
A Processor Description Language Supporting Retargetable
Multi-Pipeline DSP Program Development Tools

by Chuck Siska
Rockwell Semiconductor Systems, Inc.
email: chuck.siska@rss.rockwell.com

Abstract
Many ISA-level machine description languages have

been introduced to support the automated development and
retargeting of digital signal processor (DSP) software
development tools. These languages have yet to move
below the ISA-level and adequately address DSP pipeline
issues. ISA-level bit-accurate models may be reasonable
for small micro-controllers, but are inadequate when
applied to complex high-performance DSPs. We introduce
a new machine description language, RADL, which sup-
ports the automated generation of DSP programming
tools. From RADL, we can generate production-quality
tools including cycle- and phase-accurate simulators.
RADL has explicit support for pipeline modeling, including
delay slots, interrupts, hardware loops, hazards, and multi-
ple interacting pipelines in a natural and intuitive way.
RADL can represent both SIMD and MIMD instruction
styles. We have coupled our language to an in-house tool-
chain generator which is used to create production assem-
blers, simulators and compilers.

1 Introduction
Time-to-market pressures in telecommunications and

consumer electronics are in direct conflict with the increas-
ing complexity of today's embedded hardware designs.
These designs are increasingly turning to programmable
DSP core processors employed in conjunction with custom
circuitry. DSP core designs are themselves evolving. To
meet these pressures it is necessary to be able to reuse
application and hardware designs as well as to be able to
generate programming tools for those hardware designs.

Early availability of assemblers, instruction-set simula-
tors, and compilers are required to meet market pressures
in developing new cost-effective applications. Manual
development of such production-quality tools is simply too
slow; hence, the need for retargetable programming tools.
As pointed out by Fauth et al [1], such tools can even be
used as aids to architecture exploration, if they can be gen-
erated fast enough. However, we do not wish to sacrifice
tool quality. ISA-level retargeting leading to bit-accurate
tools may be reasonable for micro-controllers, but is inade-
quate when applied to complex high-performance embed-
ded DSP designs.

Making the retargeting of programming tools flexible
and fast requires a machine description language which
both can capture the ISA- and pipeline-level aspects of a
design and can be easily understood and manipulated.

Attempting to achieve these goals has led us both to build
upon the work of others and to extend that work.

2 Previous work
We have designed a new machine description language

because no existing system includes an ISA-level descrip-
tion with a simple to use yet detailed pipeline model suit-
able for embedded DSPs.

The nML processor description language [1-5] is the
closest to our work. It includes the concepts of an opera-
tion hierarchy, separate specification of assembly language
syntax, machine language encoding and simulator/com-
piler behavior. All these appear in RADL (Retargetable
Architecture Description Language), albeit, in a somewhat
different syntactic form. However, nML handles a pipeline
only awkwardly [5]. It also includes an implicit program
counter, which is inconvenient in some circumstances such
as hardware or zero-overhead loops and interrupts, and the
handling of delay slots is very limited. Resources (e.g.,
registers, etc.) are global, only, which complicates descrip-
tions.

Fauth, Van Praet and Freericks [1], briefly describe an
extension to nML to both define "transitory" registers and
then to "synchronize" their behavior. Their transitory
nature means that their values will become undefined after
some finite delay. It is unclear how a collection of such
synchronized registers are supplied with values "at the
same time" without extreme care being given to the check-
ing of "undefined" values. It is also unclear what happens
when an operation attempts to store to a transitory register
which has already received a value but is still awaiting the
delay from a previously stored value to complete.

The LISA processor description language [6] was
developed to support high performance simulators. LISA
has a more detailed ability to describe certain types of pipe-
lines with its Schedule construct. However, it is limited in
this regard by its ASAP Gantt chart scheduling. Also, the
pipeline stage names are defined implicitly throughout its
description. It has no notion of a hierarchy of behavior
through which description sharing can be achieved --
everything is at the instruction-level. LISA is limited in
how it describes assembly language. As with nML, LISA
also has an implicit instruction fetch mechanism and pro-
gram counter, and resources are global, only. LISA doesn't
support delay slots, zero-overhead loops, or interrupts.

