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Abstract

Bit-true simulation veri�es the �nite word length
choices in the VLSI implementation of a DSP appli-
cation. Present-day bit-true simulation tools are time
consuming. We elaborate a new approach in which the
signal ow graph of the application is analyzed and then
transformed utilizing the exibility available on the sim-
ulation target. This global approach outperforms cur-
rent tools by an order of magnitude in simulation time.

1. Introduction

Digital signal processing applications are speci�ed
by operations that work on signals. Finite word length
e�ects arise when the DSP application is to be real-
ized in VLSI. The signals are implemented by a �nite
number of bits and mostly �xed-point arithmetic is em-
ployed. In the event of an operator running out of bits

to represent the result, a certain way of chopping is
to be performed. A quantization mechanism at the
least signi�cant bit (LSB) side and an overow mecha-
nism at most signi�cant bit (MSB) side are associated
with each operation. In the realization of the DSP
applications, the �nite word lengths of the signals and
the �nite word length mechanisms of the operations re-
sult in e�ects such as quantization noise, limit cycles,
etc. Those lengths and mechanisms are carefully deter-
mined in order that a trade o� between the implemen-
tation cost and the performance is made. Veri�cation
of the choices should not be skipped as for example the
Ariane 5 ight 501 failure demonstrates [9].

Since analytical analysis cannot validate the �nite
word length e�ects for a general application, the avail-
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ability of bit-true validation by simulation is indispens-
able. However, the word lengths and mechanisms avail-
able on the simulation target | a processor | di�er
from those speci�ed in the application. Since, in bit-
true simulation every signal and operation must be re-
alized exactly as speci�ed, restoring operators must be
included after the arithmetic operator. Restoring com-
prises of a sequence of logical tests and manipulations
to truncate at both sides of the signal and also to cor-
rectly align the signal for the next operation.

Currently there exist a number of bit-true compila-
tion paths, but their performance is poor. This is be-
cause the restoring code which follows practically every
operator is extensive compared to the single instruction
of the operator itself. A survey:
- oating-point C++ to �xed-point C++ [8]: This
utility software converts a oating-point DSP program
written in C or C++ to a �xed-point program with
bit-true behavior as speci�ed. The conversion is con-
ducted by de�ning a new �xed-point data class and
utilizing the operator overloading mechanisms of the
C++ language. Simulation time has grown by one or
two orders of magnitude, due to the bit-true demand.
For example, the �xed-point data class consists of 6
data elements and an operator is overloaded with 20
lines of code.
- DFL to �xed-point C ([10], [11]): The signals of the
DFL description are translated in short variables of C.
The operations of the DFL description are realized in
C by a sequence of instructions. This sequence con-
sists of the operator corresponding to the operation,
followed by some logical tests and modi�cations in or-
der to guarantee the bit-trueness. Again the code size
explodes because of the bit-true demand. For example,
a single-precision addition takes 14 lines of C code.
- DFL to ASMDSP56000 ([10], [12]): A similar approach
is taken. Signals are mapped on storage elements;
operations are realized by their corresponding opera-
tors and some logical operators. The latter realize the



overow and quantization mechanisms and perform the
necessary alignment corrections towards the following
operator. For example, for a FIR �lter, 38 instruction
cycles are needed for each �lter tap in the bit-true code,
compared to only one | a single MAC instruction |
in the functional-true code.
Previous literature corresponds with the implementa-
tion of the bit-true simulation tools in SPW [4] and
DSP Station [6]. A close look to Matlab [5] and DSP
Canvas [3] reveals that a similar approach is taken.

The increase in execution time and code size is be-
tween one and two orders of magnitude compared to
the non bit-true functional simulation. This prevents
the use of bit-true real-time emulation on even the
simplest of DSP applications. This also means that
bit-true simulation times are excessively high and as
a result bit-true veri�cation in general becomes very
tedious and is often completely skipped.

However, a detailed look reveals that a lot of the
restoring code is unnecessary or can be written more
succinctly by taking a global scope on the application.
In our global approach, the exibility available in map-
ping the signals of the application on the wider storage
elements of the simulation target is used for a non-
normalized passing of the signals between the opera-
tions. On the one hand, the overow and quantiza-
tion mechanisms provided by the hardware are favored
over software routines since they are free. On the other
hand, alignment correction between operations is un-
favorable, since this implies the insertion of shift in-
structions. An optimization problem arises. Schoofs
et al. ([10], [13]) partly used the mentioned exibility
in their code generator synthesizing from DFL to bit-
true ASMASIP (Application Speci�c Integrated Pro-
cessors). However since the processors are speci�c for
a class of applications, there is not much discrepancy
between algorithm and target. This is in contrast with
our domain of simulation.

