
Instruction Encoding Techniques for Area Minimization of Instruction ROM

T. Okuma, H. Tomiyama, A. Inoue, E. Fajar, and H. Yasuura
Department of Computer Science and Communication Engineering
Graduate School of Information Science and Electrical Engineering

Kyushu University
6–1 Kasuga-koen, Kasuga, 816-8580 Japan

Abstract

In this paper, we propose instruction encoding tech-
niques for embedded system design, which encode immedi-
ate fields of instructions to reduce the size of an instruction
memory. Although our proposed techniques require an ad-
ditional decoder for the encoded immediate values, exper-
imental results demonstrate the effectiveness of our tech-
niques to reduce the chip area.

1. Introduction

A breakthrough in CAD and semiconductor process
technologies facilitates designing the systems which are
constructed as a combination of memories, dedicated cir-
cuits and microprocessors. In such systems, a chip area has
a strong influence on a system cost, and memory size be-
comes dominant in the chip area. The minimization of the
memory area is effective for that of the chip area and the
system cost.

Memory is used two purposes, data memory and instruc-
tion memory. To reduce the area of memory, these are two
approaches; reduction of the number of words and reduction
of the width of words. In instruction memory, the number of
words depends on efforts of programmer and compiler, and
the width of words depends on system architectures and in-
struction coding techniques. We attempt to reduce the mem-
ory area for instruction coding.

In an instruction word, an immediate field usually deter-
mines the width (or length) of instruction words. However,
there is no application that all values which can be repre-
sented by the immediate field are used. In this paper, we
propose instruction encoding techniques, which encode im-
mediate fields of instructions to reduce the size of the in-
struction memory.

The rest of the paper is organized as follows. In section
2, we discuss related work. In section 3, we propose imme-
diate encoding techniques. In section 4, we discuss hard-
ware implementation. Experimental results are presented in
section 5, and we conclude this paper in section 6.

2. Related Work

In [4], Liao et al. proposed a machine instruction row
encoding technique in embedded application program. The
encoding technique is as follows. A common instruction
row which appears in the program is extracted, and it is reg-
istered as a function. After that, the registered instruction
row is replaced with the pointer to the function (function
call instruction). Then, the instruction row is compressed
by making a common part a function. It is reported that the
area of ROM is reduced by at most 30%. This technique
reduce the number of instructions stored in ROM, i.e. the
height of ROM. While our proposed techniques reduce the
instruction word length, i.e. the width of ROM. And, it is
possible to combine with Liao’s technique.

In [8], Yoshida et al. proposed an instruction encoding
technique, which encodes each instruction word in such a
way that the instruction ROM size is minimized. The main
purpose of this technique is low power, but it is effective
to reduce the system area too. However, this technique re-
quires a large overhead in hardware to decode instructions.

In [3], Ishiura et al. proposed another instruction encod-
ing technique. An original instruction word is partitioned
into several fields so that the decoder for each field is kept
within a reasonable size. After that, the each field is en-
coded.

3. Instruction Encoding Techniques

3.1. Basic Idea

In many processors, the longest field of instruction is
immediate value which represents memory addresses of
operand or operand values. The bit length of address is de-
termined by the memory space used in the program and that
of operand value is determined by the data size. Then, the
longer field is required for the larger system. But there is a
room to compress the field of immediate values, because not
all addresses and/or values may be appeared in a program.

In embedded systems, application programs are stored
in ROM, which will not be rewritten after the system is

shipped out. The set of immediate values which appear in
the program is fixed in the stage of the system design. Thus
these immediate values can be encoded and the length of
the field of immediate values can be reduced dramatically.
In CPU, the encoded values are decoded by a decoder and
instruction format of CPU need not be changed. By this
method, we can reduce the instruction length on ROM.