The MIMOLA language [7, 8] typically uses a graph
model of a restricted set of processors (although MIMOLA
is not always linked to the graph model described by

Nowak [7]). The instruction set is implicitly defined in this
model. MIMOLA appears too low-level for our purposes.

The Maril language [9] is specifically tailored to RISC
processors and is designed to generate a compiler backend,
including code instruction selection and scheduling and
register allocation. It is limited to load-store architectures
and, hence, cannot describe many typical DSP architec-
tures.

CodeSyn [10] is a retargetable compiler backend sys-
tem. It has no explicit machine description language but,
rather, relies on describing the processor in the C program-
ming language.

The RECORD processor description language [11]
describes the behavior of machine instructions as register-
memory transfer assignments and explicit no-operation
statements. Its main objective is to support retargetable
code generation. RECORD has no explicit notion of a pro-
cessor pipeline, although pipeline conflicts can be repre-
sented. It also has no notion of assembly language.

3 Pipelines in RADL
When an inter-instruction hazard is detected, it is neces-

sary to stall the pipeline. In RADL, a strategy table within
the pipeline describes how to stall the pipeline, and a sig-
nals section describes when.

A strategy consists of a pipeline control signal together
with a description of what to do to the pipeline stages to
initiate the next machine cycle. As a simple example, con-
sider the DLX pipeline described in Hennessy and Patter-
son (H&P) [12], see Figures 1, 2 and 3. The pipeline
stages are IF, ID, EX, MEM and WB. If the detection of a
read after write conflict between a load instruction in the
EX phase and an instruction in the ID phase was signaled
with, say, a 'load_raw' signal then we could write the strat-
egy to perform the stall as follows:

load_raw, ID: stall(NOP);

The first element in the above list is the signal control-
ling whether the strategy is applicable. The second ele-
ment, "ID:", indicates the stage involved in what we call a
pipeline tactic. The third element, "stall(NOP)", indicates
what to do. In the case of a "stall" tactic, the indicated
stage and stages upstream are frozen in place -- they will
repeat their stage behavior with the same inputs (and hence
their instructions will not move forward). Also, the "NOP"
argument to the stall tactic indicates that a NOP instruction
will be inserted into the stage just after the ID stage. The
rest of the stages (MEM and WB) will continue to flow
smoothly. Other RADL pipeline stage tactics include, for
example, "kill" to replace an instruction without stalling
upstream stages.

If more than one strategy is applicable at a particular
machine cycle, then the strategy with the higher priority is
chosen. Priority is determined by the order of strategies in
the pipeline description. For the simple DLX, we only
need enter the one "load_raw" strategy, above. The default
strategy, which is chosen if no other strategy is applicable,

simply fetches the next instruction using an explicitly
described memory and program counter.

The pipeline strategy table is represented syntactically,
as follows (ellipses indicate code not shown):
pipeline pipe1 { ...
 strategies {
 signal, IF(PC), ID, EX, MEM, WB;
 load_raw, ID: stall(NOP);
 } ... }

This is the strategy table for the pipeline, pipe1. The
first list, headed by "signal" is not a strategy but, rather, it
is just the title line for the strategy "table" and serves to
name the pipeline stages. (The syntax shown is a stage
keyword style -- the "title line" is more clear using a less
compact alternative positional style of strategy descrip-
tion.) The "(PC)" following the "IF" stage name indicates
that for the default smoothly flowing pipeline that the next

Figure 1. The simple DLX pipeline as shown in H&P figure 3.4.

instruction is fetched using the PC register resource. The
memory to be used is indicated in a resources section not
shown.

