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ABSTRACT

In this paper, we formulate the problem of topology con-
strained rectilinear block packing in layout reuse. A speci�c
class of rectilinear shaped blocks, ordered convex rectilinear
blocks, is represented in bounded slicing grid (BSG) struc-
ture. The Non-overlapped packing is guaranteed. Based
on both sequence pair (SP) and BSG structures, we pro-
pose an algorithm to compact the ordered convex blocks
under the topological constraints, in which the x and y
directions are independently compacted. By augumenting
or further partitioning the arbitrary rectilinear blocks into
the ordered convex shapes, this method can be extended
to handle the topology constrained rectilinear block pack-
ing. Furthermore, our recent theoretical progress is brie
y
reported at the end of this paper, in which arbitrarily recti-
linear shaped blocks are represented in SP structure. Three
necessary and su�cient constraints are derived on the se-
quence pair, such that the non-overlapping compaction is
guaranteed.

1. BLOCK PACKING IN LAYOUT REUSE

Layout is one of the most complicate steps in IC design and
therefore very resource consuming. The design for renewed
fabrication processes usually maintains the layout technol-
ogy but using di�erent design rules. In order to avoid unnec-
essary waste of time and energy, it has become of practical
importance to reuse the layout results accumulated so far in
the old fabrication processes. As the increasing complexity
of IC design, layout reuse becomes more important.

1.1. Topology Constrained Rectilinear Packing

First we extract devices and group them as a set of macro
device blocks. After shrinking the devices and wires, the
block sizes are shrunk and shapes are changed. A pack-
ing algorithm is required to eliminate the empty space in
between without changing the topological relations, which
is referred to as topology constrained rectilinear block pack-
ing. Fig. 1 shows that �ve blocks in the original placement
are sized and compacted together. The topological relation
between any two blocks is de�ned by their pre-placed po-
sitions. For example, block A is left to block B as shown

in Fig. 1 (b). In this paper, we focus the rectilinear block
packing, ignoring the interblock wiring. The incorporation
of wiring will be presented in a separate paper.
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Figure 1. Given the original placement of �ve macro blocks
in (a), the block sizes are shrunk and shapes are changed in (b).
In (c), they are compacted together under the same topological
relations.

1.2. Major Contribution of Our Work

The interdependency of x and y compaction is the key issue
for the optimal packing solution. Recently, Nakatake et al.
[1] introduced the bounded slicing grid (BSG) and Murata
et al. [2] proposed the sequenced pair (SP) structures to
represent the general rectangle packing. Both BSG and SP
de�ne the binary relationship for each pair of rectangles,
and provide the way to independently compact x and y
dimension. [3] applied BSG structure on the general 
oor-
planning problem, in which the L-shaped, T-shaped and
soft blocks were considered. [4] indicated the complicate
relationship of rectilinear blocks and proposed a SP-based
compaction algorithm. Unfortunately the algorithm may
leads to overlaps in the �nal packing.
In this paper, the rectilinear shaped blocks are parti-

tioned into a set of sub-rectangles such that each pair of
adjacent sub-blocks form an L-shape. The sub-blocks are
individually represented in BSG structure. An algorithm is
derived to independently align x and y coordinates of the
sub-blocks after BSG packing, such that the original recti-
linear shape can be recovered. The related proof shows that
the algorithm can recover the exact shape of blocks without
causing overlaps if every polygon has ordered convex shape.
Furthermore the topological relations of rectilinear poly-

gons can be simply but accurately described using the bi-
nary relations of the corresponding sub-rectangles. As such,
the constrained packing problem becomes the constrained
BSG assignment problem : �nd out a BSG assignment for
the rectilinear blocks, in which the topological relations are
same with the original placement. Based on both SP and
BSG structures, an algorithm is derived to construct such
assignment.
In the rest of the paper, Section 2 introduces both BSG

and SP structures. Section 3 describes the partition and
alignment of rectilinear blocks based on BSG structure. In



Section 4, the necessary and su�cient conditions for the
constrained BSG assignment are discussed. A correspond-
ing algorithm is developed, in which the SP structure is
used as a easy way to control the topological relationship.
Section 5 reports the experimental results and concludes the
paper. Finally in the Appendix, we brie
y report our re-
cent theoretical progress on the arbitrarily rectilinear block
packing using SP structure.

2. BSG AND SP STRUCTURES

Nakatake et al. [1] introduced a meta-grid structure, called
bounded slicing grid (BSG), and Murata et al. [2] proposed
an equivalent structure, called sequence pair, to represent
the general rectangular dissection. Both structures can pro-
vide a �nite solution space at least one of which is optimal.

2.1. Bounded Slicing Grid Structure (BSG)

BSG is the meta-grid structure as shown in Fig. 2 (a), in
which the line segments are called Bounded Slice Lines, or
BS-lines. The rectangular space surrounded by BS-lines is
called room. BSG introduces the orthogonal relations to
each pair of rooms uniquely. In BSG domain, a packing
is represented by an assignment of rectangular blocks to
rooms, called BSG assignment. This assignment is to map
each block to a distinct room, by which the blocks inherit
the relationship of the rooms.
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Figure 2. (a) a bounded slicing grid structure, (b) the hori-
zontal acyclic graph Gh, and (c) the vertical acyclic graph Gv.