Immediate values

2 = (010)
14 = (01110)

250 = (011111010)
1013 = (01111110101)2

2

2

2 0 = (00)
1 = (01)
2 = (10)
3 = (11)

2

2

2

2

11 bits 2 bits
The size of

immediate field

Figure 1. An example of the encoding

Figure 1 shows an example of the encoding techniques.
In this example, there are four immediate values. The max-
imum value of the bit width in the immediate values deter-
mines the size of an immediate field, which is 11 bits here.
When this values are encoded into codes from 0 to 3, the
size of the immediate field is 2 bits. Therefore, the instruc-
tion word length can be reduced by at most 9 bits.

The idea of such encoding is not entirely new. It is
actually a variation of the microcode compaction. See
references[1, 5] for further particulars.

It is necessary to insert a decoder between the instruction
memory and the instruction register, named animmediate
decoder, which decodes the encoded immediate values to
the original format of the CPU’s instructions . The coding
and the immediate decoder should be designed for each ap-
plication program. But it is easy to be automated to this
redesign phase.

3.2. Models of System

3.2.1 Instruction Format

We assume seven kinds of instruction format types, which is
a simple model of popular RISC architecture (see Figure 2).
In this figure, the field written “Op” represents an opcode

L

Lreg

Limm 2

I 4

I 2

Limm 4

I 7

Limm 7Lop

Op

Op

Op

Op

Op

Op

Op

RegReg

Reg

Reg

Reg

Reg

Reg

Reg

Reg

Type 1
Type 2
Type 3
Type 4
Type 5
Type 6
Type 7

Figure 2. Instruction format

field. Lop is the size of this field, and it is shown as

Lop = dlog jOpje

whereOp specifies the set of operations of the instructions
which are used in an application. The field written “Reg” is
a register field.Lreg is the size of this field, and it is shown
as

Lreg = dlog jRegje

whereReg specifies the set of the registers which are used
in an application. The fields written “I2”, “ I4”, and , “I7”
are immediate fields.Limmi

is the each size of each field,
and it is shown as

Limmi
= max

�2Ii

(len(�))

whereIi specifies the set of immediate values in the format
type i which are used in an application program. len(x)

means the bit width1 of an immediate valuex, which are
either encoded or the original values. It is also called “ef-
fective bit size”. All values in the immediate field should
be expanded into the original values by the decoder, if it is
encoded, before sending to data path. The length of each
instruction format typeLi is shown as follows.

L1 = Lop + 3 � Lreg

L2 = Lop + 2 � Lreg + Limm2

L3 = Lop + 2 � Lreg

L4 = Lop + Lreg + Limm4

L5 = Lop + Lreg

L6 = Lop

L7 = Lop + Limm7

3.2.2 Instruction Word Length

The length of instructionL is fixed, that is the longest one
of all types.

L = max
i
(Li) (1)

L is called the instruction word length.
The instruction word length determines the width of the

instruction memory. Some instruction format types have the
fields where the instruction memory is unused (see Figure
3). These fields are called an unused fields, andLuui spec-
ifies the size of the unused field in the format typei. The
longest instruction format type has no unused field, namely
the length of unused field is 0.Luui is shown as follows.

Luui = L� Li

1For example, len(0011011) is 6 , and len(0000110) is 4.

Luui

Type 1

I 4

I 2

I 7

Op

Op

Op

Op

Op

Op

Op

RegReg

Reg

Reg

Reg

Reg

Reg

Reg

Reg

Type 2
Type 3
Type 4
Type 5
Type 6
Type 7

Figure 3. An unused field in the instruction
format

Type 4 I 4Op Reg

Type 4 Op Reg
Lcut4

I 4

Encoding

L

Figure 4. An example of Lcuti(i = 4)

3.3. Encoding Techniques

In this paper, we propose six kinds of encoding tech-
niques to reduce the instruction word length. We can define
the reduction ratio of the ROM area including the imme-
diate decoder for these techniques to indicate their effects.
The reduction ratioRcost is shown as

Rcost =
Nall � Lred � Æ

Nall � L

whereNall is the number of all instructions in an applica-
tion program, i.e. the hight of the instruction memory, and
L is the instruction word length before encoding, i.e. the
width of the instruction memory.Æ is the cost of imme-
diate decoder.Lred represents the instruction word length
reduced by encoding, and it is shown as

Lred = min
i
(Lcuti) (2)

whereLcuti specifies the difference betweenL (see Expres-
sion (1)) and an effective size of the format typei after en-
coding. Figure 4 shows an example ofLcuti .