The aim of the new approach is to accelerate the
bit-true simulationand even to attain real-time bit-true
emulation by producing execution times comparable to
those for functional veri�cation. In a later phase, an
e�cient bit-true simulator can also be the core of a
synthesis tool for design-space exploration of the �nite
word length choices in the VLSI implementation of a
DSP application. Work in this �eld ([7], [14]) is based
on the existence of an e�cient bit-true simulator.

The available exibility in mapping the application
on the simulation target is revealed in section 2. Next,
the mapping is de�ned in section 3. Section 4 discusses
the evolving combinatorial optimization problem. We
also propose a solution strategy. In section 5, an ex-
ample validates the assertions. Section 6 summarizes.

2. Flexibility

In general, the lengths of the signals of the appli-
cation and the lengths of the storage elements of the
simulation target do not correspond. A exibility arises
in mapping the signals on the storage elements. A rea-
sonable mapping for fractional signal types can be as
follows: an alignment of the signal to the MSB side
of the storage element and an extension for the re-
maining bits at LSB side with zeros (Figure 1). For
this mapping, the hardware provided overow mecha-
nism is free, since the signal is aligned to it. However,
other overow mechanisms and all quantization mech-
anisms are to be realized by a software routine. A se-
quence of logical tests and logical manipulations checks
the condition and performs the correct mechanism if
needed. If the quantization mechanism matches the
hardware provided one and if shifting is cheap (e.g., in
the presence of a barrel shifter), there is an alternative.
The signal can be shifted completely to the LSB side,
next the signal can make use of the hardware provided
quantization mechanism, and �nally the signal can be
shifted back. Note that there are other mapping stan-
dards: for integer signal types an alignment to LSB
side corresponds better to the target architecture.

So, depending on the mapping of the signals on the
storage elements, cheap hardware provision can be used
or expensive software routines are needed. In the local-
based approach of the present-day bit-true compilers,
a mapping standard is chosen and signals are normal-
ized to that standard after each operation. There is
no reason to do so if the compiler can keep track of
non-normalized mappings (i.e. non-zero o�sets of the
signals in the storage elements). Unnecessary shiftings
(back-and-forths) can be saved and thus more hard-
ware provided mechanisms can become favorable to
use.

3 Mapping

This section covers the issue of how the signals and
operations of the application can be realized on the
simulation target by the available storage elements and
the available operators. After the de�nition of the ap-
plication model and the target model, we de�ne the
mapping.

3.1. Application model

The mapping transformation starts from the signal
ow graph of the application. DFL ([10], [2]) is chosen
as the input language of our synthesis path. As an
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Figure 1. Sketch of a normalized mapping of
a signal on a storage element.

example, the textual description of a 10-tap FIR �lter
and its graphical representation are given (Figure 2).

#define sw fix<12,11> /* single prec. */

#define dw fix<24,23> /* double prec. */

#define aw fix<28,23> /* accum. prec. */

oper*(x,y)=mult(x,y,truncated+saturating,0);

oper+(x,y)=add(x,y,truncated+saturating,0);

c[]=sw({ /* e.g. LP filt. coef. */ });

func FIR (in:sw)out:sw =

begin

(i:1..9)::

in@@i=0.0;

tmp[0]=aw(0.0);

(i:0..9)::

tmp[i+1]=aw(tmp[i]+dw(c[i]*in@i));

out=sw(round(tmp[10],truncated+saturating,0));

end;

The example reveals that a DSP application is in fact a
graph of signals interconnecting operations. Note that
an operation is characterized by three behaviors: the
function itself and two �nite word length mechanisms.

De�nition 1 operation = (function, overf. mech.,
quant. mech., signalin1, signalin2, signalout)

12 where:
- function 2 fadd, mult, round, etc.g
- overf. mech. 2 fsaturating, wrapped, etc.g
- quant. mech. 2 ftruncated, rounded, etc.g
- signal = <wl,fwl>3

- wl 2 N0 , and fwl 2 Z

1Monadic operations do not contain a signalin2 argument.
2Note a syntactical di�erence between the DFL speci�cation

of operations and de�nition 1. Essentially the same semantics

are speci�ed.
3Word length and fractional word length.
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Figure 2. Graphical representation of the 10-
tap FIR filter.