Two directed acyclic graphs, horizontal graph Gh and
vertical graph Gv , are de�ned to represent the binary re-
lations. The Gh puts vertex on the center of each vertical
BS-line as shown in Fig. 2 (b). There is an arc from vi
to vj if the vertical BS-line corresponding to vj is right to
the vertical BS-line corresponding to vi and they share the
same room. In particular, there is a source sh connected
to all the vertices representing the leftmost BS-lines, and
a sink th connected from all the vertices corresponding to
the rightmost BS-lines. The weight of arc is given by the
width of the block assigned to the corresponding room, if
the room is occupied. Otherwise the weight is zero. The
vertical graph Gv is similarly de�ned as shown in Fig. 2
(c).
The x-coordinates of blocks are determined using the

longest path algorithm. In particular, the overall width
equals to the longest path length from the source to the
sink in Gh. The y-coordinates and the overall height can
be similarly determined in Gv. In such way, the BSG com-
paction is independently carried out in x and y dimension.
Fig. 3 compares three kinds of packing in which the inde-
pendent packing gives the optimal solution.

2.2. Sequence Pair (SP)

A sequence pair for a set of n blocks is a pair of sequences
of n symbols which represent blocks. As shown in Fig. 4
(a), an oblique-grid can be constructed for a sequence pair.
For every block, the plane is divided by the two crossing
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Figure 3. Given three blocks in (a), the x-y packing in (b) is
achieved by �rst compacting x dimension followed by y dimen-
sion, while the packing in (c) is achieved by y-x order. Neither
(b) nor (c) is the optimal solution. On the other hand, if the
three blocks are assigned into BSG as in (d), the optimal pack-
ing in (e) can be achieved by independently compacting x and y

dimension in BSG structure.
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Figure 4. (a) the oblique-grid of sequence pair (abc; bac), (b)
the four cones of block b, and (c) the corresponding placement
of a, b and c.

slope lines into four cones as shown in Fig. 4 (b). Block a
is in the upper cone of block b, then a is above b. Similarly,
block c is in the right cone of block b, then c is right to
b. In general, equivalent with BSG, SP imposes the binary
relations for each pair of blocks :

(� � a � � b � �; � � a � � b � �) ) b is right to a;

(� � b � � a � �; � � a � � b � �) ) b is above a:
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Figure 5. The two acyclic graphs of sequence pair (abc; bac).

Similar to BSG structure, two vertex weighted directed acyclic
graphs can be constructed for SP. As shown in Fig. 5 (a), in the
horizontal graph Gh, each vertex corresponds to a block, there
is an arc from block a to block c if c is right to a. In particular,
there is a source sh connected to leftmost blocks and a sink
th connected from rightmost blocks. The vertex weight equals
to the width of the block. Similarly the vertical graph Gv is
constructed as shown in Fig. 5 (b). The x and y coordinates can
be determined using the same longest path algorithm.

3. ORDERED CONVEX RECTILINEAR
BLOCKS IN BSG

In layout reuse, the blocks can be any rectilinear shape due to
the device and wire sizing. We have studied the special cases :
L-shaped and T-shaped blocks in BSG structure [3]. For general
rectilinear blocks, the similar method could be applied : parti-
tioning a rectilinear polygon into a set of sub-rectangles, each of
them is assigned to a distinct BSG room individually. After BSG



packing, the coordinates of sub-blocks are aligned to recover the
exact shape of the original block. To derive the constraints on
the partition and assignment, which are referred to as aligning
rules, we �rst discuss the alignment algorithm.
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Figure 6. y alignment of sub-rectangles A = fa1; a2; � � �; ang.

In BSG structure, there are two kinds of rooms : p-typed and
q-typed rooms, which are located alternatively as shown in Fig.
2 (a). Each pair of adjacent rooms are alternatively pq- or qp-
adjacent. The horizontal pq-adjacent rooms share the bottom
BS-line, while qp-adjacent rooms share the top BS-line.

3.1. y Alignment

Given a rectilinear shaped block A = fa1; a2; : : : ; ang is assigned
into horizontally adjacent BSG rooms as shown in Fig. 6. When
the room of a1 is p-typed and an is q-typed, n must be even :
n = 2m, where m is an integer.
Let yu

i
and yv

i
denote the y coordinate of BS-lines ui and vi,

respectively, and hi denote the height of rectangle ai. The BSG
compaction in y direction has the following relations :

yv1 = max(yu1 + h2; yu2 + h3)

yv2 = max(yu2 + h4; yu3 + h5)

: : :

yv
m�1

= max(yu
m�1

+ hn�2; yum + hn�1) (1)

The y coordinate of sub-rectangles a1; a2; : : : ; an can be aligned
if the following relations are satis�ed:

yu1 + h2 = yu2 + h3

yu2 + h4 = yu3 + h5

: : :

yu
m�1

+ hn�2 = yum + hn�1 (2)

Let y
0

u
i

denote the aligned y coordinate of BS-line ui, the non-

overlapping constraint requires y
0

u
i

� yu
i
, i.e. BS-lines should

never be moved downward. The aligned y coordinate of u1 is
given by :

y
0

u1
= max( yu1 ;

yu2 + h3 � h2;