The signals, themselves, must also be declared in
RADL. This declaration has two forms: a simple signal,
and a composite signal. The composite signal is built up

from a boolean expression of previously defined signals.
For example, we might describe the signals needed for the
above pipeline strategy table as follows (see Figure 3):
signals {
 cond; // Controls use of branch address.
 // The EX stage's load rd field == ID stage's rs1 field.
 // "ex_rd" is an alias of "pipe1[ID.EX].IR[11:15]"
 // similarly "id_rs1" is aliased to "pipe1[IF.ID].IR[6:10]"
 // and "id_rs2" to "pipe1[IF.ID].IR[11:15]".
 ex_ld_rd_eq_id_rs1 == (ex_rd == id_rs1);
 // The EX stage's load rd field == ID stage's rs2 field.
 ex_ld_rd_eq_id_rs2 == (ex_rd == id_rs2);
 ex_load == load_instr.EX; // Load instruction in EX stage.
 id_branch == branch_instr.ID; // Branch instruction in ID stage.
 id_imm_alu == imm_alu_instr.ID; // Immediate alu instr in ID stg.
 id_mem == mem_instr.ID; // Load or store instruction in ID stage.
 id_reg_alu == reg_alu_instr.ID; // Reg-reg alu instr in ID stage.
 // Load interlock detection logic, from Fig. 3, rows 1-3, resp.
 // Detect a RAW hazard between ID and an EX load instr.
 load_raw1 == (ex_load && id_reg_alu && ex_ld_rd_eq_id_rs1);
 load_raw2 == (ex_load && id_reg_alu && ex_ld_rd_eq_id_rs2);
 load_raw3 == (ex_load && (id_mem || id_imm_alu || id_branch)
 && ex_ld_rd_eq_id_rs1);
 load_raw == load_raw1 || load_raw2 || load_raw3;
}

Here, all but the first, the cond, signal are composite
signals. They are composed of boolean expressions of
most of the other signals. (The cond control signal is
shown as a latch field in Figure 1 as "Branch Taken" but is
represented as a RADL signal in our DLX example). Sim-
ple signals, such as cond, are set by behavioral code during

a machine cycle. The ex_load signal and the four compos-
ite signals following it are set by the activation of the
behavior of an operation (in this case an instruction) in a
particular stage of the pipeline.

Signals do not need to be part of a pipeline. They can
be used in non-pipelined descriptions as well. In a simula-
tor, the composite pipeline signals are evaluated prior to
the beginning of each machine cycle. Then the highest pri-
ority of the applicable strategies is chosen and the indicated
adjustments to the pipeline stages are performed (e.g.,
whether to allow a smooth flow from one stage to the next,
to stall a stage, or to inject an instruction into the stage).
Following this strategy selection, the simple pipeline sig-
nals are reset to prepare for the new machine cycle.

In order to handle phase-accuracy, the number of
machine-phases in a machine-cycle (i.e., in a pipeline
stage) is specified for a pipeline, as follows:

pipeline pipe1 {
 phases_per_stage = 2; ...
}

Instruction, or instruction-part, behavior can be partitioned
into different phases for the same stage so as to be able to
read a register file in one phase and write to it in another
phase. Another reason for this description element is to

Stage Any instruction

IF IF/ID.IR ← Mem [PC];
IF/ID.NPC,PC ← (if EX/MEM.cond {EX/MEM.ALUoutput} else {PC+4});

ID ID/EX.A ← Regs [IF/ID.IR 6..10]; ID/EX.B ← Regs [IF/ID.IR 11..15];
ID/EX.NPC ← IF/ID.NPC; ID/EX.IR ← IF/ID.IR;
ID/EX.Imm ← (IF/ID.IR 16) 16##IF/ID.IR 16..31 ;

ALU instruction Load or store instruction Branch instruction

EX EX/MEM.IR ← ID/EX.IR;
EX/MEM.ALUoutput ←
ID/EX.A op ID/EX.B;
or
EX/MEM.ALUoutput ←
ID/EX.A op ID/EX.Imm;
EX/MEM.cond ← 0;

EX/MEM.IR ← ID/EX.IR;
EX/MEM.ALUoutput ←
ID/EX.A + ID/EX.Imm;
EX/MEM.cond ← 0;
EX/MEM.B ← ID/EX.B;