While the values ofNall andL do not change for all tech-
niques, the values ofLred andÆ are different. Since the cost
of immediate decoderÆ depends on the implementation, this
chapter does not discuss aboutÆ. An implementation of an
immediate decoder is examined in the next chapter.

Lred is calculated by expression (2), and we only have
to calculateLcuti for each technique to obtain the reduction
ratio. In the rest of this chapter, each technique is precisely
explained, and the equation ofLcuti is derived.

a) Longest format/All Coding (LAC)

LAC is a method to encode only the immediate values of
the longest instruction format type. Figure 5 shows LAC. In
this figure, the shaded part is the immediate field eliminated
by encoding.

Lcuti of LAC is shown as

Lcuti =

�
Limmj

� dlog jIj je � � � (i = j)

Luui
� � � (otherwise)

wherej is the longest format type.

b) Individual format/All Coding (IAC)

IAC is a method to encode the immediate values of each
field of type 2, type 4, and type 7 individually. Figure 6
shows IAC.

Lcuti in IAC is shown as follows.

Lcuti =

�
Limmi

� dlog jIije + Luui
� � � (i = 2; 4; 7)

Luui
� � � (otherwise)

c) Union format/All Coding (UAC)

UAC is a method to encode the immediate values of each
field of type 2, type 4, and type 7 altogether. Figure 7 shows
UAC.

Lcuti in UAC is shown as follows.

Lcuti =

8><
>:

(Limmi
� dlog j

[
i=2;4;7

Iije) + Luui

� � � (i = 2; 4; 7)

Luui
� � � (otherwise)

d) Longest format/Partial Coding (LPC)

LPC is a method to encode only the immediate values of the
longest instruction format type. However, it doesn’t encode
the values which can be represented in an immediate field
after encoding. e.g. if 0 and 100 are the immediate value,
0 need not be encoded, 100 will be encoded as 1. The pur-
pose of this method is to reduce the size of the immediate
decoder. In this case, a flag bit to indicate whether the val-
ues is encoded or not is necessary. Figure 8 shows LPC. In
this figure, the hatched part is the flag bit.

First of all, two functionOver(I; k) andLover(I) are
defined beforeLcuti of this method is presented.

Over(I; k) = f� 2 I j len(�) > kg (3)

Lover(I) = minf� j jOver(I; �)j � 2�g (4)

Over(I; k) specifies the subset ofI and has elements whose
effective bit size is larger thank, whereI is the set of im-
mediate values. If� is defined as the size of immediate
field, we only have to think about the following conditional
expression.

jOver(I; �)j � 2�

Lover(I) specifies the minimum� which satisfying this re-
quirement forI. The immediate field can be shortened only
toLover(I), even if it is minimum.

Lcuti in LPC is shown as follows.

Lcuti =

�
Limmj

� (1 + Lover(Ij)) � � � (i = j)

Luui
� � � (otherwise)