: : :

yum + hn�1 � hn�2 + hn�3 � hn�4 + � � �+ h5 �

h4 + h3 � h2 ) (3)

Once y
0

u1
is known, the aligned y coordinate of other BS-lines

ui, where i > 1, can be calculated as follows :

y
0

u2
= y

0

u1
+ h2 � h3

y
0

u3
= y

0

u2
+ h4 � h5

: : :

y
0

um
= y

0

u
m�1

+ hn�2 � hn�1 (4)

It can be proved that for each BS-line ui: y
0

u
i

� yu
i
. Therefore

no overlap will occur since the horizontal BS-lines never be moved
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Figure 7. (a) shows an example of y alignment on sub-
rectangles A = fa1; a2; � � �; a5g. and (b) shows an example of
horizontally assignment of these sub-blocks, in which the dummy
block with zero width is inserted in the empty room between two
adjacent sub-blocks.

downward. For the other three cases where both room of a1 and
an are p-typed, or a1 is q-typed while an is p-typed, or both a1
and an are q-typed, the similar equations can be derived. Fig.
7(a) shows an example of y � alignment.
We can conclude that the y alignment is applicable for such an

assignment that the rooms of sub-rectangles are in the same row,
and there is no occupied room in between. The dummy blocks
with zero width can be inserted into the empty room between
two adjacent sub-blocks, as shown in Fig. 7 (b). Obviously y

alignment will not a�ect the topological relations de�ned by the
BSG structure.

3.2. x Alignment

Given block A = fa1; a2; a3; a4; a5g in Fig. 8 (a), the aligned x

coordinates should satisfy:

xl2 = xl1 +w2

xl3 = xl2 +w3

xl4 = xl3 +w4 (5)

where xl
i

denote the x coordinate of BS-line li and wi the width
of block ai. As such, BS-line l3 must be exactly right to l1 by
w2 + w3. While in the horizontal graph Gh, xl3 = max(xl1 +

w2 +w3; xl1 +w
0

2
+w

0

2
), where w

0

2
and w

0

3
denote the width of

block a
0

2
and a

0

3
, respectively. The above condition may not be

satis�able. However if we move a2 all the way to the right until
hitting a3, followed by a1 to the right until hitting a2 as shown in
Fig. 8 (b), similarly move a4 and a5 to the left, the x coordinates
can be aligned. No overlap is caused if the sub-rectangles satisfy
:

h1 � h2 � h3 and h3 � h4 � h5 (6)
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Figure 8. x alignment of sub-rectangles fa1; a2; a3; a4; a5g.

The above property is required by x alignment. Since the
blocks are moved only in horizontal direction, x alignment will
not a�ect the vertical relations. For each right-aligned block ai
such as a1, if any other block b is left to ai, then b is still left to
ai after moving ai to the right. On the other hand, hi � hi+1
according to Eq. 6. If b is right to ai, then b is ai+1 itself or b is
also right to ai+1 in the BSG packing. Thus b will be still right
to ai after the right moving of ai. The similar situation exists



for the left-aligned blocks. Therefore the topological relations of
BSG packing is preserved by x alignment.
Overall, the x and y coordinates are independently aligned

without causing overlaps or changing the relations of BSG pack-
ing. The symmetrical alignment is applicable for the vertically
adjacent assignments of the sub-rectangles with the similar prop-
erty as Eq. 6.
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Figure 9. (a) Given a set of rectilinear polygons, in which
(1){(6) are convex shape, while (7){(9) are concave. (b) When
\down" edges are always right to \up" edges, such CRP is H-
ordered. Similarly when \left" edges are always below \right"
edges, such CRP is V-ordered. The CRP in (a) (1), (2) and (3)
are both H-ordered and V-ordered, while the CRP shown in (a)
(4) is only H-ordered and (a) (5) only V-ordered. The CRP in
(a) (6) is neither H-ordered nor V-ordered.

3.3. Ordered Convex Rectilinear Polygon

A polygon A is referred to as convex rectilinear polygon (CRP)
if and only if : given any two points inside A, there exists a
shortest Manhatann path inside A, as shown in Fig. 9 (a) (1){
(6). Otherwise concave polygons, as shown in Fig. 9 (a) (7){(9).
Given a CRP A, traverse the vertices in clockwise direction and
mark each edge by \up", \right", \down" and \left", respectively
as shown in Fig. 9(b). A is called H-ordered CRP if and only
if \down" edges are always right to \up" edges. Symmetrically,
A is called V-ordered CRP if and only if \left" edges are always
below \right" edges. The CRP shown in Fig. 9 (a) (1), (2) and
(3) are both H-ordered and V-ordered CRP. On the other hand,
the CRP shown in Fig. 9 (a) (4) is only H-ordered and Fig. 9
(a) (5) only V-ordered. However the CRP shown in Fig. 9 (a)
(6) is neither H-ordered nor V-ordered.

3.3.1. Partition of Ordered CRPs

An H-ordered CRP A will be partitioned as follows :

1. Put a vertical slicing line on each vertical edge of A, the
rectangular space bounded by any two adjacent slicing lines
forms a sub-rectangle. In particular, the sub-rectangle
bounded by two overlapped slicing lines has zero width as
shown in Fig. 10 (a).

