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Abstract
With the recent advent of deep sub-micron technology

and new packaging schemes such as Multi-Chip Mod-
ules(MCMs), integrated circuit components are often not
rectangular. Most existing block placement approaches,
however, only deal with rectangular blocks, resulting in inef-
ficient area utilization. New approaches which can handle
arbitrarily shaped blocks are essential to achieve high per-
formance design. In this paper, we present an approach
extending the sequence-pair approach for rectangular block
placement to arbitrarily sized and shaped rectilinear blocks.
Experimental results show that our algorithm achieves
results with excellent area utilization.

1.  Introduction
With the recent advent of deep sub-micron technology

and new packaging schemes such as Multi-Chip Mod-
ules(MCMs), integrated circuit components are often not
rectangular. Most existing block placement approaches,
however, only deal with rectangular blocks, resulting in
inefficient area utilization. New approaches which can han-
dle arbitrarily shaped blocks are essential to achieve high
performance design.

Kang et al.[3] proposes a genetic simulated annealing
algorithm for L-shaped, T-shaped and soft blocks. Based on
Bounded-Slicing Structure([4]), the algorithm combines the
SA-based local search and GA-based global crossover for
general non-slicing floorplanning.

Lee[5] extends the zone refinement technique intro-
duced by Shin et al.[8] to arbitrarily shaped rectilinear and
soft blocks. A rectilinear block is represented by four linear
profiles viewed from four directions. A profile is specified
by a series of line segments, each of which is defined by two
breaking points. A bounded 2D contour searching algorithm
is proposed to find the best position for the block.

Preas et al.[10] proposes a graph model for the topo-
logical relationship between rectangular blocks. An iterative
improvement algorithm is presented to reduce both area and
interconnections. Wong el al.[9] extends the Polish expres-
sion to represent floorplans of rectangular and L-shaped
blocks. A simulated annealing method is used to search for
optimal floorplan.

Murata et al.[1] proposes the sequence-pair approach
for rectangular block placement. The general idea is to first

place the blocks on a grid, and then use the longest path
algorithm to estimate the area required by the corresponding
compacted placement. To determine the block placement,
two block name sequences are derived, which correspond to
the horizontal and vertical grid lines. Then they introduce a
P-admissible solution space of size (n!)28n, wheren is the
total number of blocks, and apply a simulated annealing
method to search for a good solution.

In this paper, we extend the sequence-pair approach
described above to arbitrarily sized and shaped rectilinear
blocks. The major contribution of our work is to identify
feasible vs. infeasible sequence-pairs for rectilinear blocks.
First, we explore the properties of L-shaped blocks, then
decompose arbitrarily shaped rectilinear blocks into a set of
sub-L-shaped-blocks. The properties of L-shaped blocks,
therefore, can be applied to general rectilinear blocks.

To demonstrate the efficiency of our algorithm, we
apply it to a randomly generated test case and the modified
MCNC benchmark circuitami49. The experiment results
show that the algorithm achieves placements with excellent
area utilization.

2.  Preliminaries -- Sequence-pair
The topological relationships between rectangular

blocks can be expressed by two sequences of the block
names. And given the dimensions of each block, a place-
ment can be generated by a compaction operation. For more
details, please refer to [1].

3.  Rectilinear Block Placement
A rectilinear block placement is feasible iff
(1) it is non-overlapping;
(2) all rectilinear blocks are in their original shape.
To handle rectilinear blocks, we partition rectilinear

blocks into rectangular blocks.

Definition: sub-block
A rectilinear block can be partitioned into a few rectangular
blocks. These are calledsub-blocks, to distinguish them
from individual rectangular blocks.

Supposea1, a2, ..., ak are the sub-blocks of a rectilinear
block, the rectilinear block is denoted by {a1, a2, ..., ak}.

Obviously, if all rectilinear blocks are just placed as
rectangular blocks, i.e. by their bounding boxes(Fig. 1(a)),
feasible placements always exist. And similar to rectangular
blocks, given a feasible placement, there always exists a cor-
responding sequence-pair([1]).