EX/MEM.ALUoutput ←
ID/EX.NPC + ID/EX.Imm;
EX/MEM.cond ←
 (ID/EX.A op 0);

MEM MEM/WB.IR ← EX/MEM.IR;
MEM/WB.ALUoutput ←
EX/MEM.ALUoutput;

MEM/WB.IR ← EX/MEM.IR;
MEM/WB.LMD ←
Mem[EX/MEM.ALUoutput];
or
Mem[EX/MEM.ALUoutput] ←
EX/MEM.B;

WB Regs[MEM/WB.IR 16..20] ←
MEM/WB.ALUoutput;
or
Regs[MEM/WB.IR 11..15] ←
MEM/WB.ALUoutput;

Regs[MEM/WB.IR 11..15] ←
MEM/WB.LMD;

Figure 2. Events on every pipe stage of the DLX pipeline as shown in H&P Figure 3.5 with corrections.

provide for the possibility of other pipelines which are run-
ning at different (but synchronous) speeds. That is, they
have a different number of phases per stage than that of a
"main" pipeline.

In RADL, there is a latch register between each consec-
utive pair of stages. (As we will see, below, we can also
have latch registers before or after all the stages). An
instruction's typical stage behavior is to read from the latch
before that stage and modify the data of the latch following
that stage. A latch is named by the preceding and follow-
ing stage names. For example, "ID.EX" is the name of the
latch between the ID and EX stages, and the latch would be
accessed in behavioral code by "pipe1[ID.EX]" in the
case of our DLX pipeline example.

The RADL processor designer can specify the types of
latch data for a pipeline as C data declarations. The syntax
of the latch section's body is somewhat like a C language
switch statement with sequences of C struct field declara-
tions optionally prefixed by a colon-terminated sequence
of latch names, as follows. The latch names indicate which
fields belong to which latches. The default is for a latch
field to belong to all latches. Here is the simple DLX pipe-
line latch definition, see Figure 2.
 pipeline pipe1 { ...
 latch { // IR is used in all pipeline latch registers.
 feed unsigned int IR; // the latch field to feed from mem[PC].
 IF.ID, ID.EX: // applies only to IF.ID and ID.EX latches.
 unsigned int NPC; // the new PC value.

 ID.EX:: // applies only to ID.EX latch.
 // We need most latch fields to be both signed and unsigned:
 // we use “union nonsigned_int { int s; unsigned int u; };”
 nonsigned_int A; // the rs1 field's register value.
 nonsigned_int Imm; // an immediate value.
 ID.EX, EX.MEM:
 nonsigned_int B; // the rd or rs2 field's register value.
 EX.MEM, MEM.WB:
 nonsigned_int ALUoutput; // the ALU output value.
 MEM.WB:
 nonsigned_int LMD; // the loaded memory data value.
 } ... }

In the above example, the nonsigned_int is a C union
(equivalent to a Pascal variant record) which allows us to
use the bits either as a signed or unsigned integer, as
needed. Note that the cond latch field of Figure 2 is repre-
sented not as a latch field but, instead, as a pipeline control
signal. Also, the PC is represented as a register resource
rather than as a latch field.

A pipeline strategy can feed an instruction into the latch
field which is designated as the "feed" field. The data type
of such a feed latch field must match the data type of the
instruction memory addressed by the default strategy’s pro-
gram counter, PC in the example, and there can be only one
such feed latch field associated with a given pipeline. The

feed(<alt-pc>, <alt-memory>) tactic allows the use of mul-
tiple program counters (e.g.., in the example, not just PC)
within a single pipeline — to support multiple threads, for
example. To support instruction decompression, special-
ized memory resource read/write behavior can be supplied
to override the default simple array access behavior.

