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Abstract
We describe an approach for incorporating cores into

a system-level speci�cation. The goal is to allow a de-

signer to specify both custom behavior and pre-designed

cores at the earliest design stages, and to re�ne both into

implementations in a uni�ed manner. The approach is

based on experience with an actual application of a GPS-

based navigation system. We use an object-oriented lan-

guage for speci�cation, representing each core as an ob-

ject. We de�ne three speci�cation levels, and we eval-

uate the appropriateness of existing inter-object com-

munication methods for cores. The approach forms the

speci�cation basis for the Dalton project.

1 Introduction

Increasing chip capacities has led to entire systems

being implemented on a single chip. Pre-designed sys-

tem components like bus controllers and data encoders,

which previously took the form of integrated circuits

(IC's), are now becoming available instead as intellec-

tual property cores so that they may be incorporated

onto a single chip with other components. Cores can

be soft (synthesizable source code), �rm (technology-

independent netlists), or hard (technology-speci�c lay-

outs).

Meanwhile, system synthesis has evolved to assist in

converting a speci�cation of desired system functional-

ity into a collection of system components, some pre-

designed and some custom designed. A key challenge

that cores present to system speci�cation relates to their

exibile interfaces. Speci�cally, before the advent of

cores, pre-designed system components came as pre-

packaged IC's with �xed interfaces. Thus, the approach

for incorporating such a component into a system spec-

i�cation simply involved instantiating that component

into a system-level netlist of components. A netlist re-

quires �xed (or at best parameterized) interfaces. Cores,

however, can have exibile interfaces, meaning that we

can vary the number, sizes and protocols of their ex-

ternal buses. Thus, continuing the past approach is

too restrictive with regards to interfaces. Instead, we

want to incorporate cores into a system speci�cation

in a manner that enables us to explore a variety of in-

terfaces among those cores. Such an approach would

complement existing industry e�orts to build cores with

exible interfaces, e.g., the \bus wrapper" e�ort of the

Virtual Socket Interface Alliance [1]. A �rst attempt

to address the issues of system-level speci�cation with

cores, and interface exploration and synthesis for core-

based systems, is being addressed in the Dalton project

at UC Riverside.

In this paper, we describe an approach for incorpo-

rating cores into a system speci�cation and for re�ning

that speci�cation towards an implementation. In Sec-

tion 2, we de�ne a three-level approach to system spec-

i�cation catering to cores. In Section 3, we describe the

techniques necessary to re�ne the speci�cation through

the three levels. In Section 4, we illustrate the spec-

i�cation approach on a GPS navigation example. In

Section 5, we provide conclusions.

2 System speci�cation with cores

We have isolated three types of system speci�cations

suitable for describing core-based systems, as illustrated

in Figure 1. The �rst, referred to as method-calling ob-

jects, is the most abstract and best for early speci�ca-

tion. The second, message-passing processes, represents

an intermediate speci�cation. It is commonly used as a

system speci�cation, and while adequate, does not pro-

vide as strong of core encapsulation as the �rst type.

The third, structurally-interfaced components, repre-

sents the type of system speci�cation commonly used

today when structural components like cores are to be

incorporated.

2.1 Method-calling objects

System designers commonly create an early system

model using languages like C, C++ or Java. One of

our goals was to de�ne a system speci�cation approach

that made use of these existing languages rather than

creating a new language or adding extensions to an ex-

isting language. The object-oriented model supported

by C++ and Java seemed to be an excellent match for

cores. Our system speci�cation approach, however, can

be implemented using any object-oriented language.

2.1.1 Active objects

In an object-oriented language, a class represents the

de�nition of an object's data (state) and methods. A

class can be derived from another class, meaning the for-

mer automatically includes the data and methods from

the latter. A method is a procedure, declared as part of

the class, that manipulates the object's data and serves

as the interface to the object. An object must be instan-

tiated by declaring a variable of the class type; multiple
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Fig. 1: Three levels of system-level speci�cations:

Method-calling objects, message-passing processes, and

structurally-interfaced components.

objects of the same class may be instantiated. A passive

object, representing the traditional type of object, is a

repository for data that is manipulated by calling the

object's methods. On the other hand, an active ob-

ject is an object that has or uses a thread of control as

a part of its state. Once instantiated, an active object

can be thought of as executing concurrently with other

active objects.

