
False Path Analysis based on a Hierarchical Control Representation

Apostolos A. Kountouris, Christophe Wolinski

IRISA
Campus Universitaire de Beaulieu

F-35042 Rennes CEDEX, FRANCE
{kountour, wolinski}@irisa.fr

Abstract

False path analysis is an activity with applications in
a variety of computer science and engineering domains
like for instance high-level synthesis, worst case execution
time estimation, software testing etc. In this paper a
method to automate false path analysis, based on a control
flow graph connected to a hierarchical BDD based control
representation, is described. By its ability to reason on
predicate expressions involving arithmetic inequalities,
this method overcomes certain limitations of previous
approaches. Preliminary experimental results confirm its
effectiveness.

1. Introduction

False path analysis is an activity with applications in
a variety of computer science and engineering domains. It
has already been used in high-level synthesis [1], [2],
worst case execution time estimation [4], [5], [6] and soft-
ware testing [8], to mention only a few examples. In path-
based scheduling [1] all execution instances (control
paths) are considered. The scheduling results can be fur-
ther ameliorated by using thefalse path analysis technique
described in [2]. Identification and elimination of false
paths results in a smaller number of control states,
increased resource sharing (e.g. operators, registers) and
less control logic. As it was shown in [3] such an approach
yields a limited number of false paths. Nevertheless, the
usefulness of false path analysis for optimization purposes
becomes evident. Another area wherefalse path analysis
can be used is in estimation ofWorst Case Execution Time
(WCET) bounds used inscheduling andvalidation of real-
time systems. Identification and elimination of false paths
is necessary in order to limit the pessimism and make the
estimated WCET bounds tighter. In [4], [5], [6] lack of
tools led in adapting a manual and thus unsafe approach.

In this paper we propose a method for the identifica-
tion of false paths. It is based on a special control flow-
graph representation connected to a hierarchical BDD

based, program control representation which has some
similarities toguard control representation of[7]. This rep-
resentation is called the CCFG and is described in section
2. In section 3 false path identification is described and a
graph based reasoning on branching conditions that
depend on simple arithmetic relations is elaborated to
extend even more the false path identification capabilities.
A similar technique based on a set of axioms and theorems
was proposed in [3]. To handle more complex cases repre-
sented by systems of linear arithmetic inequalities, exist-
ing formal verification/compilation techniques, i.e. [19],
can be adopted. The effectiveness of the false path identifi-
cation process is demonstrated in a greedy algorithm that
enumerates all feasible paths. This algorithm is described
in section 4. Finally, our conclusion is drawn.

2. The Conditional Control Flow Graph

Control Flow-Graphs (CFG) have been used to repre-
sent the program control flow. Vertices correspond to con-
trol branch/join points in the source code and edges to
straight-line code segments. The CCFG is a CFG variant
having edges labeled by clocks. A clock indicates the con-
dition under which the control flow passes through an
edge. Clocks are organized in hierarchy which will be
explained later on.

The CCFG consists of a set of vertices (nodes), a set
of edges and a control hierarchy: .
A vertexv has a set of incoming (ins(v)) and a set of out-
going (outs(v)) edges. The cardinalities of these sets are
indegree(v) andoutdegree(v). There are two distinguished
verticesstart, end which correspond to a program’s unique
entry and exit points respectively;indegree(start) = 0,out-
degree(end) = 0. An edgee has a source (src(e)) and a des-
tination (dst(e)) vertex. clock(e) denotes the condition
under which the execution flow passes throughe;

.
Suppose that to go from a vertexv1 to a vertexvn

there are more than one possible paths. Let, be
the set of paths for going fromv1 to vn. Each such path is
an ordered set of edges indexed in [1, k], { e1, ..., ek} with:

CCFG V E CH, ,{ }=

clock e() CH∈

Pv1 vn→

src(e1) = v1, dst(ek) = vn, dst(ei) = src(ei+1). Now for each
path let Hp the set of edge clocks ofp
indexed in [1, k]. We define the clockhp of pathp as:

2.1. The control hierarchy

To construct the hierarchical control representation a
dataflow internal representation of the source code is nec-
essary. This representation is called theHierarchical Con-
ditional Dependency Graph (HCDG) and is a special kind
of directed graph that represents data and control depen-
dencies from adata-flow perspective. Historically, it has
been developed as internal representation of systems
described in the SIGNAL language [9], used for the speci-
fication of reactive, real-time systems. The HCDG consists
of the Conditional Dependency Graph (CDG) and the
Clock Hierarchy(CH). The CH will be connected to the
CCFG by linking each conditional predicate in the input
description to the corresponding clock in the HCDG.