RADL includes as a default the copying, or propaga-
tion, of data of common latch fields from the latch register
before a stage to the latch register following. Thus, behav-
ior code to indicate such copying need not be written. This
default latch field propagation is overridden by actual
assignment to a latch field. Here is an example of this from
the simple DLX load-store instruction's behavior. Here,
adder33 is a functional part of the DLX ALU. (The
adder33’s “1” arguments merely indicate that the argu-
ments following are signed rather than unsigned.)
operation mem_instr { ...
 behavior.EX
 { // see Fig. 2, EX row, Load or store instruction section.
 // EX/MEM.IR <- ID/EX.IR is implicit in latch propagation.
 // do EX/MEM.ALUoutput <- ID/EX.A+ID/EX.Imm;
 pipe1[EX.MEM].ALUoutput
 = adder33(1, pipe1[ID.EX].A,
 1, pipe1[ID.EX].Imm);
 // EX/MEM.cond = 0 is implicit in machine cycle signal reset.
 // EX/MEM.B <- ID/EX.B is implicit in latch field propagation.
 } ... }

The “behavior.EX” section indicates behavioral code

for the EX stage of the mem_instr operation (an hierarchi-
cally combined load and store instruction). If we had
needed to specify a particular phase, say phase 2, of the EX
stage, we could have named the section “behavior.EX.2”,
for example. Note that of the four assignment statements
in figure 2’s EX row, Load or store instruction section, only
one assignment actually required representation in this
RADL fragment.

3.1 Operation Hierarchy

In order to understand how to introduce multiple pipe-
lines we need to make a brief excursion into hierarchical
operations. A processor is described as a nested hierarchy
of operations and sub-operations, as is done in nML [2].
The root of the hierarchy is marked as a "main" operation.
The hierarchical relationships of operations are specified in
the composition sections of those operations. This corre-
sponds to nML's And- and Or-rules, except that in RADL
we can combine both rules into a single composition state-
ment. A simplified DLX example follows:
operation.main DLX_simple { // pipeline from Figs 2 & 3.
 composition {
 instr && adder33 && adderPC;
 }
 resources {

Opcode field of
ID/EX(ID/EX.IR 0..5) Opcode field of IF/ID (IF/ID.IR 0..5) Matching operand fields
Load Register-register ALU ID/EX.IR11..15 = IF/ID.IR6..10

Load Register-register ALU ID/EX.IR11..15 = IF/ID.IR11..15

Load Load, store, ALU immediate, or branch ID/EX.IR11..15 = IF/ID.IR6..10

Figure 3. The logic to detect the need for load interlocks during the ID stage of an
instruction as shown in H&P Figure 3.18 with corrections.

 unsigned int PC; // the DLX program counter.
 nonsigned_int Reg[MAX_REG]; // DLX registers.
 feed nonsigned_int Mem[MAX_MEM]; // DLX memory.
 }
 pipeline pipe1 { ... }
}
operation instr {
 composition {
 alu_instr || mem_instr || branch_instr;
 } ... }
operation alu_instr {
 composition {
 Imm_alu_instr || Reg_alu_instr;
 } ... }

The "||" indicates alternative specializations of the oper-
ation. That is, an instr can be either an alu_instr, a
mem_instr or a branch_instr sub-operation. The "&&"
indicates aggregation. The DLX_simple main operation
includes four sub-operations representing instruction
behavior, the instr operation, the two adders (the adder33
being part of the ALU). We can also nest aggregation and
alternation if necessary as well as provide local name bind-
ings to the sub-operations in case, for example, they are
used more than once in the same aggregate.

3.2 Initiating a sub-pipeline

One pipeline can initiate behavior in another pipeline.
An example might be the initiation of a floating-point (FP)
add instruction from the main instruction pipeline in an
FPU sub-pipeline. The DLX FPU's Add pipeline has four
stages, shown below. The FPU_Add operation will also
need to be added to the DLX_simple operation's composi-
tion as another aggregated part for this to work, of course.
operation FPU_Add { ...
 pipeline fpa_pipe { ...
 strategies { // CF H&P Fig. 3.44.
 signal, A1, A2, A3, A4;
 ... } ... } ... }

To control the injection of the FP Add instruction, we
will rely on a main pipeline signal, FP_add. Such signals
can be used to control communication between pipelines
which do not have a parent-child relationship.