The active object paradigm is an excellent match for

a system-level speci�cation. Not only does it provide

a good means for managing system complexity, but it

also provides an excellent means for incorporating cores

early into system speci�cations. When incorporating a

core, we have two main goals:

1. Encapsulate the core as a distinct component,

providing access to the core's functions, while hid-

ing the internal implementation details.

2. Keep the interface functional, not structural.

Active objects support both of these goals. Class def-

initions support the �rst goal directly. Methods support

the second goal directly.

Describing active objects requires threads. Java has

a Thread class as part of its API. For C++, we use Posix

threads to implement a Thread class for C++. In either

case, the Thread class has a start() method, which, in

turn, invokes the run() method of the core class. Any

class derived from the Thread class would result in an

active object. We de�ne a method-based core class as

one describing a physical core but having functional in-

ternal behavior and a method-based interface with other

objects.

For example, Figure 2 represents a method-based

core class derived from Thread, written in Java. The

class UartFct extends Thread {

   public bit txd;
   private byte data;
   private boolean rdy = false;

   private synchronized void
      setRdy(boolean b) {rdy = b;}

   public void xmit(byte b)
   {
      setRdy(true);
      data = b;
   }

}

      while (true) {
         if (rdy) {
            for (int i=0; i<8; i++) {
               txd = (data>>i)&1;}
         }
         setRdy(false);
     }

   {
   public void run()

Fig. 2: A method-based core class for a UART.

run method, once activated, will loop continuously. It

checks if data is ready to be sent, and if so, sends the

data serially over an output port. Another object can

interact with the UART by calling the xmit method,

which receives a byte of data and sets a ready ag,

so that the data would be sent by the executing run

method. The setRdy method is synchronized, meaning

that only one invocation of the method may occur at a

time. The user of the core may instantiate and activate

a core object as:

UartFct uartA = new UartFct();. uartA.start();.

The user may then send data x to the UART for serial

transmission as:

uartA.xmit(x)

Note that a method-based core class may consist of

a mix of both a functional interface (methods) and a

structural interface (public data). Even in a system

speci�cation, there will often be the need for represent-

ing structural input and output, such as the bit output

of the UART; the fact that the output is a bit is essen-

tial, and hiding this fact with a method is not bene�cial.

Also, a core may require multiple threads itself to sup-

port concurrency within itself.

2.1.2 Communication

A method call to an active object may be either syn-

chronous or asynchronous. In a synchronous method

call, the calling object blocks until the method returns.

In an asynchronous method call, the calling object may

continue execution as soon as the method parameters

have been transferred.

Both types of communication are valid for cores and

thus should be supported. An example of a synchronous

call would be that of a core passing data to another core



that encrypts the data and returns it. The �rst core's

object might call a method encrypt on the second core,

waiting for the return value. In some cases there might

not be any data returned by a method, but we might

still want to block for synchronization purposes. On the

other hand, an example of an asynchronous call would

be that of a core passing data to a UART for serial

transmission. The �rst core might simply pass the data

to the UART and then proceed with other tasks while

the UART sends the data serially.

While languages like Java and C++ support syn-

chronous method calls directly, they typically do not

support asynchronous method calls directly. Therefore,

we use the technique shown in Figure 2 to achieve the

same behavior. The method xmit is desired to be asyn-

chronous, so instead of including the details of serial

transmission in that method, we instead store the pa-

rameter and set a ag, where that ag is monitored by

the run method and causes the actual serial transmis-

sion there. Therefore, xmit returns very quickly, thus

making the communcation appear asynchronous.