2. Visit sliced sub-rectangles from the left to right, and mark
each sub-rectangle as shown in Fig. 10 (b).

3. If one sub-rectangle is marked by both p and q, bi-partition
it such that the two new sub-rectangles are marked by p

and q, respectively as shown in Fig. 10 (c).

We call such partition H-partition. Symmetrically the V-
partition can be de�ned for V-ordered CRPs.

3.3.2. Property of Ordered CRPs

The following property of H-ordered CRP can be proved :

Lemma 1 Given an H-ordered CRP is H-partitioned : A =
fa1; a2; � � �; ang, in which ai is the ith leftmost sub-rectangle,

(a) slicing CRP on each vertical edge

(b) marking each sub-rectangle

(c) bi-partition doubly marked sub-rectangle

(1) (2) (3) (4)

p q q p

q pp
q

double slicing lines sub-block with zero width

Figure 10. H-partition for an H-ordered CRP.

there exists a sub-rectangle ak, k 2 [1; n], which is referred to as
dominant sub-rectangle :

hi � hi+1; for i 2 [1; k)

hi � hi+1; for i 2 [k; n)

where hi denotes the height of block ai.

Similar property can be proved for V-ordered CRPs.

3.3.3. Assignment of Ordered CRPs

Given an H-partitioned CRP : A = fa1; a2; � � � ang, in which
ai is the i

th left-most sub-rectangle. Let ri denote the BSG room
assigned to ai. We call the BSG assignment of A H-assignment
if and only if :

1. If ai is marked by p, the room ri is p-typed, and if ai is
marked by q, the room ri is q-typed;

2. The room ri is on the left of the room ri+1, and they are
in the same row;

3. There is no occupied room between ri and ri+1.

Similarly V-assignment can be de�ned for the V-partitioned
CRP. Based on the alignment method discussed above, together
with the property of Lemma 1, we can derive the following the-
orem:

Theorem 1 Given a placement of a set of blocks with ordered
convex rectilinear shape, the x and y dimension can be inde-
pendently compacted without overlaps if each H-ordered block is
H-partitioned and H-assigned, and each V-ordered block is V-
partitioned and V-assigned in BSG structure.

3.4. Constrained BSG Assignment Problem

The topological relationship of rectilinear blocks may become
very complicated. Rather than enumerating all possible rela-
tions as done by [4], we can simply but accurately describe
such relation using the binary relations of the corresponding sub-
rectangles.
If a sub-rectangle of B is right to a sub-rectangle of A, we say

B is right to A. Similarly we can de�ne B below A. We call A
and B have consistent relationship if and only if B is not both
right to and left to A, and B is not both above and below A.

Lemma 2 Any two convex rectilinear polygons have the consis-
tent relationship.

As such, the topology constrained rectilinear block packing can
be transferred to a constrained BSG assignment problem : �nd
out a BSG assignment, in which the H- and V-ordered CRPs are
H- and V-assigned, respectively. The exact relationship of blocks
are guaranteed.



4. CONSTRAINED BSG ASSIGNMENT

We decompose the problem into two steps : (1) construct an ini-
tial BSG assignment which provides the equivalent relations with
the given placement; (2) adjust the assignment such that each H-
and V-partitioned CRP is H- and V-assigned, respectively. As
introduced earlier, SP de�nes the binary relation between each
pair of blocks by the order of their symbols in both sequences.
Given n rectangular blocks and their topological relations, a se-
quence pair can be easily constructed in O(n2) time [2]. In the
following, we state a method proposed by S. Nakatake and K.
Fujiyoshi, which constructs a BSG assignment for a given SP
such that they de�nes the exact same topological relationship.

4.1. SP-based BSG Assignment

Here we adopt a coordinate system composed by two sets of +450

and �450 slant integer axes, both ordered from the left side as
shown in Fig. 11 (a). A room centered at the cross of ith

+
positive

and ith
�

negative axes is referred to by r(i+; i�):

Fact 1 In the slant coordinate system, if r(0; 0) is assumed to
be a p-typed BSG room, then r(i+; i�) is a p-typed room if and
only if both i+ and i

�

are even. On the other hand, r(i+; i
�

)
is a q-typed room if and only if both i+ and i

�

are odd.
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Figure 11. (a) The slant coordinate system of BSG structure,
(b) the BSG assignment for the given sequence pair : �+ =
a1 a2 a3 a4 a5 a6 a7 a8 and �

�

= a1 a3 a5 a7 a6 a4 a2 a8.

Let (�+;��) denote the given sequence pair, and �+(ai) de-
note the index of block ai in the �rst sequence �+. Without loss
of generality, we assume the �rst sequence �+ = a1 a2 � � � an, by
relabeling if necessary, so �+(ai) = i for i 2 [1; n]. For example,
�+ = a1 a2 a3 a4 a5 a6 a7 a8, and �� = a1 a3 a5 a7 a6 a4 a2 a8.
The SP-based BSG assignment can be constructed as follows:

1. Placing a dummy block a0 at the beginning of �
�

:
a0 a1 a3 a5 a7 a6 a4 a2 a8, and assigning �+(a0) = 0.