Both HCDG nodes and edges are labeled by clocks.
Each node corresponds to an operation that assigns a value
to a variable. Clocks are a special type of nodes and corre-
spond to boolean conditions thatguard the execution of
operations and the assignment of values to variables, and
are similar to the guard conditions of [7]. Edges corre-
spond to precedence constraints (dependencies) on the
nodes. The are mainly two types of dependencies:data
and control. The former indicate the values of the nodes
that need to be computed before the value of another node
is computed, and the latter which conditions need to evalu-
ate totrue, before a data value is computed.

In a discrete time model, where time is considered as
an infinite sequence of logical instants, aclock is the set of
logical instants that the boolean condition defining it, eval-
uates totrue. The theoretical foundations of the HCDG
consider clocks as sets and clock formulas as application
of set operations on these sets. In [11] it is shown how an
equivalent representation of clock formulas as boolean
functions can be obtained and vice-versa. Clocks are
equivalence classes of the HCDG nodes. Nodes labeled by
the same clock carry a value at the same logical instants.
In addition an inclusion relation can be defined on clocks.
A clock is included in another clock if it is a subset of it.
Based, on this inclusion relation it can be said that a clock
is more or less frequent than another clock.

The clock nodes of a HCDG are organized in aClock
Hierarchy (CH) which is a hierarchical tree-like, represen-
tation of the design’s control. Such a data structure repre-
sents theinclusion relation between clocks. In [10] it is
shown that this information is very important in order to

p Pv1 vn→∈

hi∀ H p∈ hp hi
i 1=

k 1–

∏=

,

triangularize a larger number of systems of clock equa-
tions than it would be possible by using a rewriting system
based only on the axioms of boolean algebra. In [11], the
clock hierarchy is implemented as a hierarchy of BDD’s
(Binary Decision Diagrams introduced in [12]). BDD’s
are canonical representations of boolean functions, on
which boolean operations can be performed efficiently in
terms of time and space. Using BDD’s two things can be
easily achieved; first, equivalence between clock formulas
can be easily established resulting in a minimal internal
representation by avoiding redundancy, and second, during
the hierarchization process, it is easy to find themaximum
depth in the tree that a clock node can be inserted, by
means of a factorization process on the canonical repre-
sentation. This yields an optimally refined inclusion hier-
archy.

Inclusion relation. Lets denote byhi the boolean
function corresponding to clockHi. This boolean repre-
sentation evaluates totrue wheneverHi is present other-
wise tofalse. The inclusion relation represented by the tree
like structure of the clock hierarchy simply states that:

Using the boolean definitions the inclusion relation
between two clocks will be denoted as:

In addition, inclusion can be extended to the following
cases:

3. False Path Analysis

To identify false paths in the CCFG we rely on clock
information and an algorithm that makes appropriate use
of it. In terms of the CCFG definitions for pathp:

A path isfeasible if the boolean product of its edge
clocks is notfalse. Otherwise, it is a false path. A CCFG
pathp is false if:

This is graphically shown in the example 1 of
figure 1.h1, h2 correspond to the conditions that the first
branch is taken or not taken (predicate “a && b”true or
false resp.). Similarly, the possible outcomes of the second
branch are represented byh3 andh4. Labeling the CCFG
edges with these clocks, 2 out of the 4 possible paths in the
CCFG can be identified as false.

As far as clock information is concerned, in order to
be able to discover a larger number of false paths it is nec-

Hi descendants Hi()∈()∀ H j Hi⊆⇒

H2 H1⊆ h2 h1≤≡

Hk Hi H j∪= Hi Hk⊆ H j Hk⊆,⇒

Hk Hi H j∩= Hk Hi⊆ Hk H j⊆,⇒

p Pstart end→∈

hp hi
i 1=

k 1–

∏=

0=

essary to develop or adopt some form of reasoning about
the intersections of clocks that are defined by means of
arithmetic relationson data values. Such clocks may occur
very frequently in practice, especially in the descriptions
of control dominated systems. The example 2 in figure 1
graphically depicts such a situation. The CCFG is the
same as for example 1. The only difference is that the con-
ditional predicates are no longer pure boolean expressions
but contain arithmetic inequalities. In such cases simply
calculating the boolean products is no longer adequate for
the identification of the two false paths.

Figure 1. False path analysis examples

3.1. A constrained graph based reasoning

In this section a constrained reasoning for simple
relations will be described. This method has some similar-
ities to the technique elaborated in [3].

