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Abstract

 

Designing a cost effective superscalar architecture for x86
compatible microprocessors is a challenging task in terms
of both technical difficulty and commercial value. One of
the important design issues is the measurements of the dis-
tribution of functional unit usage and the micro operation
level parallelism (MLP), which together determine the
proper allocation of functional units in the superscalar
architecture. To obtain such measurements, an x86 instruc-
tion set CAD system x86 Workshop is developed, which
consists of both instruction set analysis and optimization
tools. x86 Workshop has been applied to analyze several
popular Windows95 applications such as Word, Excel,
Communicator, etc. The MLP and distribution of func-
tional unit usage are measured for these applications. The
measurements are used to evaluate several existing x86
superscalar processors and suggest future extension.

 

1.  Introduction

 

Improving the performance of microprocessors execut-
ing Intel’s x86 instruction set has been a meaningful and
demanding work, because of, not only their remarkable
market volume, but also their technical challenge. Of all
the architectural alternatives, the 

 

superscalar

 

 architecture,
found in Intel’s Pentium [2] and Pentium Pro [3], AMD’s
K5 [4] and Cyrix’s 6x86 [5] 

 

etc

 

., has been shown as an
effective solution to improve the performance of x86
instruction execution. 

The general practice to speed up x86 instruction execu-
tion is a two-layered microarchitecture, as shown in
Figure 1. The outer layer fetches x86 instructions from the
instruction cache, and translates the x86 instructions into
simpler operations (called micro operations 

 

MOP

 

’s or
RISC-like instructions) that are executed in the inner layer
of the microarchitecture. The inner layer, the area sur-
rounded by the dashed line, adopts a superscalar core to
speed up the execution.

We are currently participating in a research project,
called NSC98, to build a high performance superscalar x86

compatible microprocessor. One important design issue of
the superscalar architecture is the allocation of functional
units: how many integer units, load/store units, branch unit,
floating point units are necessary? The keys to answer
these questions are the 

 

micro operation level parallelism

 

(MLP) and the distribution of functional unit usage, which
should be derived from typical and real application soft-
ware, such as MS-Word, MS-Excel, 

 

etc

 

. 

A straightforward approach to obtain such statistics is to
construct a simulator for the superscalar architecture and
execute the simulator with real application software. How-
ever, such approach is impractical due to its tremendous
amount of overheads, especially during the 

 

design explora-
tion

 

 phase of the microprocessors. First is the overhead in
simulator construction. In order to make it possible for the
simulator to execute real binary code, it is necessary to
construct every detail of the superscalar architecture,
including x86-to-MOP decoders, the reorder buffer, the
reservation station, register renaming, data forwarding,
functional units, memory translation, 

 

etc

 

. Second is the
overhead in the required simulation time. According to our
primarily experiments, the typical speed of such supersca-
lar simulator ranges from a few tens to just a little bit more
than one hundred x86 instructions simulated per second.
With such speed, it is almost impossible to simulate real
application software. Third is the overhead in operating
system environment support.

Therefore, a fast performance/cost approximation tool is
highly needed to explore the design boundaries and iden-
tify feasible design choices during the early stage of the
design process. Based on the above observation, we pro-
pose a time-saving approach based on our instruction set
CAD system 

 

x86 Workshop

 

, which consists of three tools:

 

x86Bench

 

, 

 

State Mapper

 

, and 

 

ASIA-II

 

. x86Bench is an x86
application analysis system which produces disassembled
x86 basic blocks annotated with their execution counts.
State Mapper is an automatic tool which maps x86 instruc-
tions to MOPs for the given microarchitecture. Both
x86Bench and State Mapper serve as the front end of
ASIA-II, which is a second generation of our instruction



 

synthesis tool ASIA [1]. ASIA-II enables us to investigate
many interesting instruction behaviors in advanced super-
scalar architecture, including the distribution of functional
unit usage and MLP that are interesting to our x86 study. 

The rest of the paper is organized as follows. Section 2
describes the CAD framework and individual tools for the
x86 instruction analysis. Section 3 presents the analysis of
x86 application software and the results. Section 4 draws
conclusions for this study and points out future direction. 