On the other hand, after partitioning and compaction, a
rectilinear block might not be in its original shape, as illus-
trated in Fig. 1(b) and (c). In the case of Fig. 1(b), we can



pull sub-blocks a andc up to align with sub-blockb, so that
the rectilinear block {a, b, c} can maintain its original shape
without changing the overall topology of the blocks. There
is no room to do so in the case of Fig. 1(c). In other word, a
feasible placement can be generated from the sequence-pair
in Fig. 1(b) with a local adjustment, and it is, however,
impossible from the one in Fig. 1(c).

Now we can define the feasibility of a sequence-pair
for rectilinear block placement as follows.

Definition: feasibility of sequence-pair
A sequence-pair isfeasible if it corresponds to a feasible
placement, i.e., after rectangular sub-block compaction, if
adjusted locally,
(1) the shapes of rectilinear blocks are maintained,
(2) and the chip size is not changed.

Therefore, the sequence-pair in Fig. 1(b) is feasible,
while the one in Fig. 1(c) is not.

Therefore, the following theorem holds.

Theorem 1:

Given a feasible placement, there always exists a corre-
sponding feasible sequence-pair.

In the remaining part of the paper, we will extend the
sequence-pair approach to find a feasible sequence-pair
which corresponds to a feasible placement with efficient
area utilization.

3.1  L-shaped block

Let us consider L-shaped blocks first. In the following
discussion we will show that, the feasibility of a placement
and the corresponding sequence-pair depends on both the
orientations of L-shaped blocks and the relative positions of
other blocks in the pair.

Now we can define the orientation of a L-shaped block
as follows..
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Fig. 1 (a) Place rectilinear block as a rectangular block;
(b) a feasible sequence-pair; (d) an infeasible sequence-pair.
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Fig. 2 Orientation of a L-shaped block after partitioning
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Definition: orientation
After partitioning, a L-shaped block can have fourorienta-
tions, ‘up’, ‘down’, ‘left’ and ‘right’, as determined by the
direction the indented region faces along the partition line,
as shown in Fig. 2Corresponding to one orientation, a L-
shaped block may have two reflections. Because the same
rules apply to the two reflections, only four orientations will
be discussed.

To represent the relative positions of a block in a
sequence-pair, we can draw directed lines between its two
positions in the pair. Fig. 3 shows an example, wherea andb
are sub-blocks of a L-shaped block, and1, 2 and3 are rec-
tangular blocks. Blocks1, 2 and3 are betweena andb in at
least one of the sequences. We can draw directed lines for
each of them, starting from the position which is betweena
andb.

Definition: relation vector
For each block in a sequence-pair, we can draw directed line
between its two positions in the two sequences. This line is
calledrelation vector of the block.

And any relation vector, if starting from the origin, can
be categorized into five classes: I, II, III, IV, and 900, accord-
ing to the quadrant in which the vector ends, as shown in
Fig. 4.

Therefore, the relation vectors of blocks1, 2 and3 in
Fig. 3 are class 900, III, and I respectively. For simplicity, we
say that blocks1, 2 and3 are class 900, III, and I respec-
tively.

When a L-shaped block {a, b} is placed with a rectan-
gular block1, with respect to the ‘up’ orientation of {a, b},
block 1 can be placed anywhere which does not destroy the
original shape of {a, b}. Consequently, the following two
restrictions apply:

(a) block1 cannot be class 900, as illustrated in Fig.
5(a);

(b) block1 cannot be class III(Fig. 5(b)), or class I(Fig.
5(c))

All the other sequence-pairs are feasible with respect
to this L-shaped block {a, b}.

Thus, the following lemma holds.
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Fig. 3 Relation vectors of blocks
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Fig. 4 Classes of relation vectors
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Lemma 1:

Given the ‘up’ orientation of a L-shaped block, a sequence-
pair is feasible iff all other blocks are either classes II or IV.

Similarly, given the other three orientations, the fol-
lowing lemmas hold.

Lemma 2:

Given the ‘down’ orientation of a L-shaped block, a
sequence-pair is feasible iff all other blocks are either
classes I or III.

Lemma 3:

Given the ‘left’ orientation of a L-shaped block, a sequence-
pair is feasible iff all other blocks are either classes II or III.

Lemma 4:

Given the ‘right’ orientation of a L-shaped block, a
sequence-pair is feasible iff all other blocks are either
classes I or IV.