2. Traversing �
�

from left to right and grouping every maxi-
mal sub-sequence which is either consecutive blocks whose
�+() values are even and decreasing, or consecutive blocks
whose �+() values are odd and increasing. In the above
example, �

�

= [a0] [a1 a3 a5 a7] [a6 a4 a2] [a8]. A grouped
sub-sequence is called a group. The �+() values of blocks in
a group are uniquely even or odd, thus the group is called
even or odd accordingly. For example, [a1 a3 a5 a7] is an
odd group, and [a6 a4 a2] is a even group.

3. Placing an empty group between every pair of con-
secutive even groups or consecutive odd groups :
[a0] [a1 a3 a5 a7] [a6 a4 a2] [ ] [a8].

4. �
�

(ai) denotes the number of groups in �
�

before the
group that contains ai. In this example, �

�

(a1) = 1 and
�
�

(a8) = 4.

5. Assigning block ai into BSG room r(�+(ai); ��(ai)) : a1
will be assigned into room r(1; 1) while a8 to room r(8; 4),
as shown in Fig. 11 (b).

The following property can be proved :

Lemma 3 Each cross r(�+(ai); �
�

(ai)) is a BSG room, and
the relation between each pair of rooms r(�+(ai); �

�

(ai)) and
r(�+(aj ); ��(aj)) is exactly the same relation between the cor-
responding blocks ai and aj de�ned in the given SP.

Using this method, a BSG assignment of n blocks can be con-
structed such that it provides the same relations with the given
placement. To challenge the second step of the assignment prob-
lem, we �rst derive the necessary and su�cient conditions for
H-assignment. Since H- and V-assignment are symmetrical, the
similar conditions can be derived for V-assignment.

4.2. Necessary and Su�cient Conditions for H-
Assignment

Lemma 4 In the SP-based assignment, an H-partitioned CRP
A = fa1; a2; � � �; ang is H-assigned if and only if :

1. If ai is p-marked, both �+(ai) and �
�

(ai) should be even;
if ai is q-marked, both �+(ai) and �

�

(ai) should be odd.

2. If ai and aj are adjacent sub-blocks in A, and ai is left to
aj , then �+(aj )� �+(ai) = �

�

(aj )� �
�

(ai).

Due to the Fact 1, the �rst condition above is equivalent to
the �rst requirement of H-assignment de�ned in Section 3:2:3. In
the slant coordinate system, room r(i+; i�) and r(j+; j�) are in
the same row if and only if j+ � i+ = j

�

� i
�

. Therefore the
second condition above is equivalent to the second requirement
of H-assignment. As such, both conditions are necessary for H-
assignment. On the other hand, if there is an occupied room
r(�+(ak);��(ak)) between ai and aj :

�+(ai) < �+(ak) < �+(aj ); �
�

(ai) < �
�

(ak) < �
�

(aj)

then both sequences should be like : ai � � ak � � aj , which implies
that block ak is right to ai and left to aj . If ak belongs to the
same CRP with ai and aj , then ak must be between ai and aj ,
which con
icts to the assumption that ai and aj are adjacent.
On the other hand, if ak belongs to a distinct CRP, this CRP will
be both left to and right to the CRP of ai and aj , which con
icts
to the consistent relationship in Lemma 2. Therefore the rooms
between ai and aj can not be occupied and the third requirement
of H-assignment in Section 3:2:3 will be automatically satis�ed
in the SP-based assignment. As such, the above two conditions
are su�cient for H-assignment. In the following, we will propose
two operations on SP such that the SP-based assignment satis�es
the two conditions of Lemma 4.

4.3. PQ-Adjustment

To satisfy the �rst condition of Lemma 4, we de�ne an operation
called pq-adjustment. In the SP-based assignment, �+(i) and
�
�

(i) are both even or both odd. Without loss of generality, we
assume ai is a p-marked block, �+(i) and �

�

(i) are both odd.
pq-adjustment is carried out by inserting two dummy blocks *
into the �rst sequence �+, one right before and the other right
after ai, respectively, and appending two empty groups at the
end of the second sequence �

�

, as shown in Fig. 12 (a).
After this operation, �+(i) is increased by one and becomes

even. The �+() values of those blocks after ai in the �rst se-
quence are increased by two. The parity of �+() values will not
be a�ected except block ai. Given aj is the predecessor of ai
in the second sequence, overall there are four possible cases as
shown in Fig. 12 (b) :

1. �+(j) is odd, aj and ai are originally grouped together as
shown in Fig. 12 (b) (1). The group will split when �+(i)
becomes even after the operation. So the number of groups
between aj and ai is increased by one.



2. �+(j) is odd, aj and ai are grouped separately, an empty
group must be in between as shown in Fig. 12 (b) (2).
When �+(i) becomes even, the empty group is deleted, and
the number of groups between aj and ai is decreased by
one.

3. �+(j) is even, aj and ai are grouped separately, as shown in
Fig. 12 (b) (3). When �+(i) becomes even, which is greater
than �+(j), aj and ai will be grouped separately and one
empty group is inserted in between, as shown in Fig. 12 (b)
(3). The number of groups between aj and ai is increased
by one.