 

2.  The x86 Instruction Set CAD System: x86 
Workshop

 

2.1  Framework

 

The framework of the x86 instruction set CAD system
x86 Workshop is shown Figure 2. x86 Workshop consists
of three tools: x86 Bench, State Mapper and ASIA-II. x86
Bench and State Mapper serve as the front-end of ASIA-II,

which investigates superscalar features. In this paper we
present the overall framework and the details of ASIA-II.
Details of x86 Bench and State Mapper can be found in [6]
and [7], respectively.

x86 Bench is an instruction analysis tool for the x86
instruction set, which is built around Intel’s performance
tuning tool VTune [10]. x86 Bench accepts an x86 program
and its input data. The x86 program can be a DOS or
Windows95 application. The tool can analyze x86 pro-
grams either with or without source code (high level lan-
guage source code). For the given x86 program and its
input data, the tool generates the x86 instruction usage fre-
quencies and the disassembled code annotated with basic
blocks’ execution counts. Note that currently we are able to
analyze instructions only belong to the application pro-
grams but not the operating system. To analyze instructions
in the operating system we need the symbol files for
Windows95’s kernel which are not available [9].

State Mapper is an instruction retargeting tool. It trans-
lates a given assembly code from one instruction set to
another instruction set, based on a machine state transition
notation. It can be configured to solve our x86 problem, as
illustrated in Figure 2. Each x86 instruction, due to its
CISC nature, is considered as an assembly code, which is
to be translated into a sequence of MOP’s (i.e., micro
sequence, or micro program). The MOP’s of the target
architecture is considered as the target instruction set for
State Mapper. The generated micro sequences can be
viewed as the entries of the x86-to-MOP mapping table.

ASIA-II reads in the disassembled x86 code generated
by x86 Bench and maps the x86 code into MOP’s, accord-
ing to the x86-to-MOP mapping table generated by Sate
Mapper. ASIA-II then schedules the MOP’s into time
steps, subject to constraints of their dependencies and the
constraints of the given superscalar microarchitecture
model. The superscalar microarchitecture model describes
the supported micro-operations, operational delays and the
topology of data path components. The numbers of data
path resources can also be given as the resource con-
straints, or unspecified and let the tool to search for the best
combination (w.r.t. to the given objective function). The
user given objective function controls the scheduling. It
can be configured to optimize for performance (as in the
experiment of this paper), functional unit cost, or a combi-
nation of both. MOPs scheduled into the same time step
represent MOPs that are executed in parallel in the super-
scalar core. From the scheduled MOP’s the MLP and the
distribution of functional unit usage can be obtained.

In the following sub-section, we present ASIA-II, the
investigation tool for superscalar microarchitecture, in
more details.

Figure 1. The superscalar architecture for x86 instruc-
tion execution

Figure 2. The x86 inst. set CAD system: x86 Workshop
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2.2  ASIA-II

 

ASIA-II is the second generation of our instruction set
analysis/synthesis tool ASIA (Automatic Synthesis of
Instruction set Architecture) [1]. ASIA analyzes and syn-
thesizes application specific instruction sets for pipelined
uni-processors. The kernel of ASIA is a micro operation
scheduling engine based on a simulated annealing algo-
rithm. When the instruction synthesis capability is desired,
an instruction formation mechanism which is integrated
into the scheduling engine can be turned on.

Since the internal superscalar core in Figure 1 can be
regarded as an application specific RISC-based core with
its sole application as an x86 instruction set emulator,
ASIA can be tuned to study many design issues of x86
compatible microprocessors, such as the design of the
internal RISC-based instruction set (MOP’s) [8] and the
functional unit allocation problem for the superscalar core,
which is the focus of this paper.

To support the investigation into superscalar issues,
ASIA needs the following improvements.

 

2.2.1  Distribution of functional unit usage

 

Using an instruction scheduling tool to investigate MLP
and distribution of functional unit usage for superscalar
architecture is a convenient approach but requires special
cares. Otherwise, non-optimal designs may results.

For example, Figure 3 (a) shows a piece of MOP code.
Figure 3 (b) (five MOPs in time step 1 and one MOP in
time step 2) and Figure 3 (c) (three MOPs in time step 1
and three MOPs in time step 2) are two versions of its
scheduled MOPs. Both versions take two time steps to fin-
ish. Both also have the same MLP of three (# of MOP’s / #
of time steps, 6/2). However, Figure 3 (b) requires five
ALU’s (to support the five MOP’s in time step 1) to sustain
such parallelism while Figure 3 (c) requires only three.
This observation suggests that a scheduling algorithm
which also tries to balance the resource usage while opti-
mizing for performance is suitable to explore superscalar
design space. 