3.2. Target model

First, only signals with a word length correspond-
ing to an available storage element width are allowed.
There are a discrete number of storage element widths
available on the target. For example, the DSP56000
processor allows single, double and accumulator pre-
cision widths (24, 48 and 56 bits). After the map-
ping transformation, only those signal lengths will re-
main. Second, the �nite word length mechanisms are
extended in behavior. While the overow and quanti-
zation are usually tested and executed on the bound-
aries of the signal, we also allow such mechanisms in
the middle of the signal. For example, an overow can
also be tested and �red if needed on the penultimate
bit at MSB side instead of the standard version which
works on the ultimate bit. This is because in general
the real borders of the signal will di�er from the storage
element borders. Only when the overow or quantiza-
tion mechanism is provided by the hardware and when
it is to be executed on the border location, hardware
provision can be used. In other cases, a sequence of op-
erators will realize the behavior. Third, an operation
begins with alignment corrections for each input. This
is to align the results of the previous operations to the
operation.

In order to steer the mapping, costs are associated
with the operators. We conclude that the target model
is a set of operators.

De�nition 2 operator = (function, ext. overf. mech.,
ext. quant. mech., alignment correctionin1, alignment
correctionin2, storage elementin1, storage elementin2,
storage elementout) where:
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Figure 3. Mapping a signal on a storage ele-
ment.

- function 2 fadd, mult, round, etc.g
- ext. overf. mech. = <overf. mech., position>4

- ext. quant. mech. = <quant. mech., position>
- overf. mech. 2 fsaturating, wrapped, etc.g
- quant. mech. 2 ftruncated, rounded, etc.g
- position 2 N

- alignment correction = <al>
- al 2 Z

- storage element = <nb>5

- nb 2 fsingle, double, accum., etc.g
- single, double, accum. 2 N0

3.3. Mapping

We restrict the exibility for mapping signals on
storage elements by the following two assumptions: (1)
The data bits are mapped contiguous on the storage el-
ement. (2) The LSB side of the signal is extended with
zeros and the MSB side of the signal with sign bits
(Figure 3). Then, an o�set value indicates the data
mapping.

De�nition 3 data mapping = (signal, storage ele-
ment, o�set) where: o�set = <os> and os 2 N

Next, an operation with its corresponding signals is
mapped on an operator with its corresponding stor-
age elements. The operator has to realize the opera-
tion's behavior for the signals mapped in the storage
elements.

De�nition 4 mapping = (operation, operator, data
mappingin1, data mappingin2, data mappingout)

4The position parameter points to the location where the

mechanism is to be performed.
5Number of bits.
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Figure 4. Example of mapping an operation
on an operator.

The following example clari�es the mapping de�ni-
tion (Figure 4):
- operation = (add, wrapped, truncated, <7,2>,
<4,1>, <5,1>)
- operator = (add, <wrapped,6>, <truncated,1>, +2,
-1, accum., double, accum.)

- accum. = 12
- double = 8

- data mappingin1 = (<7,2>, accum., 3)
- data mappingin2 = (<4,1>, double, 4)
- data mappingout = (<5,1>, accum., 6)

4. Optimization problem

The way the signals are mapped in the storage el-
ements determines the costs for the operations. This
cost can be decomposed in four parts:
- function cost: The target supported functions take
only a small �xed amount of cycles. For example, an
addition on the DSP56000 takes one cycle. We con-
clude that the function cost is constant or invariant
under provided exibility and will not play any role in
the optimization problem.
- overowmechanism cost and quantization mechanism
cost: The cycle cost has a very irregular behavior as
a function of the signal mapping. When the signal
is aligned to hardware provision to perform the speci-
�ed mechanism, the mechanism is free. No extra code
is needed. In other cases, a software routine is to be
included. Two techniques then are used. If the align-
ment is not far from the hardware provision or in the
case a barrel shifter is present, shifting towards hard-
ware provision is possible. Otherwise logical tests and
manipulation should be included. We conclude that
the overow and quantization mechanisms cost is non-



Figure 5. The truncated quantization mecha-
nism cycle cost on the DSP56000.

linearly dependent on the o�set values of the signals
neighboring the operator.
- alignment correction cost: The alignment correction
consist of shifting the result of the function to the spec-
i�ed output o�set value. In fact, it is setting out the
signal for the next operation. The cost for it is strongly
dependent on the shift cycle cost. It is cheap and con-
stant if a barrel shifter is present on the target. It is
proportional to the di�erence in o�set values if only
one bit shifting can be done per instruction.