The instr operation's ID stage behavior can detect the
presence of an FP add instruction and raise the main pipe-
line’s FP_add signal.
operation instr {
 behavior.ID { ...
 if ((0b000010 == pipe1[IF.ID].IR[0:5])
 && (0b000100 == pipe1[IF.ID].IR[26:31]))
 pipe1.FP_add = true;
 } ... }

This behavior could also be achieved in a more declara-
tive fashion using a composite signal in the pipe1 pipeline
as follows:
signals { ...
 FP_add == (0b000010 == pipe1[[IF.ID].IR[0:5])
 && (0b000100 == pipe1[IF.ID].IR[26:31]);
}

The fpa_pipe pipeline strategy table will have a strategy
associated with this pipe1.FP_add signal. This strategy
will inject, or gate, several of the main pipeline ID.EX
latch fields into the FPU_Add’s corresponding latch fields
before the A1 stage. To do this, the FPU_Add latch section

is annotated to indicate that there will be a "before.A1"
latch register. We also supply an "A4.after" latch register.
This facilitates data communication to and from the main
pipeline. We also will need to add three extra floating
point fields to the main pipeline's latch structure and to
dereference the operands as floats (as well as integers) in
the ID stage into FP latch fields: FP_A, FP_B and
FP_Imm.

Below is the FPU_Add operation with its pipeline and
the stall tactic which invokes the fpa_in operation behavior
which performs the inter-pipeline latch mapping for getting
data into the fpa_pipe. Care must be taken in the fpa_in
injection behavior to perform operations simple enough for
compiler resource analysis.

A similar technique in the main pipeline will get the
data out of the fpa_pipe. The behavior performing the
injection runs prior to the start of a machine cycle -- it sets
up the stage's "input" latch. Note that the fpa_in opera-
tion's behavior has no stage annotation suffix -- is not asso-
ciated with a particular stage.

The "(NOP)" after the "A1" stage name doesn't indicate
a program counter resource (for there is no need to fetch
from memory to feed the instruction pipeline, here), but
rather a NOP instruction which is to be run for the A1 stage
as the default strategy. The default strategy inserts a NOP
for the fpa_pipe pipeline's A1 stage’s input latch,
“before.A1”.
operation FPU_Add {
 composition {
 fp_add_instr && fpa_in;
 }
 pipeline fpa_pipe { ...
 strategies {
 signal, A1(NOP), A2, A3, A4;
 pipe1.FP_add, A1: stall(fpa_in);
 }
 latch with before, after { // includes both before.A1 and A4.after.
 feed unsigned int IR; // the instruction register to feed.
 float FP_A; // the rs1 field's FP register value.
 float FP_Imm; // a signed immediate value as a float.
 float FP_B; // the rd or rs2 field's FP register value.
 float FP_Output; // the FP_Add output value.
 float FP_LMD; // the FP loaded memory data value.
 } ... } ... }
operation.inject fpa_in {
 behavior {
 fpa_pipe[before.A1].IR = pipe1[ID.EX].IR;
 fpa_pipe[before.A1].FP_A = pipe1[ID.EX].FP_A;
 fpa_pipe[before.A1].FP_B = pipe1[[ID.EX].FP_B;
 fpa_pipe[before.A1].FP_Imm = pipe1[ID.EX].FP_Imm;
 fpa_pipe[before.A1].FP_Output = 0;
 fpa_pipe[before.A1].FP_LMD = 0;
 } ... }

When a non-NOP FP_result is produced in the A4.after
latch register, we will connect it to the main pipeline via a
control signal set by an fp_add_instr operation behavior
(not shown). This signal controls another main pipeline
strategy (also not shown) to handle the injecting of
FPU_Add pipeline results from the A4.after latch back into
the main pipeline EX.MEM latch register. These control
and data connections will use the same techniques as used
to invoke the FPU_Add pipeline from the main pipeline.