In addition, in a superscalar core, the relative order of
operations is usually preserved during execution unless
there are dependencies or there are some operations which
take much more cycles than others to finish. For example,
it is very unlikely that the sixth MOP (

 

sub r15 r16 r17

 

) in
Figure 3 (a) is executed in time step 1 while the second
MOP (

 

add r4 r5 r6

 

) being executed in time step 2,
although the dependency relationship allows so. Therefore,
the scheduling algorithm should also try to preserve the rel-
ative order while optimizing for performance. 

To take care of the above two issues, ASIA-II adopts a
scheduling algorithm based on local compaction with a
simulated annealing approach. During the simulated

annealing process, MOPs are randomly selected and dis-
placed to other time steps. The displacement is subject to
dependence constraints and the displacement distance is
limited. Therefore, a MOP will stay close to its original
position as long as it does not lengthen the schedule. It is
possible to displace a MOP further away from its original
location through many iterations of displacements. How-
ever, ASIA-II performs such long range displacement only
when performance can be improved. As a result,

 

 ASIA-II
produces optimized schedules with better distribution of
functional unit usage as in the case of Figure 3 (c). In addi-
tion, the operation patterns in the schedules are more real-
istic and achievable in a superscalar core.

 

2.2.2  Register renaming

 

The superscalar core in Figure 1 supports the register
renaming mechanism in order to boost parallelism. Regis-
ter renaming eliminates 

 

anti

 

 (write after read) and 

 

output

 

(write after write) dependencies between a pair of opera-
tions by redirecting the write operation (the later operation
in the dependent pair) to a different location. Later opera-
tions that read the write result are also redirected to the new
location. 

The register renaming feature is supported in ASIA-II
by ignoring the anti and output dependencies among the
MOP’s during scheduling.

 

2.2.3  Hardware branch prediction

 

Branch instructions impede the instruction fetcher’s
capability to supply instructions at a sufficient rate to keep
functional units busy. When the outcome of a branch
instruction is not known, the instruction fetcher has to stall
or incorrect instructions are fetched. A stalled instruction
fetcher or incorrectly fetched instructions decrease the
number of instructions ready to execute in parallel.

 

Hardware branch prediction

 

 aims to reduce the branch
penalty by predicting, with hardware support, the direction
of the current branch instruction based on its previous
branch outcomes before the result of the current branch is
known. If the branches are successfully predicted, the
instruction fetcher is stalled for less times, and less number
of incorrect instructions are fetched. The functional units in
the data path would see more instructions ready for parallel

Figure 3. MOP schedules and distribution of functional 
unit usage

1.add r1  r2 r3
2.add r4 r5 r6
3.add r7 r8 r9
4.sub r10 r1  r11
5.sub r12 r13 r14
6.sub r15 r16 r17

(a) original MOPs

1.add r1  r2 r3;
add r4 r5 r6;
add r7 r8 r9;
sub r12 r13 r14;
sub r15 r16 r17

2.sub r10 r1  r11

(b) scheduled MOPs-I

1.add r1  r2 r3;
add r4 r5 r6;
add r7 r8 r9

2.sub r10 r1  r11;
sub r12 r13 r14;
sub r15 r16 r17

(c) scheduled MOPs-II



 

execution. Therefore, branch predication reclaims potential
parallelism which is undermined by branch instructions.

The effect of branch prediction is equivalent to the
enlargement of basic blocks’ sizes. The larger the basic
block, the more chances the superscalar core can find
instructions to execute in parallel. 

ASIA-II adopts the basic block enlargement approach to
account for the hardware branch prediction effect. Figure 4
illustrates this approach with a real example taken from a
Window95 archives application Winrar. Figure 4 (a) shows
a flow graph with basic blocks A through H. The number
next to the basic block is its execution count. Basic block A
executes for 11314 times, out of which 10594 times jumps
to basic block B and 720 times jumps to basic block C.
This flow graph can be differentiated into four versions of
enlarged basic blocks (called 

 

Eblocks

 

), as shown in
Figure 4 (b). The Eblocks are derived by tracing down
every path in the flow graph. While constructing the
Eblocks, ASIA-II also derives their execution counts. For
example, Eblock 1 is obtained by concatenating basic
blocks A, B and F. Eblock 1 is executed for 10594 times.
To model the variation in superscalar execution when
entering the same basic block from different preceding
blocks, different versions of Eblocks can be constructed for
the same basic block.