I 4

I 7

Op

Op

Op

Op

Op

Op

Op

RegReg

Reg

Reg

Reg

Reg

Reg

Reg

Reg

I 2

Lcut j

Figure 5. LAC

Op

Op

Op

Op

Op

Op

Op

RegReg

Reg

Reg

Reg

Reg

Reg

Reg

Reg

I 2

Lcut2

Lcut1

I 4

I7

I 2

Lcut4

Lcut 7

Figure 6. IAC

Op

Op

Op

Op

Op

Op

Op

RegReg

Reg

Reg

Reg

Reg

Reg

Reg

Reg

I 2

Lcut 2

Lcut 1

I 7

I 2

I 4

same length

Lcut 7

Figure 7. UAC

I 4

I 7

Op

Op

Op

Op

Op

Op

Op

RegReg

Reg

Reg

Reg

Reg

Reg

Reg

Reg

I 2

Lcut j

Lcut 7

Figure 8. LPC

Op

Op

Op

Op

Op

Op

Op

RegReg

Reg

Reg

Reg

Reg

Reg

Reg

Reg

I 2

Lcut 2

Lcut1

I 4

I 7

I 2

Lcut 4

Lcut 7

Figure 9. IPC

Op

Op

Op

Op

Op

Op

Op

RegReg

Reg

Reg

Reg

Reg

Reg

Reg

Reg

I 2

Lcut 2

Lcut 1

I 7

I 2

I 4

Lcut 7

Figure 10. UPC

e) Individual format/Partial Coding (IPC)

IPC is a method to encode the immediate values of each
field of type 2, type 4, and type 7 individually. Similar to
LPC, it doesn’t encode the values which can be represented
in an immediate field after encoding, and the flag bit is nec-
essary. Figure 9 shows IPC.

Lcuti in IPC is shown as follows.

Lcuti =

�
Limmi

� (1 + Lover(Ii)) + Luui
� � � (i = 2; 4; 7)

Luui
� � � (otherwise)

f) Union format/Partial Coding (UPC)

UPC is a method to encode the immediate values of each
field of type 2, type 4, and type 7 altogether. Similar to LPC,
it doesn’t encode the values which can be represented in an
immediate field after encoding, and the flag bit is necessary.
Figure 10 shows UPC.

Because the number of encoded immediate values
changes depending on the size of the fieldsI2, I4, andI7,
we think about size by arranging a right edge of an immedi-
ate field as shown in Figure 10. FieldI4 is Lreg bits longer
than fieldI2, and FieldI7 is 2�Lreg bits longer than fieldI2.
The set of immediate values which can not be represented in
these three immediate fields is defined asOver

0
(�), where

� is the size of the fieldI2. Over0(k) can be calculated as
follows.

Over
0
(�) = Over(I2; �)

[Over(I4; � + Lreg)

[Over(I7; � + 2 � Lreg)

WhenOver0(�) is calculated, we only have to think
about� such that the encoded values are represented in the
field I2. Because the values which can be represented in
this field is sure to be able to be represented in the fieldI4

andI7. Therefore,� which satisfies the following condition

is appropriate as the size of fieldI2 after encoding.

jOver0(�)j � 2
�

Lover specifies the minimum� which satisfying this re-
quirement.

Lover = minf� j jOver0(�)j � 2�g

Lcuti in the UPC method is shown as follows.

Lcuti =

�
(Limm2

� (1 + Lover) + Luu2
� � � (i = 2; 4; 7)

Luui
� � � (otherwise)

4. Discussion on Hardware Implementation

4.1. Decoder Cost

To decode immediate values in the above techniques, im-
mediate decoders which decode the encoded values are re-
quired. There are two methods to implement the decoders,
ROM decoders and logic circuits. In this paper, we consider
the cost of the ROM decoders.

The cost of immediate decoderÆ is shown as

Æ = jIdecj � max
�2Idec

(len(�)) (5)

whereIdec is the set of encoded immediate values.jIdecj
indicates the height of ROM for immediate decoder, and
max�2Idec

(len(�)) indicates the width of it. If there are two
or more sets of immediate values for encoding, the same
number of immediate decoders are required. Thus, the cost
of immediate decoders is the the sum of equation (5) with
each set. In the rest of this chapter, the sets of immediate
values for encoding are derived for all encoding techniques.

a) Longest format/All Coding (LAC)

All immediate values in the longest instruction format type
are targeted for encoding in LAC. Therefore, when the
longest instruction format type is assumed to be typej, the
set of immediate valuesIj in this type is targeted for encod-
ing in this method.

b) Individual format/All Coding (IAC)

All immediate values in the each instruction format type
are individually targeted for encoding in IAC. Therefore,
the sets of immediate valuesI2, I4 andI7 are targeted for
encoding in this method.

c) Union format/All Coding (UAC)

All immediate values in each instruction format types are
collectively targeted for encoding in UPC. Therefore, the
set of immediate values

S
i=2;4;7 Ii is targeted for encoding

in this method.

d) Longest format/Partial Coding (LPC)

The values which can not be represented in immediate field
of the longest format type are targeted for encoding in LPC.
When the longest instruction format type is assumed to be
typej, the set of encoded immediate values is calculated to
Lred for LPC (see chapter 3.3). The size of the immedi-
ate field in the longest instruction format type shortens by
Lred+1 (1 is the flag bit), when the instruction word length
is reduced byLred bits. Therefore, the size of the immedi-
ate field after encoding is shown as follows.