We must also determine how the objects will be \con-

nected." There are several alternative approaches for

connecting and, hence, establishing communication be-

tween method-based core objects. We can describe two

of those approaches as follows:

� Hierarchical: In this approach, a single master ob-

ject transfers data to or from all the other objects,

via method calls. The other objects, though exe-

cuting concurrently, are all servants to the master.

� Cooperating: In this approach, each object trans-

fers data to or from other objects; there is no

obvious master.

The hierarchical approach matches well with many

microcontroller-based systems we have examined. In

such systems, an object is declared as the master ob-

ject, usually a microcontroller. This object, in turn, in-

stantiates servant peripheral objects, and can then call

their methods. This approach is very simple but has the

drawback that the servant objects cannot call methods

of other objects.

In some systems, a more distributed form of com-

munication may be desired, requiring the cooperating

approach. In these cases, we declare all objects within

one parent testbench object. An object may call meth-

ods on other objects, and thus may require a handle to

other objects; those handles are passed during creation

of the object. A microcontroller object would require

handles to all its peripherals. Likewise, a peripheral

object may require a handle to another peripheral with

which direct communication occurs. It may even require

a handle back to the microcontroller, perhaps to call an

interrupt method. This approach is more general, but

results in increased speci�cation complexity.

2.2 Message-passing processes

This speci�cation level corresponds closely to the

communicating process model common in many earlier

proposed approaches to system speci�cation. The speci-

�cation is based on a communicating sequential process

model [2]. The model consists of several concurrently

executing processes, which communicate via message

passing. Message passing consists of send and receive

procedures, in which data is sent from one process to

another, and received by that other process. In block-

ing message-passing, the sender or receiver blocks, or

suspends, until the data is transferred. In non-blocking

message-passing, the sender may proceed immediately

after sending the data, requiring queueing of the sent

data until the other process receives the data.

Like method-calling objects, all message-passing pro-

cesses preserve the exibility of both internal behavior

and external interfaces by representing both function-

ally rather than structurally. However, in a message-

passing process speci�cation, the communication among

processes does not describe the data transformation oc-

curing on the transferred data. In contrast, method-

calling objects may be designed to clearly indicate the

data transformation. For example, rather than a pro-

cess communicating with another process P as follows:

Send(x,P); Receive(y,P);, an object can communicate

with another object O as follows: y = O.encrypt(x).

Note that message-passing processes can be imple-

mented in an object-oriented language by de�ning a

channel object, having send and receive methods. Then,

each object, when declared, requires a handle to a chan-

nel object, with one channel being shared among two

objects, and the object can then call the channel's send

or receive method to communicate with the other ob-

ject.

2.3 Structurally-interfaced components

This speci�cation level corresponds to a netlist of

system level components, equivalent to a traditional

system-level block diagram. Here, the external interface

of each component is �xed, and wires connect compo-

nents together. Internally, each component may still be

described behaviorally.

Each message-passing channel may be mapped to its

own structural bus, or many channels may be mapped

to the same bus. Some techniques related to synthesis

of physical buses from behavioral channels are described

in [3, 4].

We have investigated techniques for preserving code

readability in the re�ned code within each component

by maintaining the appearance of message passing com-

munication even though a structural bus is being used.

Towards this end, we developed OOCL (Object-Oriented

Communication Library) [5]. OOCL is a library of rou-

tines written in C and VHDL that can be used for com-



munication among software and/or hardware compo-

nents without any underlying operating system support

(which is what di�erentiates OOCL from other common

forms of process communication). A user instantiates a

channel for a particular bus protocol using existing con-

structs in C or VHDL. The user can then call Send and

Receive routines from the rest of the code. Unlike the

case in pure message passing, these routines have de-

tailed underlying implementations speci�c to the bus

and protocol for which the channel has been declared.

The user, therefore, can achieve many of the speci�ca-

tion goals of message passing communication, while us-

ing existing language constructs and describing detailed

protocol communication.

2.4 Related work

Many researchers have proposed using object-oriented

(OO) speci�cations for digital systems design, but none

have focused particulary on cores, to our knowledge.