In its implementation, ASIA-II provides a user defined
parameter which controls how far ASIA-II should travel to
construct Eblocks. In the experiment conducted in this
paper, it is set to eight instructions; i.e., for a given basic
block, ASIA-II searches for the next eight instructions
from the flow graph and appends the eight instructions to
the end of the given basic block to form an Eblock. There
may be many versions of the eight-instruction pattern.
Each version produces one Eblock. 

 

2.2.4  Schedules, distribution and parallelism

 

Eblocks are then mapped into MOP’s and the MOP’s are
scheduled into time steps, as shown in Figure 4 (c). The
Eblocks are optimally scheduled into 5, 5, 5 and 4 time
steps, respectively. Note that in the second time step of
Eblock 2, two MOP’s loading into the same register 

 

ecx

 

are scheduled into the same time step. It’s a legal schedule
since one of the load will be renamed by hardware. There
is a similar case in Eblock 3.

From the MOP patterns in the time steps, the distribu-
tion of functional unit usage can be derived. For example,
the MOP’s in the first time step of Eblock 1 need three
load/store units (0A3M0B0F), which accounts for 19%
(10594/(5*10594+5*250+5*158+4*312)) of executed time
steps. Figure 5 shows the distribution of functional unit
usage of all Eblocks. Note that the most significant func-
tional unit usage patterns (3A0M1B0F, 2A0M1B0F,
1A1M0B0F, 0A3M0B0F and 0A1M1B0F) are contributed

by Eblock 1 since its execution count is much higher than
others. The MLP for this example is 2.83 which is calcu-
lated with the following equation EQ 1. The weights in the
equation specify the relative frequencies of the programs
executed in a typical workload environment. In this exam-
ple, the weight is set to one since there is only one program
(the flow graph in Figure 4 (a)). 

EQ 1

 

3.  Analysis of x86 Application Software

 

In this section, we apply x86 Workshop to measure the
potential MLP and the distribution of functional unit usage
of several commercial Windows95 applications. Table 1
lists the Windows95 applications used in this experiment,
including Microsoft’s Word and Excel, Netscape’s Com-
municator 4.03, Winzip, Winrar and Turbo95. These appli-

Figure 4. ASIA-II’s approach to support branch prediction
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cations are typical programs used by graduate students of
computer engineering. In the table we list the numbers of
executed instructions of the programs and the weights of
programs which represent the relative frequencies of these
applications used in a typical work environment. Note that
Word and Excel execute less instructions than other appli-
cations, because they are interactive programs which spend
most of the time in idle and waiting for users’ inputs. The
total number of instructions executed is over 445 million.

The superscalar core under measurement is based on the
superscalar model in Figure 1 with the following assump-
tions in order to obtain the maximal available MLP. 

1. The cache is 100% hit; i.e., there is no delay cycles
caused by cache miss. 

2. The branch prediction is 100% accurate. 

3. The instruction fetcher and decoders are fast
enough to provide and decode sufficient instruc-
tions, in order to sustain the maximal MLP. 

4. All the functional units are pipelined and the exe-
cution latency of functional units is one cycle,
except the load/store unit which requires two

 

a. User instructions only, not including the service of operating 
system

 

cycles (the first cycle computing the effective
address while the second cycle accessing the
cache). 

5. The reservation station is large enough to accom-
modate all ready MOPs and perform all necessary
register renaming.

Table 2 lists the MLP’s for the given programs. Note
Winzip and Winrar have higher MLP’s than Excel, Word
and Communicator because the former are computation
intensive jobs while the latter are interactive jobs which
require more condition handling. Turbo95 is a PC perfor-
mance measurement tool. It requires less number of func-
tion calls. The average size of basic blocks is larger than
other programs. Therefore, its MLP is significantly larger
than others. The average MLP for all the programs is 2.97
which is based on the equation EQ 1 and with the weights
given in Table 1.

