
ON CONVEX FORMULATION OF THE FLOORPLAN AREA MINIMIZATION

PROBLEM

Temo Chen1 Michael K. H. Fan2

School of Electrical and Computer Engineering
Georgia Institute of Technology

1temochen@ee.gatech.edu
2fan@ee.gatech.edu

ABSTRACT

It is shown that the oorplan area minimization problem
can be formulated as a convex programming problem with
the numbers of variables and constraints signi�cantly less
than those previously published.

1. INTRODUCTION

Floorplanning is a key step in the VLSI physical design
cycle. Its main task is to place blocks with �xed area but
unknown dimensions on a chip in such a way that the area of
the enveloping rectangle is minimized. Usually, the blocks
are assumed to be rectangular and the lengths and widths of
these blocks are determined in addition to their locations.
Also, there is an upper and a lower bound on the aspect
ratio a block may have, where the aspect ratio is the ratio
of width of the block to its height. Due to its complexity,
oorplanning is usually carried out in two separate steps.
The �rst step is to determine the oorplan topology, i.e.,
to specify the relative positions of the blocks on a chip.
The second step is then to select dimensions for each block
so that the area of the enveloping rectangle is minimized
while the oorplan topology determined in the �rst step
is held �xed. The second step is usually referred to as the
oorplan area minimization problem and it has been studied
extensively (see, e.g. [2, 3, 4, 6, 7, 8, 9] and references
therein).

Rosenberg [4] and Moh et. al [2] show that the oorplan
area minimization problem can be formulated as a convex
programming problem. Convex programming problems en-
joy the property that any local solution is also global. Fur-
ther, there are polynomial-time algorithms for many classes
of convex programming problems.

In this paper, we show that the convex formulation of [2]
can be reduced to one with the numbers of variables and
constraints signi�cantly less than those given in [2]. Specif-
ically, we show that the number of variables can be reduced
from 3n + 1 to 2n + 1 � p and the number of constraints
from 5n+ q to 4n+ q� p� r, where n denotes the number
of blocks, q the number of nontrivial adjacency constraints,

p the maximal number of blocks adjacent to either side of
two adjacent sides of the enveloping rectangle, and r is re-
lated the slicing sub-oorplans with one-level tree structure
in the oorplan. To give the exact counts of variables and
constraints in our convex formulation, we develop a result
related to the oorplan topology, which may be of interest
in its own right. Since the complexity of solving a convex
programming problem typically increases dramatically with
the numbers of variables and constraints, our results thus
lead to a signi�cant reduction of computational e�ort in
solving the oorplan area minimization problem.

The main result of the paper will be presented in Section
2, where we show how to reduce the numbers of variables
and constraints from the convex formulation of [2]. We also
give the result related to the oorplan topology and show
how it leads to the exact counts of variables and constraints
in our convex formulation. Finally, we give an example to
illustrate the main results of the paper in Section 3.

2. MAIN RESULTS

Let us start with a simple oorplan area minimization prob-
lem [2]. Consider the oorplan topology in Figure 1(a). We
assume that the topology has been chosen, or temporarily
chosen, in the �rst step of the oorplan design process. For
i = 1; � � � ; 4, Cell i shall contain one block with a given
area ai and the block also needs to satisfy the aspect ratio
constraint

Miwi � zi � miwi

where wi and zi denote the width and height of the block
respectively, andMi � mi are positive constants. The oor-
plan area minimization problem is then to �nd the width
and height of each block such that the area of the enveloping
rectangle (namely, the smallest rectangle containing all the
cells) is minimized. Moh et. al [2] show that a formulation
of the above problem is

(P ) minfx2y3 : wizi = ai;

Miwi � zi � miwi; i = 1; � � � ; 4;
x1 � w1;

y1 � z1;

x2 � x1 � w2;

y2 � z2;

x1 � w3;

y3 � y1 � z3;

x2 � x1 � w4;

y3 � y2 � z4;

y2 � y1 � 0g
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Figure 1. A simple example

where the new variables xi's and yi's are de�ned in Fig-
ure 1(b) and the minimization is over xi's, yi's, zi's, and
wi's. The constraints in (P ) can be categorized into four
types: area constraints (wizi = ai), aspect ratio con-
straints (Miwi � zi � miwi), containment constraints
(x1 � w1; � � � ; y3 � y2 � z4), and adjacency constraints
(y2 � y1 � 0). They also show that applying the change

of variable �$ exp(��) to all variables would transform (P )
into an equivalent convex optimization problem. Appendix
A summarizes the key steps in showing the convexity of the
transformed problem.

Now we show how to reduce the numbers of variables and
constraints. To this end, we will employ the following result
which gives the equivalence of four sets in a certain sense.