Limmj
� Lred � 1

The set of the immediate values which is targeted for en-
coding in this method is shown as follows by the expression
(3).

Over(Ij ; Limmj
� Lred � 1)

e) Individual format/Partial Coding (IPC)

The values which can not be represented in immediate field
of each format type are individually targeted for encoding in
IPC. Similar to LPC, the sets of encoded immediate values
are calculated toLred for IPC, and the size of the immediate
field after encoding is shown as follows.

Limmi
+ Luui � Lred � 1

The sets of the immediate values which are targeted for
encoding in this method are shown as follows by the expres-
sion (3).

Over(Ii; Limmi
+ Luui � Lred � 1)

(i = 2; 4; 7)

f) Union format/Partial Coding (UPC)

The values which can not be represented in immediate field
of each format type are collectively targeted for encoding in
UPC. Similar to LPC, the sets of encoded immediate values
are calculated toLred for UPC, and the size of the immedi-
ate field after encoding is shown as follows.

Limm2
+ Luu2 � Lred � 1

The set of the immediate values which is targeted for en-
coding in this method is shown as follows by the expression
(5).

Over
0
(Limm2

+ Luu2 � Lred � 1)

4.2. A Countermeasure for Delay

A clock period of CPU may become long, if it takes
much time to decode the immediate values. The delay of
a pipeline stage which performs such decoding may be-
come dominant compared with other stages. One approach
to avoid such a performance loss is to introduce a pipeline
stage for the decoding can be added. However, in general,
the deeper the pipeline, the worse the branch penalty in
clock cycles[2]. We do not consider this approach in evalu-
ations of next chapter.

5. Experimental Result

We applied our encoding techniques to three embedded
applications, ghostscript, mpeg2 decoder, and mpeg2 en-
coder. A code size of these application programs are about
42,000, 6,500, and 6,800 lines, respectively. Our used
compiler is gcc-dlx2 which based GNU CC Ver. 2.7.2[6]
for DLX architecture[2].

Table 2 shows analysis results of these application pro-
grams. The results indicates that the longest instruction for-
mat type is usually type 2, and a frequency in use of type 2
instructions is usually dominant for all other types.

Table 1 shows results of area reduction by proposed tech-
niques to these application programs. The followings are
summarized from the table.

1. An effective methods for ghostscript are LPC, IPC, and
UPC.

2. An effective methods for mpeg2 decoder is IPC.

3. An effective methods for mpeg2 encoder is IPC.

In ghostscript, three kinds of partial coding have same re-
sults, because these were finally encoded only the immedi-
ate values in the longest format type. In mpeg2 applications,
the highest reduction rate is achieved in IAC, though the im-
mediate decoder size is the largest. This is because the IAC
method can reduce the instruction word length most.

2http://www-mount.ee.umn.edu/˜ okeefe/mcerg/gcc-dlx.html

Table 1. Reduction of area by proposed techniques
ghostcript LAC IAC UAC LPC IPC UPC
Reduced size of instruction word length[bits] 4 4 3 4 4 4

Reduced area of instruction memory[bits] 69,936 69.936 52,451 69.936 69.936 69.936
Cost of immediate decoder[bits] 35,216 116,418 117,705 26,592 26,592 26,592

Reduction ratio[%] 11.5 10.1 7.05 11.7 11.7 11.7
mpeg2 decoder LAC IAC UAC LPC IPC UPC
Reduced size of instruction word length[bits] 5 6 4 5 5 5