Cores require unique details to be worked out as de-

scribed above. Some researchers have focused on de-

scribing hardware using OO languages, while others have

focused on OO system speci�cations.

Kumar [6] discussed capturing a hardware design us-

ing an OO language, including capture of registers, com-

parators, etc. A processor would then take the form

of a transformation function that declares components

as objects, and accesses those objects through method

calls. Some research has focused on extending VHDL

for OO models; a good summary is found in [7].

Others have focused on using object-oriented model-

ing as an early speci�cation of desired system function-

ality, rather than as a method for describing existing

register-transfer components. Each object can be im-

plemented on a software processor or a hardware pro-

cessor, with the mapping of objects to processors being

many to one or one to many (e.g., [8, 9]).

Our goal can be seen as a mix of the previous two.

We too want to specify existing components, but more

abstract components representing entire processors and

peripherals, rather than register-transfer-level compo-

nents. Likewise, we too want to specify desired system

functionality, but we also want to be able to encapsulate

cores in that speci�cation.

3 System re�nement

Given a system speci�cation consisting of method-

calling objects, we want to re�ne that speci�cation into

a set of structurally-interfaced components, in order to

provide a link with existing tools.

3.1 Re�nement from objects to processes

The �rst step is to re�ne the method-calling objects

into message-passing processes. We must convert the

method calls as well as the methods themselves. The

only way that the processes will be able to communicate

is by sending and receiving data.

A method call takes the form of:

o1 = P.method1(i1, ..., in, o2, ..., om)

We can convert the method call by a sequence of sends

and receives as follows:

Send(i1, P); Send(..., P); Send(in, P); Rec(o1,

P); Rec(o2, P); Rec(..., P); Rec(on, P);

To be more e�cient, we can send all input parameters

at once:

Send(i1, ..., in, P);

and, likewise, receive all output parameters at once, re-

quiring specialized but straightforward send and receive

routines. This stage of the re�nement process can be

automated. A parser for the language can generate the

send and receive routines as it encounters method calls.

A conservative approach to converting an object's

methods themselves is to create a process for every one

of its methods, in addition to a main process for the ob-

ject's run method. Thus, an object would be replaced

by a group of processes, where those processes share

the object's data. In this case, the above sends and

receives would specify the particular method's process

(e.g., Send(i1, P method1)), rather than the main pro-

cess P as above. However, such a high degree of con-

currency may not be necessary if the methods are called

sequentially. In this case, several methods may be im-

plemented with one process. If the sequence of method

calls can be determined statically, then the process can

simply consist of a sequence:

Rec(i1, ..., in);

o1 = method1(i1, ..., in, o2, ..., on);

Send(o1, o2, ..., on);

Rec(inputs for another method)

Call another method

Otherwise, the process would consist of a decode

stage in which the address of the called method is re-

ceived, and a branch stage in which the appropriate

method is called. Note that recursion among methods

in di�erent processes would not be supported in such an

approach. Again, given a parser for the language in use,

this stage of the re�nement process can be automated

as well.

4 A GPS navigation example

We performed a case study of a real application in

order to de�ne and verify the above approach. The ap-

plication is a navigation system based on GPS (Global

Positioning System). The system is an Autonomous Ve-

hicle Navigation System (AVNS). The AVNS uses Dif-

ferential GPS coupled with a high speed Inertial Navi-

gation System to accurately estimate its exact position



within centimeter-level of accuracy. This estimated po-

sition, along with a pre-recorded path, is fed into a

control system that commands a steering-wheel step-

per motor, as well as a speed control unit of a vehi-

cle to maintain a steady speed along that pre-recorded

path. We fully implemented the system using discrete

system components. An Intel 486SX processor runs a

real-time application program written in approximately

15,000 lines of C code. The system has been used to

control a driver-less Ford Escort.