Therefore, the following theorem holds.

Theorem 2:

A sequence-pair is feasible with respect to one specific ori-
entation of a L-shaped block iff it satisfies Lemma 1 through
4.

3.2  General rectilinear block

In general, a rectilinear block can be partitioned into a
few rectangular sub-blocks. And in order to employ the
approach described above, the partitioning has to be done in
such a way that two neighbouring sub-blocks can be
grouped into a L-shaped block.

Definition: sub-L-shaped-block
A rectilinear block can be represented as a set of L-shaped
blocks. These are calledsub-L-shaped-blocks, to distinguish
them from individual L-shaped blocks.

A rectilinear block can be partitioned in more than one
way, vertically or horizontally. To represent it as a set of L-
shaped blocks, it is partitioned in only one direction, and all
two neighboring sub-blocks should align in the orthogonal
direction. Fig. 6 illustrates an example. Only the partitioning
in Fig. 6(a) is feasible.

(b) class III (c) class I

Fig. 5  Infeasible placements and sequence-pairs
with respect to ‘up’ orientation of L-shaped block {a, b}
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Some rectilinear blocks, however, cannot be parti-
tioned into a set of sub-L-shaped blocks, neither vertically
nor horizontally, as illustrated in Fig. 7(a). We can select a
side of the rectilinear block and expand it by the size of ,
as shown in Fig. 7(b), so that the rectilinear block is L-shape
dividable. We call this operation -approximation of the
rectilinear block.

Therefore, the following theorem holds.

Theorem 3:

The sequence-pair approach can be applied to rectilinear
block placement iff each rectilinear block can be partitioned
into a set of sub-L-shaped blocks with appropriate -
approximation.

Obviously, these sub-blocks should always maintain
their initial relative positions in any feasible placements.
Fig. 8 shows all the eight orientations and reflections of a T-
shaped block and the corresponding sequence-pairs. As we
can see, blockb is always between blocka andc in all of the
placements and pairs. All other sequences, such as “a c b”
and “b c a”, are infeasible. Consequently, there are only
eight feasible pairs for the T-shaped block {a, b, c}, instead
of (3!)2 = 36([1]).

In general, we have the following theorem.

(a) feasible (b) infeasible

Fig. 6  Feasible vs. infeasible partitioning of blocks
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Fig. 8  Feasible sequence-pairs for the sub-blocks
of a T-shaped block
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Theorem 4:

The number of feasible sequence-pairs for the sub-blocks of
a rectilinear block is always only eight, instead of(k!)2,
wherek is the number of the sub-blocks.

And when the rectilinear block is rotated or reflected,
those sub-L-shaped-blocks are also rotated or reflected
accordingly, and should always maintain their initial orien-
tation relationships, as illustrated in Fig. 9.

A rectilinear block can be categorized as convex or
concave block, according to its shape. The definition is as
follows.

Definition: convex
A rectilinear block isconvex if any two points within the
block can be connected by the shortest Manhattan path,
which is also within the block. Otherwise the block iscon-
cave, as illustrated in Fig. 12.

Some convex rectilinear blocks can be partitioned into
a few sub-L-shaped blocks which are aligned in one side. As
shown in Fig. 11(a), an arbitrarily shaped rectilinear block is
partitioned into three sub-blocksa, b andc. Those three sub-
blocks form two L-shaped blocks {a, b} and {b, c}, which
orientations are both ‘up’.

The Z-shaped block shown in Fig. 11(b) can be repre-
sented by the two sub-L-shaped-blocks {a, b} and {b, c},
which orientations are ‘down’ and ‘up’ respectively.

Definition: mound-shaped
If a rectilinear convex block can be partitioned into a few
sub-L-shaped blocks with the same orientations, the rectilin-
ear block is calledmound-shapedrectilinear block.
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d

Fig. 9 Orientations of the sub-L-shaped-blocks (a) original;
(b) reflected up/down; (c) rotated 900; (d) rotated -900
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Fig. 10 Rectilinear convex vs. concave blocks
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Fig. 11 Partition rectilinear blocks to sub-L-shaped-blocks
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Therefore, the block in Fig. 11(a) is mound-shaped,
while the Z-shaped block in Fig. 11(b) is not.