Figure 5 gives an example of the very capricious de-
pendencies of the cost functions on the available exi-
bility. The truncated quantization is cheap for remain-
der values 0, 24, and 48. Values larger than 24 imply
some logical work. Values smaller than 24 are more
complecated. Since that segment of the accumulator
does not have logic capabilities, also some transfers are
needed. More �gures and numbers of the cost function
for the DSP56000 can be found in [1].

As a consequence, the mapping is a combinatorial
optimization problem: the o�sets correspond to the
variables, the cycle counts to the costs, a legal mapping
to a solution, and the best mapping to the optimal solu-
tion of the combinatorial optimization problem. How-
ever, the size of the problem is huge. For the example
(10-tap FIR �lter on a DSP56000), there are 42 o�set
variables while the range of these o�set variables is at
least 10 (e.g. for a <24,23> signal in a <48> storage
element, the range equals 24). This result in a size
for the combinatorial optimization problem of at least
1040. The simple enumeration leads to unacceptable
computation times for the compilation process. Since
cost functions are very non-linear, integer linear pro-
gramming does not help either.

In the mapping tool we have developed, the enu-
meration technique still is optioned but it is extended
with three additional techniques. First bounds are put
in. They preliminary stop the exploration of partial
mappings wich have an interim cost that is already
higher than the up to that point optimal full solution

cost. Second the application graph is not arbitrary
but it can be characterized as a connected aggregate
of chains. Careful ordering of the variable list of the
problem enables the divide & conquer technique. The
�xing of junction variables and thereafter the �xing of
the variables halfway the chains break up the problem.
Heuristics are used to �nd the mentioned type of vari-
ables within the graph. Third the memoization tech-
nique caches the solutions of recurring subproblems.
All techniques together makes the tool able to solve re-
alistic problems. Remark that still the complete search
space is explored.

5. Example

We discuss the mapping of a 10-tap FIR �lter on
the DSP56000. The local-based bit-true compiler, de-
scribed in [12], produces slow code for this example
(Figure 6). Each tap, after the multiplication of a de-
layed input with a coe�cient, a right shift over four
bits is performed. This is to correctly align for the
accumulation. The shifting is expensive because only
a one bit shift is possible per cycle. Finally after the
10 �lter taps, the accumulation is rounded to 12 bits
again.

Figure 7 represents the method applied when hav-
ing a global scope in mind. The four shift instructions
are moved up, over the multiplication, to the coe�-
cient signal. Since shifting of constants can be done
at compile-time, this alignment correction is free. An
interesting advantage of the optimization techniques is
the intelligent mapping of the constant signals of the
application graph in order to reduce the number of run-
time alignment corrections.

Next, an analysis of the magnitude of the signals
in the entire signal ow graph leads to further opti-
mization. See [1] for details. In this example, we can
state that an accumulation of 10 signals at most needs
4 extra bits. Since those bits are available in the appli-
cation, we predict an overow is not going to happen.
The implied overow mechanism becomes irrelevant.
The bit-true demand in the loop is automatically ful-
�lled and the cycle cost per tap is reduced to one as in
the functional, non bit-true case. However, the round-
ing of the accumulated sum to the result signal is still
realized by a software routine, since the exact �nite
word length behavior is not hardware provided. The
cycle cost for that part is identical for local- and global-
based cases. Table 1 summarizes the three cases for
this FIR application and also for a LMS adaptive �lter
application.



cycle cost

10-tap FIR �lter:
- non bit-true case 10 x 1 + 7 = 17
- local-based bit-true case 10 x 29 + 19 = 309
- global-based bit-true case 10 x 1 + 19 = 29

10-tap LMS adaptive �lter:
- non bit-true case 10 x 2 + 9 = 29
- local-based bit-true case 10 x 41 + 64 = 474
- global-based bit-true case 10 x 7 + 71 = 141

Table 1. The cycle cost of two basic applica-
tions on the DSP56000 for different compila-
tion paths.
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Figure 6. Local approach for the 10-tap FIR
filter on the DSP56000.
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Figure 7. Global approach for the 10-tap FIR
filter on the DSP56000.

6. Conclusion

Simulation and emulation are important steps in the
design of DSP applications. Bit-trueness of the com-
piler is essential, in order to check and evaluate the ac-
curacy level of the outputs of the application. Because
the �nite word length mechanisms of the signals and
operators of the application di�er from those on the
simulation target, extra code is inserted around each
operation. An entire dataow analysis combined with
a total exploration of the available mapping exibility
results in a better merging of the speci�cation of the
application and the features of the target. Based on
examples, we proved that the new technique leads to
code sizes and execution times one order of magnitude
smaller than those of present-day compilers.
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