We also created a object-oriented speci�cation of this

same system, as illustrated in Figure 3. A microcon-

troller is connected to 10 peripheral soft cores. Six

analog-to-digital converters (ADC's) feed the microcon-

troller with acceleration and rotational rates, sensed by

the INS (Intertial Navigation System) unit, 100 times

per second. The microcontroller integrates these rates

to obtain high-speed position and velocity estimates of

the vehicle. The GPS receiver and the radio modem

units, connected via two UARTs to the computer, feed

the microcontroller with very accurate positioning data

once every second. The microcontroller computes vehi-

cle position using this data with centimeter-level accu-

racy. The two estimates, one from INS and one from

GPS are meshed together in a Kalman Filter, whose

output feeds the controller. The controller, after com-

puting a steering angle and throttle position, outputs

commands to the steering-wheel stepper motor and the

speed control units of the vehicle ten times per second.

The object-oriented speci�cation consisted of imple-

menting the UART, AD, PWM and Micro-controller

cores, on the three di�erent abstraction levels, method-

calling, message-passing, and structural-interfaced, in

Java. The method-calling implementation consisted of

640 lines of Java code, with an average of 100 lines per

core. On the other extreme, the structural-interfaced

speci�cation consisted of 1700 lines of Java code, with

an average of 250 lines per core. In the case of the Micro-

controller cores, the Run method consisted of the actual

navigation code. Instead, a Micro-controller core could

have been implemented to emulate the actual 486SX

processor.

Stepping through our three speci�cation levels would

result in the speci�cation being re�ned into that shown

in Figure 4. In this case, an interface con�guration is

chosen using a single system bus. All the cores now have

structural interfaces. This speci�cation can directly feed

into existing synthesis tools, which would synthesize (for

soft cores) or retrieve (for hard cores) implementations

for each core.

There are two advantages to specifying this system

using our three-level approach, rather than starting with

the structurally-interfaced component description. First,

the method-calling object speci�cation is easier to com-

prehend and �ts in with the common approach designers

GPS

Modem

uart

uart

uart

pwm

a/d

a/da/da/da/d

a/d

microcontroller

y

x

accelerometer

z r

p
q

gyroscope
in

in

in

out

out

in

Autonomous Vehicle Navigation System

OS : INS LOOP :
   GPS LOOP

Fig. 3: The navigation system as an object-oriented

speci�cation having soft cores with soft interfaces

(methods). The cores are represented as abstract mod-

els.

GPS
LOOP

INS
LOOPOS

bus

memory (program/data)uart

uart

a/d

a/d a/d

uart

pwm

a/d a/d a/d

microcontroller

Autonomous Vehicle Navigation System

Fig. 4: The navigation system re�ned to have soft

cores with hard interfaces, connected to a single system

bus. The cores are represented as VHDL synthesizable

models.

use today of building early system models in C++ or

even Java. Second, the fact that the cores have func-

tional, not structural, interfaces enables us to automat-

ically explore a wide variety of bus interface con�gu-

rations among those cores. Such exploration can sig-

ni�cantly optimize important design metrics, such as

power consumption, wiring size, and performance. In

fact, we are developing a tool within the Dalton project

to automatically explore a variety of bus con�gurations,

and have found tremendous power optimization poten-

tial even for a single-bus con�guration [10]. The con-

�guration can be varied by the data bus size, by the

way that large data is multiplexed over the bus, by the

way that unused bus lines are padded, and by applying

bus-invert. Early results are summarized in Figure 5;

notice the large variation in power for di�erent bus con-

�gurations. We have found that the optimal bus con�g-

urations varies per example, since each example has a

unique combination of data being transferred over the

bus (e.g., the AVNS has a particular scheduling of 12

bit and 8 bit data being transferred; other systems may

have di�erent bit sizes).

5 Conclusions

We have presented a three-level system speci�cation

approach supporting cores. The �rst level of method-

calling objects encapsulates cores, while keeping inter-
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faces functional and thus supporting interface explo-

ration. The approach forms the basis of the speci�cation

approach being used in the Dalton project. Future work

will include developing interface exploration techniques,

made possible by cores and their functional interfaces.
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