Proposition 1. Let a > 0 and M > m > 0 and de�ne

� =
p
a=M and � =

p
am. Consider the sets

S1 = f(x; y;w; z) : wz = a; Mw � z � mw; x � w; y � zg
S2 = f(x; y;w) : wy � a; x � w � �; y � �g
S3 = f(x; y; z) : xz � a; x � �; y � z � �g
S4 = f(x; y) : xy � a; x � �; y � �g
Then the following statements are true.

1. (x; y; w; z) 2 S1 implies both (x; y;w) 2 S2 and
(x; y; z) 2 S3.

2. Either (x; y; w) 2 S2 or (x; y; z) 2 S3 implies (x; y) 2
S4.

3. (x; y) 2 S4 implies (x; y;w; z) 2 S1 for some w and z.

Proof: It is straightforward to verify the �rst two
statements. To show the third statement, let w =

minfx;
p
a=mg and z = a=w. It is clear that x � w

and wz = a. Case I: x �
p
a=m. Thus w = x. It

is easy to see that x � � is equivalent to Mx � a=x

and that x �
p
a=m is equivalent to a=x � mx. Hence,

Mw = Mx � a=x = a=w = z and z = a=x � mx = mw.

Also, y � a=x = a=w = z. Case II: x >
p
a=m. Thus

w =
p
a=m and z = �. Then Mw � z = mw and y � z. 2

To simplify the notation, in the sequel we de�ne

�i =

r
ai

Mi

and �i =
p
aimi for all i

Consider the set of constraints in (P ) involving w1 or z1,
namely,

fw1z1 = a1;M1w1 � z1 � m1w1; x1 � w1; y1 � z1g (1)

In view of Proposition 1, it is easy to see that using the
equivalence between S1 and S4, the set (1) can be simpli�ed
to

fx1y1 � a1; x1 � �1; y1 � �1g (2)

without a�ecting the optimization problem (P ). Therefore,
the variables w1 and z1 can be removed and the number of
constraints can be reduced by two. Also, all the constraints
in the reduced set (2) are ready to be transformed to some
equivalent convex constraints using the change of variable
� $ exp(��) (see Appendix A). Similar arguments may be
applied to the set of constraints involving w2 or z2 and the
set involving w3 or z3. Finally consider the set of constraints
in (P ) involving w4 or z4, namely,

fw4z4 = a4;M4w4 � z4 � m4w4;

x2 � x1 � w4; y3 � y2 � z4g (3)

Again, in view of Proposition 1, using the equivalence be-
tween S1 and S4, the set (3) can be simpli�ed to

f(x2 � x1)(y3 � y2) � a4; x2 � x1 � �4; y3 � y2 � �4g

In this case, however, the constraint

(x2 � x1)(y3 � y2) � a4

cannot be transformed into any convex constraint using the
change of variable � $ exp(��). Instead, we use the equiv-
alence between S1 and S2, and have the set (3) reduced
to

fw4(y3 � y2) � a4; x2 � x1 � w4 � �4; y3 � y2 � �4g (4)

Alternatively, we may use the equivalence between S1 and
S3, and have the set (3) reduced to

f(x2 � x1)z4 � a4; x2 � x1 � �4; y3 � y2 � z4 � �4g (5)

Now, all constraints in (4) or (5) are ready to be trans-
formed to some equivalent convex constraints. Conse-
quently, only z4 or w4 is removed and the number of con-
straints is reduced by one. What makes Cell 4 distinguish
itself from other cells is that it is neither adjacent to x-axis
nor adjacent to y-axis. This property limits the reduction
of the number of variables or constraints to one, instead of
two. Notice that at this point the choice between (4) and
(5) is arbitrary. However, we will see later that since Cell
4 is sharing a pair of x-variables (i.e., x1 and x2) with Cell



2, using (5) can further reduce the number of constraints
in the overall optimization formulation. Putting all this
together, the optimization problem (P ) then becomes

(P1) minfx2y3 : x1y1 � a1;

(x2 � x1)y2 � a2;

x1(y3 � y1) � a3;

(x2 � x1)z4 � a4;

x1 � �1;

y1 � �1;

x2 � x1 � �2;

y2 � �2;

x1 � �3;

y3 � y2 � �3;

x2 � x1 � �4;

y3 � y1 � z4 � �4;

y2 � y1 � 0g

Further simpli�cation may be obtained when two or more
cells share a pair of x-variables or y-variables. This is the
case for the example in Figure 1, where Cells 1 and 3 share
the pair of x-variables 0 and x1, and Cells 2 and 4 share
x1 and x2. As the result of this property, in (P1), the con-
straints x1 � �1 and x1 � �3 can be combined into a
single constraint x1 � maxf�1; �3g. Also, the constraints
x2 � x1 � �2 and x2 � x1 � �2 can be combined into
x2 � x1 � maxf�2; �4g. Notice that the second reduction
may not be possible if earlier we had chosen (4) in lieu of
(5). Thus, the number of constraints is further reduced by
two and resulting optimization problem becomes

(P2) minfx2y3 : x1y1 � a1;