4. �+(j) is even, aj and ai are grouped separately, as shown
in Fig. 12 (b) (4). When �+(i) becomes even, which is
smaller than �+(j), aj and ai will be grouped together,
and the number of groups between aj and ai is reduced by
one.

ai[ ]aj[ ]... ...
odd even

ai[ ]aj[ ]... ...
odd even

aj ai[ ]... ...
odd

aj[ ] [ ] ai[ ]
odd odd

... ...

aj[ ] ai[ ]
even odd

... ...

aj[ ] ai[ ]
even odd

... ...

aj[ ] [ ] ai[ ]... ...
even even

aj ai[ ]... ...
even

ai ai
...... ...... ...... ......

(a)

(1)

(2)

(3)

(4)

(b)

* *

Figure 12. pq-adjustment inserts two dummy blocks in the
�rst sequence, right before and after ai, respectively as shown in
(a). �+(ai) is increased by one, and the �+() values of blocks
after ai will be increased by two. On the other hand, given aj
is the predecessor of ai in the second sequence, overall there are
four possible cases as shown in (b) (1) { (4). It can be derived
that the number of groups between aj and ai will be increased
or decreased by one.

Since the parity of �+() values are preserved for the other
blocks, the groups before aj in the second sequence will not be
changed, and �

�

() values remain the same for those blocks before
ai in the second sequence. Due to the changed groups between
aj and ai, ��(ai) is increased or decreased by one and becomes
even.

On the other hand, given ak is the successor of ai in the second
sequence, the similar analysis derives that the number of groups
between ai and ak will be increased or decreased by one, and the
groups after ak in the second sequence will not be a�ected. So
together with the changed groups between aj and ai, the �

�

()
values are changed by either 0 or 2 for those blocks after ai in
the second sequence. Overall we can conclude :

Lemma 5 Given block ai is p-marked, and the corresponding
room (�+(ai); ��(ai)) is q-typed, pq-adjustment can adjust the
room of ai to p-typed by simultaneously changing the parity of
�+(ai) and �

�

(ai). Furthermore the pq-adjustment carried for
block ai will not a�ect the parity of �+() or ��() values of the
other blocks.

Similarly, the pq-adjustment can be applied for q-marked block.
In such way, the �rst condition of Lemma 4 can be satis�ed for all
marked blocks by carrying out pq-adjustment for each of them,
individually.

4.4. �-Adjustment
Given adjacent sub-blocks ai and aj , ai is left to aj , both se-

quences are ai � � aj . We de�ne �
ij

+
and �

ij

�

as follows :

�
ij

+
= �+(aj)� �+(ai); �

ij

�

= �
�

(aj)� �
�

(ai):

The second condition of Lemma 4 is equivalent to �
ij

+
= �

ij

�

.
The following Lemma can be proved :

Lemma 6 j �
ij

+
��

ij

�

j= 2m, where m is an integer.

When �
ij

�

��
ij

+
= 2m > 0, an operation called �+-adjustment

is applied by consecutively inserting 2m dummy blocks * in the
�rst sequence �+, somewhere between ai and aj (the exact posi-
tion will be discussed later), while appending 2m empty groups
at the end of the second sequence �

�

.
In the example shown in Fig. 13, given a1 and a3 are adjacent

sub-blocks, �13
�

��13
+

= 4. Four dummy blocks are inserted in
the �rst sequence while four empty groups attached at the end of
the second sequence. Obviously, �+(3) is increased by four and
accordingly �13

+
is increased by four. On the other hand, the

parity of the �+() values are not a�ected due to the even number
of dummy blocks, so the groups of the second sequence will not

be a�ected, and �
ij

�

remains the same. Therefore �13
+

= �13
�

after the �+-adjustment.

6
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6

1  2  3  4  5  6   ,   [0]  [1]  [4]  [ ]  [6 2]  [5]  [ ]  [3]

2 6
- adjustment+

Figure 13. Given a sequence pair and adjacent sub-blocks a1
and a3 : �13

�

��13
+

= 4. �+-adjustment is applied: insert four
dummy blocks � into the �rst sequence between a1 and a3, while
attach four empty groups [ ] at the end of the second sequence.
As such, �13

+
= �13

�

.

Similarly when �
ij

+
��

ij

�

= 2m > 0, another operation called
�
�

-adjustment is applied : consecutively inserting 2m empty
groups [ ] in the second sequence �

�

, somewhere between the
groups contain ai and aj (the exact position will be discussed
later). If ai and aj are originally grouped together, the group
will split and 2m empty groups are inserted in between. On the
other hand, 2m dummy blocks � are appended at the end of the
�rst sequence �+. So the �+() values remain the same, while
�
�

() values of those blocks after the empty groups are increased

by 2m. Therefore �
ij

�

is increased by 2m and �
ij

+
= �

ij

�

. Overall
we call both operations �-adjustment.

4.5. Two Basic Properties of SP

Given two pairs of adjacent blocks (ai; aj) and (bi; bj), their rel-
ative order in a sequence will be one of the following three cases
:

� ai � � aj � � bi � � bj ) a-pair separates from b-pair;

� ai � � bi � � aj � � bj ) a-pair interleaves with b-pair;

� ai � � bi � � bj � � aj ) a-pair includes b-pair.