Lets define an arithmeticrelation as: with
 where A, B can be arithmetic

expressions andR is a boolean variable beingtrue when
the relation is true andfalse otherwise. A special form of
relation is thestrict relation where . We
define arelation set as a set of relations and similarly a
strict relation set as a set of strict relations. The intersec-
tion of clocks defined by such relations is the conjunction
of all the relations in the relation set. The most general
case of relations is the one thatA andB represent arbitrary
arithmetic expressions. Here we shall concentrate onsim-
ple relations for whichA andB represent single variables
or constants.

Considering relation sets containing onlysimple
strict relations, their conjunction can be represented as a
directed graph (therelation graph) where a node corre-
sponds to either a variable or a constant and an edge
(source, destination) to a “greater than” relation. Con-
structing a relation graph the equality operator between
two values results in merging the corresponding nodes into
a new node. If the relation graph contains a cycle then the
conjunction is alwaysfalse. To demonstrate the process
lets consider the following simple example. LetA1, A2 be

h1 h2

h3 h4

h1, h3

h1, h4

h2, h3

h2, h4

h1 = a && b
h2 = !(a && b)
h3 = a && !b
h4 = !(a && !b)

if (a && b)
do something 1

if (a && ! b)
do something 2

false paths

CCFG

Example 1

h1 = a > 5
h2 = !(a > 5)
h3 = a < 3
h4 = !(a < 3)

if (a > 5)
do something 1

if (a < 3)
do something 2

Example 2

R AρB=
ρ > < ≥ ≤ = ≠, , , , ,{ }∈

ρ > < =, ,{ }∈

variables having the same clock, andL0, L1 andL2 bool-
eans defined by the following relations onA1 andA2:

The corresponding relation graph shown in figure 2,
contains a cycle meaning that the conjunction of the rela-
tions will always evaluate tofalse for every pair of values
for the variablesA1, A2.

Figure 2. A cycle in the relation graph

This reasoning can be extended tonon-strict simple
relations by transforming the relation set into a set ofstrict
relation sets and considering thedisjunction of the con-
junctions represented by each strict relation set. For
instance, relation is transformed into the disjunc-
tion of strict relations . Transforming
non-strict relations in a relation set this way, we obtain a
set of strict relation sets. For each such set we can con-
struct the corresponding relation graph. The only differ-
ence is that in order to evaluate the conjunction of the
initial relations we have to look for a cycle inevery rela-
tion graph. If all the relation graphs contain a cycle then
the conjunction evaluates tofalse for every value of the
free variables. The opposite case that there is at least a
relation graph with no cycle, means that there exist values
for the free variables for which the conjunction of the rela-
tions does not evaluate to false.

With this type of graph based reasoning we can effec-
tively decide whether clocks defined by simple relations
are mutually exclusive or not. To check for a cycle in a
graph we may use well known algorithms like for
instance, the DFS (Depth-First-Search) algorithm [13].

3.2. Treating complex linear inequalities

Extended reasoning on clocks defined byarbitrary
arithmetic relations (inequalities), can be achieved using
existing compilation techniques like theOmega test [15].
The Omega test [15], is a system, based on theFourier-
Motzkin Elimination [14], for manipulating sets ofaffine
constraints over integer variables (presburger formulas). It
was initially conceived for dependence testing, and it was
designed as a decision test for the existence of integer
solutions to affine constraints. TheFourier-Motzkin Elimi-
nation consists in successively eliminating a variable from
a system of linear constraints and corresponds to the suc-
cessive projection of an-dimensional object to itsn-1
dimensional shadow. If at the end the shadow is empty
then the original system has no real solutions.

L0 A1 A2<= L1 A1 5>= L2 A2 5<=

A1

A2

5

L0 L1 L2∧ ∧

A B≥
A B>() A B=()∨

In addition, techniques and tools from the formal ver-
ification domain can also be used. The SVC [19] has the
capability of handling propositional expressions contain-
ing arithmetic inequalities. Tailoring these methods to our
needs to reason on the exclusiveness of clocks defined by
linear inequalities, false path analysis results can be signif-
icantly improved.

4. A Greedy Algorithm for Path Generation

In this section we outline thefindAllPaths algorithm
that progressively constructs the set of all possible paths
from start to end in the CCFG. During the graph traversal
we construct for each node apath list that contains the
paths leading to the node. Each path in this list is repre-
sented by anordered list that contains the edges making up
the path, and aclock list containing the clocks of the path
edges. Thepath clock is the boolean product of all the
clocks in theclock list. This algorithm has the characteris-
tic that as false paths are identified, they are eliminated
from the subsequent iterations thus decreasing the number
of paths that need to be checked for falsehood in subse-
quent steps. The pathlist of the end node contains all the
paths in the CCFG that are not false.