Reduced area of instruction memory[bits] 146,545 175,854 117,236 146,545 146,545 146,545
Cost of immediate decoder[bits] 13,200 38,256 35,760 10,304 10,432 10,432

Reduction ratio[%] 13.8 14.2 8.4 14.1 14.1 14.1

mpeg2 encoder LAC IAC UAC LPC IPC UPC
Reduced size of instruction word length[bits] 5 6 4 5 5 5

Reduced area of instruction memory[bits] 181,480 217,776 145,184 181,480 181,480 181,480
Cost of immediate decoder[bits] 13,280 41,109 39,644 10,000 10,128 10,128

Reduction ratio[%] 14.0 14.7 8.8 14.3 14.3 14.3

Table 2. An analysis of application programs
ghost- mpeg2 mpeg2
script decoder encoder

Number of
total instructions 174,984 29,309 36,296

kinds of instructions 104 104 104
registers 29 29 32

immediate values (type 2) 2,201 825 830
immediate values (type 4) 432 346 374
immediate values (type 7) 3,910 1,220 1,285
immediate values (total) 5,753 2,089 2,170
Length of

opcode field 7 7 7
register field 5 5 5

immediate field (type 2) 16 16 16
immediate field (type 4) 16 16 16
immediate field (type 7) 19 16 17

Effective bit width of
type 1 22 22 22
type 2 33 33 33
type 3 17 17 17
type 4 28 28 28
type 5 12 12 12
type 6 7 7 7
type 7 26 23 24

Instruction word length 33 33 33
Frequency in use of [%] [%] [%]

type 1 10.5 12.0 13.1
type 2 62.2 63.4 63.0
type 3 2.6 2.6 3.9
type 4 7.2 12.6 11.8
type 5 1.1 0.9 0.7
type 6 6.4 6.2 5.2
type 7 9.9 2.4 2.2

Unused ratio of ROM [%] 13.69 13.35 13.19

6. Conclusion

We presented six instruction encoding techniques for
embedded system design which encode immediate values in
instructions. We derived the equations which calculate the

reduced size of instruction word length for all techniques,
and the expression which calculate the reduction ratio of
the ROM area including the immediate decoder for all tech-
niques.

We can dramatically reduce the chip area, if our tech-
niques are applied to a program of application specific
VLIW processors.

References

[1] A. Grasselli. “The design of program-modifiable micro-
programmed control units”.IRE Trans. on EC, EC-11:336–
339, 1962.

[2] J. L. Hennessy and D. A. Patterson.Computer Architecture: A
Quantitative Approach. Morgan Kaufmann Publishers, Inc.,
2nd edition, 1996.

[3] N. Ishiura and M. Yamaguchi. “Instruction Code Compres-
sion for Application Specific VLIW Processors Based on Au-
tomatic Field Partitioning”. InProc. of Synthesis and System
Integration of Mixed Technologies (SASIMI’97), pages 105–
109, 1997.

[4] S. Y. Liao, S. Devadas, and K. Keutzer. “Code Density Op-
timization for Embedded DSP Processors Using Data Com-
pression Techniques”. InProc. of ARVLSI, 1995.

[5] R. F. Rosin, G. Frieder, and R. H. E. Jr. “An Environment
for Research in Microprogramming and Emulation”.Comm.
ACM, 15(8):748–760, 1972.

[6] R. M. Stallman.Using and Porting GNU CC for version 2.7.2.
Free Software Foundation, Inc., 1995.

[7] H. Yasuura, H. Tomiyama, A. Inoue, and F. N. Eko. “Em-
bedded System Design Using Soft-Core Processor and Valen-
C”. to appear in IIS Journal of Information Science and En-
gineering, 14(3), September 1998.

[8] Y. Yoshida, B. Y. Song, H. Okuhata, T. Onoye, and I. Shi-
rakawa. “Low-Power Consumption Architecture for Embed-
ded Processor”. InProc. 2nd International Conference on
ASIC, pages 77–80, Oct. 1996.

	Main Page
	ISSS98
	Front Matter
	Table of Contents
	Session Index
	Author Index

