger, P. Stravers, and H. Veit, “Castle: An
Interactive Environment for HW-SW Co-design. ”Proc. 3rd
Int’l Workshop on HW / SW Codesign, Sep. 1994, pp 203-9.

[2] M. D. Edwards, J. Forrest, “ Software acceleration using
programmable hardware devices.”, IEE Proc. Computer
Digital Tech., Vol: 143, Jan. 1996, pp.55-63.

[3] G. Koch and others, “A prototyping environment for
hardware/software codesign in the CORBA project,” Proc.
3rd Int’l Workshop HW / SW Codesign, Apr 1994, pp 10-6.

[4] J. P. Calvez, D.Isidoro, and D. Jeuland, “A CoDesign
experience with the MCSE Methodology.” Proc. 3rd Int’l
Workshop on HW / SW Codesign, Sept.1994, pp 140-147.

[5] R. Ernst, J. Henkel, T. Benner, “Hardware-Software
Cosynthesis for Microcontrollers.”, IEEE Design & Test of

Computers, Vol. 10, Issue 4, Dec. 1993, pp. 64-75.
[6] D. Herrmann and others, “An Approach to the Adaptation of

Estimated Cost Parameters in the COSYMA System,” Proc.
3rd Int’l Workshop HW/SW Codesign, Apr 1994, pp 100-7

[7] R. K. Gupta, G. De Micheli, “Hardware-Software
Cosynthesis for Digital System.”, IEEE Design & Test of
Computer, Vol. 10, Issue 3, Jan 1994, pp.29-41.

[8] R. K. Gupta, C. N. Coelho Jr., G. De Micheli, “Program
Implementation Schemes for Hardware-Software Systems.”,
Computer, Jan. 1994, pp. 48-55.

[9] Y. Hwang, Y. Wang, and J. Hwang, “Rapid Prototyping of
HW/SW Codesign for Embedded Signal Processing,” JISE,
vol. 14, No. 3, Sep. 1998, pp. 605-631.

¬

Íðèâóêõéî

äâíäöíâõðó

ÓÎÔ

äâíäöíâõðó

²®÷æäõðó

åæíâú
¬

µ±

´º

·¸

µ³

Íðè®èâêï

ðççôæõ ÷âíöæ

éðíåæó µ²

Éúãóêå

øêïåðøêïè

îðåöíæ µ´

Íæ÷êïôêðï®Åö

óãêï óæäöóôêðï

îðåöíæ
µµ

Ãâïåøêåõé

æùñâïôêðï

îðåöíæ µ¶

Íðè®èâêï

íêïæâó

ñóæåêäõðó µ·

Íðè®èâêï

íêîêõæó
µ¸

Êï÷æóôæ

íðèâóêõéî

äâíäöíâõðó µ¹

Backward
vector gain

adapter

´±

Éúãóêå

øêïåðøêïè

îðåöíæ

Íæ÷êïôðï®Åöó

ãêï óæäöóôêðï

îðåöíæ

Ãâïåøêåõé

æùñâïôêðï

îðåöíæ

Bcakward
synthesis

fi l ter adapter

µº

¶±

¶²

´´

Ôúïõéæôêô

çêíõæó
´³

È
âêï ´²

Æùäêõâõêðï ×Ò

Äðåæãððì
³º

Ñðôõçêíõæó
´µ

Ñðôõçêíõæó

Âåâñõæó
´¶

Ã²
Ã³

Ã´

Ãµ

Ã·

Ãº

Ã¹Ã¶

Ã¸

Fig 5. The block diagram of an LD-CELP speech decoder

B 2 B 5

B 3

B 4

B 6

B 8

B 9

B 7

B 1 Ä²³ Ä³¶ Ä¶¹

Ä´³

Ä·¶

Ä·¸Ä¸·

Ä·º

Ä´µÄµ´

Äº¹

Fig 6. PCG of the LD-CELP speech decoder

Proc iteration
cycle

assign
type

data
comm.

Over-
head

avg delay
per word

B4 2.5ms batch 10
3.6us

(0.14%)
180ns

B7 2.5ms
batch 50 12.7us

(0.51%)
127ns

Table 6. Communication time overhead for the HW
sections in LD-CELP decoder

	Main Page
	ISSS98
	Front Matter
	Table of Contents
	Session Index
	Author Index