The following two properties can be proved :

Lemma 7 If a-pair includes b-pair in one sequence of SP, then
a-pair separates from b-pair in the other sequence.

Lemma 8 If a-pair interleaves with b-pair in one sequence of
SP, then a-pair separates from b-pair in the other sequence.



Since the proofs of the above two Lemmas are very similar,
we will only show the �rst one. Without loss of generality, we
assume ai is left to aj , and bi left to bj . Then both �+ and
�
�

will have : ai � � aj and bi � � bj . If a-pair includes b-pair
in the �rst sequence : �+ = ai � � bi � � bj � � aj , then in the
second sequence bi will not be between ai and aj . Otherwise,
(ai bi aj ; ai bi aj) implies bi is right to ai and left to aj . With
this relationship, if bi belongs to the same CRP with ai and
aj , bi will be left to ai while right to aj , which con
icts to the
assumption that ai and aj are adjacent. On the other hand, if bi
belongs to a distinct CRP, the CRP of bi will be both left to and
right to the CRP of ai and aj , which con
icts to the consistent
relationship of Lemma 2. Therefore, the second sequence must
be either bi � � ai � � aj or ai � � aj � � bi. The same situation
happens for bj . Thus there are only three possible permutations
for the second sequence �

�

:

bi � � ai � � aj � � bj

ai � � aj � � bi � � bj

bi � � bj � � ai � � aj

If �
�

is in the �rst case, we can derive the relation graph as
shown in Fig. 14 (a). If ai and aj are adjacent sub-blocks as
shown in Fig. 14 (b), bi and bj should be located at the two
shadowed cones, respectively. So they could not be adjacent.
Similarly ai and aj could not be adjacent given bi and bj are
adjacent as shown in Fig. 14 (c). Therefore we can conclude �

�

can only be one of the last two cases, in which a-pair separates
from b-pair.

ai aj

bj

bi

ai aj

bi bj

right to
above

ai

aj

bjbi

(a) (b) (c)

Figure 14. If the relations between blocks ai, aj , bi, and bj
are as shown in (a), assume ai and aj are adjacent sub-blocks as
shown in (b), the bi and bj would be located at the two shadowed
cones, respectively. They could not be adjacent. If we assume bi
and bj are adjacent sub-blocks as shown in (c), ai and aj could
not be adjacent, either.

Based on the above two properties, every pair of adjacent sub-
blocks can be ordered, such that the second condition of Lemma
4 will be satis�ed after �-adjustment is carried out individually
for each pair blocks in this order. Due to the limit of paper
length, we skip the detail discuss. The readers can refer to it in
[5].
Since �-adjustment doesn't change the parity of �+() or ��()

values, the �rst condition of Lemma 4 will not be a�ected. Over-
all we can conclude the following theorem :

Theorem 2 The necessary and su�cient conditions for H-
assignment in Lemma 4 can be satis�ed by applying pq-
adjustment and �-adjustment in SP-based BSG assignment.

The same operations can also be applied to SP-based BSG as-
signment such that the necessary and su�cient conditions for
V-assignment are satis�ed.

4.6. One Example of Constrained BSG Assign-
ment

Given the placement of �ve blocks as shown in Fig. 15, in which
four L-shaped blocks are either H-partitioned or V-partitioned.
The sequence pair extracted from the placement is :

�+ = a1 a2 a3 a4 a5 a6 a7 a8 a9; �
�

= a1 a8 a4 a7 a5 a3 a6a2 a9:

a1

a3

a5

a7

a9

a2

a6

a4

a8

q

qq

q

Figure 15. Given the placement of �ve blocks, in which four
L-shaped blocks are either H-partitioned or V-partitioned.

To simplify the notation, we abbreviate ai as i, and let �n and
[ ]n denote the n consecutive dummy blocks and empty groups,
respectively. In addition, we ignore the dummy blocks or empty
groups attached at the end of the sequences. The SP is grouped
as follows :

(1 2 3 4 5 6 7 8 9; [0] [1] [8 4] [7] [ ] [5] [ ] [3] [6 2] [9]):

The �rst condition of Lemma 4 has already been satis�ed for
blocks a1 and a9, so the pq-adjustment is carried out only for a2
and a8 :

(1 � 2 � 3 4 5 6 7 � 8 � 9; [0] [1 8] [4] [7] [ ] [5] [ ] [3] [6] [2 9]):

Then �-adjustment is carried out for each pair of adjacent sub-
blocks : four empty groups are inserted into �

�

for pair (a4; a8),
followed by another four empty groups are inserted into �

�

for
pair (a2; a6).

(1 � 2 � 3 4 5 6 7 � 8 � 9; [0] [1 8] [ ]4 [4] [7] [ ] [5] [ ] [3] [6] [ ]4 [2 9]):

In �+, six dummy blocks are inserted for pair (a1; a3), and fol-
lowed by another six dummy blocks inserted for pair (a7; a9).

(1 �7 2 � 3 4 5 6 7 � 8 � �6 9; [0] [1 8] [ ]4 [4] [7] [ ] [5] [ ] [3] [6] [ ]4 [2 9]):

The corresponding BSG assignment is as follows:

a1 ! (1; 1) a2 ! (9; 17) a3 ! (11; 11)

a4 ! (12; 6) a5 ! (13; 9) a6 ! (14; 12)

a7 ! (15; 7) a8 ! (17; 1) a9 ! (25; 17)

The necessary and su�cient conditions of both H-assignment and
V-assignment are satis�ed.