For mound-shaped rectilinear blocks, all the sub-L-
shaped blocks have the same orientation. This property will
assure the alignment of all L-shaped blocks in placement.
Therefore, the theorem and lemmas presented in Section 3.1
for L-shaped blocks can be applied to mound-shaped recti-
linear blocks without any limitations.

For general rectilinear blocks, their sub-L-shaped
blocks may have different orientations. This may increase
the difficulty of aligning all L-shaped blocks in their original
orientations. Fig. 12 illustrates a placement of a Z-shaped
block {a, b, c} and two rectangular blocks1 and2. We must
expand sub-blockb in y-direction to maintain the original
shape of the Z-shaped block.

Similarly, a concave rectilinear block can also be
placed if its sub-blocks are expandible.

In Fig. 13(a), the placement is infeasible, because the
concave rectilinear block {a, b, c} cannot maintain its origi-
nal shape. But if the sub-blockb is expandible in x-direc-
tion, the placement in Fig. 13(b) is feasible.

Therefore, the following theorem holds.

Theorem 5:

With respect to an arbitrarily shaped rectilinear block, a
sequence-pair is feasible iff it is feasible with respect to all
the sub-L-shaped-blocks of the rectilinear block, assuming
the sub-blocks are expandible.

4.  Algorithm
Similar to Murata’s approach, we also apply a standard

simulated annealing strategy to search the solution space.
For rectilinear blocks, however, infeasible sequence-pairs
might be generated. Consequently, we make the feasibility
of sequence-pairs as part of the cost function used in the
annealing process. If an infeasible pair is identified, we add
a penalty to the cost function according to the number of the
infeasible blocks. A carefully selected cooling schedule will
converge the annealing process and reach an optimal config-
uration.

The outline of the algorithm is as follows.

(a) before expansion (b) after expansion

Fig. 12 Y-direction expansion of sub-blockb
of Z-shaped block {a, b, c}
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Fig. 13  Place concave rectilinear block with expansion
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Procedure PLACE
begin

s := initial configuration with random sequence pairs
T := T0;
repeat

count := 0;
repeat

count := count + 1;
nexts := generate(s);
if cost(nexts) <= cost(s) or

f(cost(s),cost(nexts),T) > random(0,1)
then s := nexts;

until equilibrium(count, s, T);
T := update(T);

until the time reaches the limit or Frozen(T);
output the best placement found;

end

Function Generate(s)
begin

apply one of the following move operations to perturb
the sequences in s;

swap two blocks in one of the sequence;
swap two blocks in both the first and the second

sequences;
rotate one block;

return modified s;
end

Function Cost(s)
begin

C1 := Area_evaluation(s);
C2 := Wire_lenght_estimation(s);
C3 := Infeasible_penalty(s);
return W1*C1 + W2*C2 + W3*C3;

end

Procedure Initialization
Input: rectilinear blocks
Output: a set of sub-L-shaped-blocks
begin

for each rectilinear block
partition it into rectangular sub-L-shaped blocks
employ e-approximation if necessary
set orientation of each sub-L-shaped block
store the information of all sub-blocks.

end

To show the efficiency of our algorithm, we apply it to
a randomly generated test case, and two modified MCNC
benchmark circuitami49. The experimental results are
shown in the table and placements are in Fig. 14.

5.  Conclusions
In this paper, we extend the sequence-pair approach

introduced in [1] for rectangular block placement to arbitrar-
ily sized and shaped rectilinear blocks. The properties of L-
shaped blocks are examined first, and then arbitrarily shaped
rectilinear blocks are decomposed into a set of L-shaped-

blocks. The properties of L-shaped blocks, therefore, are
applied to general rectilinear blocks. The experiment results
show that the algorithm achieves placements with excellent
area utilization.
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Table: The experimental results

test case # T-shaped# L-shaped# rectangular area dead space(%)

artificial -- 4 2 2304
(48 x 48) 5.16

ami49 -- 21 7 37,391,508
(6314 x 5922) 5.20

ami49 1 20 6 39,424,616
(6314 x 6244) 10.09

 (a) artificial test case(5.16%)

Fig. 14. Experimental results

(b) modifiedami49(5.20%) (c) modifiedami49(10.09%)
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