4.1. An example

To demonstrate the ideas presented in the previous
sections, we use an example, taken from [16]. The descrip-
tion and the CFG of the example are given in figure 3. To
label the edges of the CFG with clocks and produce the
CCFG, the specification was parsed into the HCDG shown
in figure 4.

Figure 3. Description and control-flow graph

For readability reasons clock nodes and most of the
control dependencies (dashed arrows) have been omitted.
Clocks H4 to H10 depend on the boolean result of the com-

process jian(a, b, c, d, e, f, g, x, y)
in port a[8], b[8], c[8], d[8], e[8], f[8], g[8];
in port x, y;
out port u[8], v[8];
{

static T1;
static T2[8], T3[8], T4[8], T5[8];
T1 = (a +1 b) < c;
T2 = d +2 e;
T3 = c +3 1;
if (y) {

if (T1) u = T3 +4 d; /*u1 */
else if (!x) u = T2 +5 d; /*u2 */
if (!T1 && x) v = T2 +6 e;

} else {
T4 = T3 +7 e;
T5 = T4 +8 f;
u = T5 +9 g; /*u3 */

}
}

1
0

1
0

1 0

1 0

1

start

end

h1

y

T1

x

!T1 && x

parison node and thus nodes tagged by these clocks transi-
tively depend on it as well. In the HCDG every operator is
labeled by a clock. As it can be seen the output variableu
has multiple definitions (u1, u2, u3) under mutually exclu-
sive conditions and so the single assignment principle is
not violated. The resulting clock hierarchy is shown in
figure 4, and in table 1 the boolean definitions of each
clock are given.

Figure 4. HCDG for the example

Figure 5. The CCFG of the example

Clock Boolean Definition Clock Boolean Definition

H1 1 H6

H2 H7

H3 H8

H4 H9

H5 H10

Table 1. Clock definitions

+1

?a

?d

?f

?y ?x

+2 +3

+5 +4+6

+9

!v

!u

+8

?e

<

H2
H3
H7
H6
H4
H9
H10

H1 H1

H1 H1

H1

H1

H1

H1

H5

H6
H9

H9

H10

H1 H1

H3

H3

H3

H1

H1

H1

H1

H2 H9

H9

H9

H10 H6

H3

H3

H3 H3

H3

H3

H3

H1

H6 H6

H10

H1

H1

H1

H9

H10

H1
H7

+7

?g

?c

Clocks

H10

H1

H1?bH1

H1 H1
H1

H1

H1

H2 H3 H4 H5

H6 H7 H8

H9 H10

Clock Hierarchy

y T1⋅

y y T1⋅

y y T1⋅ y T1 x⋅ ⋅+

y y T1⋅+ y T1 x⋅ ⋅

y y T1⋅ y T1 x⋅ ⋅+ + y T1 x⋅ ⋅

H2
H3

H6H7

H9 H10

H9 H10

H1

start

end

H1 CCFG

Once the clock hierarchy is constructed for each con-
ditional predicate in the initial description the correspond-
ing clocks for its true/false outcome are found and are
attached to the appropriate CFG edges. In this way the
CFG is linked to the clock hierarchy yielding the CCFG
representation shown in figure 5. Applying the path gener-
ation algorithm out of 7 paths only 3 are feasible. All the
false paths are successfully identified and eliminated.

5. Experimental Results

Some experimental results are given in table 2 for a
set of benchmark programs. Benchmark “fancy” taken
from the pending section of HLS’92 benchmark suite, has
all its conditional predicates defined by arithmetic inequal-
ities and it demonstrates the efficiency of our inequality
reasoning method.

The “seat_belt” benchmark, first described in [18],
contains 17 conditional branches at various nesting levels,
including predicates involving arithmetic relations, thefin-
dAllPaths algorithm found 15 feasible paths out of 12284
possible ones. Thepeak number of paths during the execu-
tion of the algorithm did not exceed 55.

6. Conclusion

In this paper a method for false path analysis was pre-
sented. It is based on a special control flow graph repre-
sentation, the CCFG, which is a classical CFG linked to a
hierarchical control representation in BDD trees. This
method permits to effectively identify infeasible (false)
paths and could be easily incorporated within existing
methods and tools as an extra aid in the false path analysis
process. Such a completely automatic approach avoids the
possibility of introducing errors by having the user to
decide on path infeasibility.