5. EXPERIMENTAL RESULTS AND
CONCLUSION

For the application of the layout reuse problem, the constraint of
ordered convex shape may be too restrict. However the arbitrary
rectilinear shaped block can be transferred or further partitioned
into the ordered convex shape(s). And then the algorithm can
be extended to handle the general rectilinear blocks.

5.1. Experimental Results

To demonstrate the e�ciency of the algorithm presented in this
paper, we randomly generated the example shown in Fig. 16 (a),
in which all of 31 blocks have ordered convex rectilinear shapes.
The packing result achieved by our algorithm is shown in Fig. 16
(b), in which the x and y dimension are independently compacted
and the topological relations of blocks in (a) are preserved. On
the other hand, we compact the 31 blocks without considering
the relation constraints, the packing result shown in Fig. 16 (c)
is achieved by �rst packing x dimension followed by y dimension,
and Fig. 16 (d) is the result by �rst packing y dimension followed
by x dimension. Obviously, our algorithm give the best result.



(a) 535 � 392 = 209; 720
(b) 301 � 296 = 78; 260

(c) 320 � 310 = 99; 200

(d) 450 � 240 = 108; 000

Figure 16. (a) shows the initial placement of 31 rectilinear
blocks. By preserving the block relations, our algorithm achieves
the packing (b). For comparison, 1-D compactor is applied on the
same problem. Without considering the topological constraints,
x-y compactor gets result of (c) while y-x compactor gets (d).

5.2. Conclusion

In this paper, we derived an e�cient data representation for a
special class of rectilinear polygons : ordered convex rectilinear
polygons in BSG structure. As such, the x and y dimension can
be independently compacted given every polygon is ordered con-
vex shape. By transferring or partitioning arbitrary rectilinear
polygons into the ordered convex shapes, the general rectilinear
compaction can be dealt with. Furthermore the topology con-
strained rectilinear block packing is applied to the layout reuse
problem. A SP-based BSG assignment is constructed such that
the rectilinear blocks can be compacted under the topology con-
straints.

APPENDIX
OUR RECENT WORK ON ARBITRARILY RECTILINEAR

BLOCK PACKING

In the following, we brie
y report our recent theoretical results
on the rectilinear block packing. The detailed proofs and opti-
mization will be presented in another paper in the near future.
An arbitrarily rectilinear shaped block is partitioned into a set

of rectangular sub-blocks: A = fa1; a2; : : : amg, each of them is
handled as an individual block in the sequence pair. We intro-
duce two ways to partition a macro block A: slicing the block
along every vertical boundary of A from the left to right as shown
in Fig. 17 (a), or slicing the block along every horizontal bound-
ary of A from the bottom to top as shown in Fig. 17 (b). We call
the �rst way horizontal partition or H-partition, and the second
way vertical partition or V-partition. In either way, the topol-
ogy of sub-blocks in A is exactly de�ned. Corresponding to each
partition, there exists one and only one pair of permutations on
fa1; a2 � � amg, which is referred to as H-pair or V-pair of A.
Given a sequence pair, the corresponding rectangle packing

can be constructed using the longest path algorithm described
in Section 1. A post process is then carried out on every macro
block A, such that the sub-blocks of A are unioned together to
form the original shape. Based on the two directed acyclic graphs
of SP, the post process can recover the exact shape of every macro
block without causing overlaps, if and only if the sequence pair
satis�es three constraints. As such, the three constraints are

a3 a4 a5

a1

2a

a1

2a
a3 a4 a5

a1 2a
a3

a4

a5

a1 2a

a3

a4

a5

left to

below
(b)(a)

Figure 17. (a) H-partition of macro block A, the H-pair is
(a1 a2 a3 a4 a5; a2 a1 a3 a4 a5). (b) V-partition of macro block
A, the V-pair is (a5 a4 a3 a1 a2; a1 a2 a3 a4 a5).

both necessary and su�cient:

1. for every macro block A = fa1; a2; � � amg, the pair of
permutations on a1; a2; � � am equals to H-pair of A when
A is H-partitioned, or V-pair of A when A is V-partitioned.

2. for any macro block A, ai; aj 2 A and c =2 A, if c is between
ai and aj in one sequence, then c will not be between ai and
aj in the other sequence.

3. for any macro block A and B, ai; aj 2 A and bk; bl 2 B, if
ai; aj interleaves or includes bk; bl in one sequence, ai; aj
must seperate bk; bl in the other sequence.

We call a sequence pair feasible if and only if the above three
constraints are satis�ed.
The theoretical study shows that for any packing of convex

rectilinear blocks, there always exists a feasible sequence pair
corresponding to it. As such, the optimal packing of convex
rectilinear blocks can be guaranteed by exhausting all the feasible
sequence pairs.
Furthermore we apply simulated annealing on the rectilinear

block packing optimization, in which three local moves are de-
�ned on sequence pair to search the solution space continuously.
Starting from a feasible sequence pair, each move takes constant
time and the modi�ed sequence pair is guaranteed feasible.
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