4 Conclusions
This paper has introduced a flexible and effective

approach to the task of modeling processors with multiple
pipelines for the purpose of retargetable production-quality
programming tools. The focus has been primarily on
cycle- and phase-accurate simulators. The main contribu-
tions are in the ease and flexibility of capturing pipeline
behavior and in inter-pipeline control and data communica-
tions. Examples were presented of a machine description
of the familiar and accessible DLX pedagogical processor
described in Hennessy and Patterson [12].

RADL demonstrates that the description of pipelines in
support of tool retargetability can be achieved in a straight-
forward and intuitive manner. Typical pipeline aspects
such as control signals, stall strategies and latch registers
are made explicit in RADL. Many of the tedious issues
such as copying unchanged latch fields to the next latch
register and resetting control signals are handled automati-
cally. The pipeline representation is sufficiently close to
typical processor descriptions (e.g., H&P figures in Chap-
ter 3) that it is very easy to write a RADL description from
such hardware descriptions. This improves both visibility
into a processor description and the ease with which it can
be modified.

Acknowledgments
I would like to thank the reviewers and also my col-

leagues from the Rockwell Design Automation Review
Team for their many helpful comments and corrections:
Karl Andersson, Lisa Guerra, Dan Pettyjohn, and Suresh
Sureshchandran. I would also like to thank Vojin
Zivojnovic (Axys GmbH) for initiating the RADL lan-
guage effort while a Rockwell employee (“Rockwell
Architecture Description Language (proposal)”, 26 June
1997, Rockwell Semiconductor Systems, Advanced VLSI
Architectures Department internal document). The figures
and source code examples in this paper are taken from the
RADL specification, copyright 1998, Rockwell Semicon-
ductor Systems, Inc.

References
1. Fauth, A., J. Van Praet and M. Freericks, “Describing Instruc-

tion Set Processors Using nML,” Proceedings of the European
Design and Test Conference (ED&TC), Paris, March 1995,
pp.503-507.

2. M. Freericks, “The nML Machine Description Formalism,” TU
Berlin Computer Science Technical Report — Updated &
Revised Version 1.5 (Draft), June, 1993.

3. Fauth, A. and A. Knoll, “Automated Generation of DSP Pro-
gram Development Tools,” in Proceedings of the IEEE
ICASSP-93, May 1993.

4. Fauth, A., “Beyond Tool-Specific Machine Descriptions,” in
Code Generation for Embedded Processors, Marwedel and
Goosens (Eds.), Kluwer Academic Publishers, 1995.

5. Hartoog, M., J. Rowson, P. Reddy, S. Desai, D. Dunlop, E. Har-
court and N. Khullar, “Generation of Software Tools from Pro-
cessor Descriptions for Hardware/Software Codesign,” Design
Automation Conference, 1997.

6. Zivojnovic, V., S. Pees, C. Schlager and H. Meyr, “LISA —
Machine Description Language and Generic Machine Model,”
ICSPAT, Boston, 1997.

7. Nowak, L., “Graph Based Retargetable Microcode Compila-
tion in the MIMOLA Design System, MICRO-20, 1987, pp.
126-132.

8. Bashford, S. et al, “The MIMOLA Language Version 4.1,”
Technical Report, Lehrstuhl Informatik XII, Univ. Dortmund,
Setp. 1994.

9. Bradlee, D., R. Henry and S. Eggers, “The Marion System for
Retargetable Instruction Scheduling,” Proceedings of the
ACM SIGPLAN ‘91 Conference on Programming Language
Design and Implementation, Toronto, Canada, June, 1991.

10. Liem, C., T. May and P. Paulin, “Instruction-Set Matching and
Selection for DSP and ASIP Code Generation,” European
Design and Test Conference (ED&TC), 1994, pp. 31-37.

11. Leupers, R. and P. Marwedel, “Instruction-Set Modelling for
ASIP Code Generation,” 9th International Conference on
VLSI Design, Bangalore, India, Jan. 1996.

12. Hennessy, J. and D. Patterson, Computer Architecture: A
Quantitative Approach, Morgan Kaufmann Publishers, Inc.,
1996, 2nd Edition.

	Main Page
	ISSS98
	Front Matter
	Table of Contents
	Session Index
	Author Index