Nevertheless, some limitations do exist. Even though
a large number of cases is covered, all false paths cannot
be identified at the boolean reasoning level. For instance,
contradictory predicates consisting of complex linear or
non-linear inequalities cannot be fully analyzed. A graph-
theoretic scheme treating simple linear inequalities was
described. For more complex linear inequalities existing
compilation techniques could be used.

Bench. source Paths
(total)

Feasible
Paths

False Paths
(%)

jian [16] 7 3 57

fancy [17] 162 31 81

ex2 [2] 8 4 50

seat_belt [18] 12284 15 99.87

Table 2. Benchmark results

Acknowledgments
The authors would like to thank the anonymous refer-

ees for their fruitful suggestions.

References

[1] R. Camposano. Path-based scheduling for synthesis. IEEE
Trans. CAD, 10(1): 85-93, 1991.

[2] R.A. Bergamaschi. The Effects of False Paths in High-
Level Synthesis. Proc. of the IEEE Int’l Conference on
Computer-Aided Design (ICCAD91), pp. 80-83, 1991.

[3] H-P. Juan, V. Chaiyakul, D. D. Gajski. Condition Graphs
for High-Quality Behavioral Synthesis. Int’l Conference
on CAD, San Jose, CA, 1994.

[4] Chang Yun Park, Allan C. Shaw. Experiments with a Pro-
gram Timing Tool Based on Source-Level Timing Schema.
IEEE Computer, 24(5): 48-57, May 1991.

[5] P. Puschner, Ch. Koza. Calculating the Maximum Execu-
tion Time of Real-Time Programs. RR-01-89, Institut fur
Technische Informatik, T. U. Wien, Apr. 1989.

[6] Y-T.S. Li, Sh. Malik, A. Wolfe. Efficient Microarchitecture
Modeling and Path Analysis for Real-Time Software. Proc.
of the IEEE RTSS’95, 298 - 307, Dec. 1995.

[7] I. Radivojevic, F. Brewer. Analysis of Conditional
Resource Sharing using a Guard-based Control Represen-
tation. Proc. of the Int’l Conference on Computer Design -
ICCD’95, 434-439, Oct. 1995.

[8] A. Bertolino, M. Marre. Automatic Generation of Test Path
Sets based on the Flow Analysis of Computer Programs.
IEEE Transactions on Software Engineering, 20(12): 885-
899, Dec. 1994.

[9] P. Le Guernic, M. Le Borgne, T. Gautier, C. Le Maire. Pro-
gramming Real Time Applications with SIGNAL. Proc. of
the IEEE, 79(9): 1321-1336, Sep. 1991.

[10] L. Besnard. Compilation de SIGNAL: horloges, depen-
dances, environment. Ph.D. thesis, Univ. of Rennes 1.

[11] T. P. Amagbegnon. Forme Canonique Arborescente des
Horloges de SIGNAL. Ph.D. thesis, Univ. of Rennes 1,
Dec. 1995.

[12] R. E. Bryant. “Graph-based Algorithms for Boolean Func-
tion Manipulation. IEEE Transactions on Computers, C-
35(8): 677-691, 1986.

[13] T.H. Cormen, C.E. Leiserson, R.L. Rivest. Introduction to
Algorithms. MIT Press, 1990.

[14] G.B. Dantzig, B.C. Eaves. Fourier-Motzkin Elimination
and its Dual. Journal of Combinatorial Theory, A(14): 288-
297, 1973.

[15] W. Pugh. The Omega test: a fast and practical integer pro-
gramming algorithm for dependence analysis. Communi-
cations of the ACM, 8: 102-114, Aug. 1992,

[16] J. Li, R. K. Gupta. An Algorithm To Determine Mutually
Exclusive Operations In Behavioral Descriptions. Proc.
DATE’98, 457-463, Feb. 1998.

[17] The High-Level Synthesis ‘92 Benchmark suit, available
from http://www.cbl.ncsu.edu/CBL_Docs/hls92.html.

[18] M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno,
A. Sangiovanni-Vincentelli. A Formal Specification Model
for Hardware/Software Codesign. Proc. of Int’l Workshop
on Hardware-Software Codesign, Oct. 1993.

[19] Clark W. Barrett, David L. Dill, Jeremy R. Levitt. Validity
Checking for Combinations of Theories with Equality.
Proc. FMCAD’96, Nov. 1996.

	Main Page
	ISSS98
	Front Matter
	Table of Contents
	Session Index
	Author Index