Figure 6 shows the overall distribution of functional unit
usage of the MOP’s in the time steps for these programs.
Each bar represents the frequency of the corresponding
pattern of functional unit usage in the programs. To save
space, distributions of insignificant functional unit usage
patterns (< 1.8%) are lumped together and listed under the
label “others.” The most frequent patterns are 2A0M0B0F
(24.5%) and 1A0M0B0F (14%). The next frequent patterns
uses two to three integer units and one to two load/store
units. The result suggests that integer units and load/store
(memory) units are the most critical functional units for
efficient x86 execution. Note that these programs are
mainly integer applications. The use of floating point units
and MMX are very insignificant. Therefore, we will not
discuss floating point and MMX units in the rest of the dis-
cussion. 

A functional unit pattern can cover some other patterns.
For example, the time steps of the pattern 1A0M0B0F can
also be accommodated by the pattern 2A1M1B1F. There-
fore, we need to calculate the accumulated coverage of
time steps for possible allocations of functional units that
we are considering. Figure 7 shows the accumulated cover-
age of several functional unit allocations found in existing
x86 compatible microprocessors such as Pentium Pro, K5,

Program Executed Inst

 

a

 

. Weight

MS-Excel 7.0 3,249,987 10

MS-Word 7.0 8,222,279 20

Netscape Communica-
tor 4.03

70,573,959 15

Winzip 6.3 97,064,114 2

Winrar 2.02 79,824,168 1

Turbo95 187,063,542 1

TOTAL 445,998,049

 

Table 1: Description of Windows95 applications under 
experiment

Functional Unit 
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Figure 5. Distribution of functional unit usage in the sched-
ules of Figure 4 (c)

Notation: A: integer unit, M: memory, B: branch unit, F: floating unit

 

Program MLP

MS-Excel 7.0 2.58

MS-Word 7.0 2.62

Netscape Communicator 4.03 2.76

Winzip 6.3 3.34

Winrar 2.02 3.73

Turbo95 4.96

 

AVERAGE

 

2.97

 

Table 2: Measured MLP



 

Nx686, 

 

etc

 

. The 1A1M1B stands for a base machine with
one resource for each functional unit. It covers about 30%
of available parallelism. With an additional integer unit,
Pentium Pro is able to cover 61% of the available parallel-
ism. Adding an extra load/store unit to Pentium Pro, as in
K6 and Nx686, can increase the coverage up to 70%.
Finally, by adding two integer units and one load/store
units to K6, 93% of the available parallelism can be cov-
ered. Therefore, the 4A2M1B configuration is adopted in
the planned NSC98 microprocessor. 

The experiment of ASIA-II takes about 24 hours of
computing time on four UltraSparc CPU’s (one at
143MHz, two at 200MHz, and one at 270MHz).

 4.  Conclusions  

We have developed an x86 instruction set CAD system
x86 Workshop to measure the distribution of functional
unit usage and the micro operation level parallelism
(MLP), which together determine the proper allocation of
functional units in the x86 compatible superscalar architec-
ture. x86 Workshop consists of three tools: x86 Bench,
State Mapper and ASIA-II. x86 Bench is an instruction
analysis tool for the x86 instruction set. It produces disas-
sembled code for a given Windows95 program and its
input data, annotated with execution counts for the basic
blocks in the disassembled code. State Mapper automati-

cally generates the mapping table to map the x86 instruc-
tion set to MOP’s for a given superscalar architecture. 

ASIA-II reads in the disassembled x86 code generated
by x86 Bench and maps the x86 code into MOP’s, accord-
ing to the x86-to-MOP mapping table generated by Sate
Mapper. ASIA-II then schedules the MOP’s into time
steps. From the scheduled MOP’s, the distribution of func-
tional unit usage and average MLP can be measured. We
have presented the necessary mechanisms in ASIA-II in
order to support several superscalar features, such as regis-
ter renaming, branch prediction, 

 

etc

 

.
x86 Workshop has been successfully applied to analyze

several popular Windows95 applications such as Word,
Excel, Communicator, 

 

etc

 

. The MLP and distribution of
functional unit usage are measured for these applications.
The measurements are used to evaluate the allocation of
functional units in several existing x86 superscalar proces-
sors and suggest the improvement to our planned NSC98
x86 compatible superscalar microprocessor.

In the future, we’d like to conduct experiments to cover
a much wider spectrum of Windows95 applications. In
addition, we’d like to extend the capability of x86 Work-
shop to address other superscalar design issues, such as
instruction pairing (instruction folding), elimination of
short conditional branches, instruction decoder allocation,
branch prediction depth, 

 

etc

 

.
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