(x2 � x1)y2 � a2;

x1(y3 � y1) � a3;

(x2 � x1)z4 � a4;

x1 � maxf�1; �3g;
y1 � �1;

x2 � x1 � maxf�2; �4g;
y2 � �2;

y3 � y2 � �3;

y3 � y1 � z4 � �4;

y2 � y1 � 0g

The above procedure in further reducing the number of
constraints can be easily extended to a general oorplan
topology as follows: the set of constraints associated with a
cell (such as (1) and (3)) sharing a pair of same x-variables
(resp. y-variables) with any other cell should be simpli�ed
using the equivalence between S1 and S4 if this will result
in a set of convex constraints; otherwise it should be sim-
pli�ed using the equivalence between S1 and S3 (resp. the
equivalence between S1 and S2). On the other hand, if a cell
shares neither a pair of x-variables nor a pair of y-variables
with any other cell, and if the equivalence between S1 and
S4 is not applicable, then one may freely use the equiva-
lence either between S1 and S3 or between S1 and S2 for
the simpli�cation.

We are now able to count the numbers of variables and
constraints for both the convex formulation of [2] and ours

for a general oorplan topology. Let n denote the number of
blocks (or cells), nx and ny the numbers of x-variables and
y-variables, respectively, p the number of blocks adjacent to
x-axis or y-axis, and q the nontrivial adjacency constraints.
Also, let k denote the number of slicing sub-oorplans with
one-level tree structure. For each of such sub-oorplans,
denote by ri the number of blocks in the sub-oorplan, i =
1; : : : ; k. De�ne

r =

kX
i=1

(ri � 1)

Then for the convex formulation of [2], the number of vari-
ables is

nx + ny + 2n

and the number of constraints is

5n+ q

(i.e., n area constraints plus 2n aspect ratio constraints plus
2n containment constraints plus q adjacency constraints).
For our convex formulation, the number of variables is

nx + ny + n� p

and the number of constraints is

4n+ q � p� r

(i.e., n area constraints plus 2n aspect ratio constraints plus
n� p x-axis containment constraints plus q adjacency con-
straints minus r due to x-variables or y-variables sharing).
It is obvious to see that to further reduce the number of
variables and the number of constraints, we may rotate the
oorplan to have the maximal p which leads to the minimal
nx + ny + n� p and 4n+ q � p� r.

To present the main result of the paper, it remains to
show

nx + ny = n+ 1

Without loss of generality, we may assume that the oor-
plan topology is drawn in such a way that all x-variables
have distinct nominal values and all y-variables also have
distinct nominal values. Notice that this assumption does
not prevent any two x-variables (or y-variables) from being
equal to each other at the solution.

De�nition 1. Given a oorplan topology, an H-line is a
line inside the enveloping rectangle with each end connected
to another line perpendicular to it to form a T shape on each
end. 2

It can be easily checked that all lines inside the enveloping
rectangle of a oorplan are H-lines. Given an H-line, there
are two sets of lines perpendicular and connected to it; one
set per side and any set may be empty. Let us denote them

by T1 and T2, respectively. For example, in Figure 2(a), ab

is an H-line with T1 = fcdg and T2 = fef ; ghg.
De�nition 2. Given a oorplan topology G and an H-
line H, the degradation of G with respect to H, denoted
by D(G;H), is the process of removing the H-line H and
extending all lines in its associated sets T1 and T2 until
touching other lines. 2

A degradation always leads to a new oorplan topology.
For example, in Figure 2(a), performing the degradation

D(G; ab) leads to the new oorplan topology in Figure 2(b).
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Figure 2. Floorplan G and its degradation

Notice that degradation causes both the number of blocks
and the number of H-lines to decrease by one in the new
oorplan topology.

Proposition 2. A oorplan topology with n blocks has
(n� 1) H-lines.

Proof. For a oorplan topology with n blocks, we may
perform degradation (n�1) times with each time randomly
selecting an H-line to obtain a oorplan topology with only
one block. It is clear that a one-block oorplan topology
has noH�line. It follows that the original n-block oorplan
topology must have (n� 1) H-lines. 2

Since each H-line corresponds to an x-variable or a y-
variable and the enveloping rectangle needs one additional
x-variable and one additional y-variable, a direct conse-
quence of Proposition 2 is nx + ny = n + 1. We are now
ready to give the exact numbers of variables and constraints
in our convex formulation of the oorplan area minimiza-
tion problem.

Theorem 1. The oorplan area minimization problem can
be formulated as a convex programming problem with (2n+
1� p) variables and (4n+ q � p� r) constraints. 2

It is clear that we have so far used only the informa-
tion on the oorplan topology in reducing the optimization
formulation. However, there is still room for possibly fur-
ther reducing the formulation if other information about the
oorplan is used. Consider the example shown in Figure 3.
Following the formulation procedure previously given, we
have part of the constraints look like

y2 � �1

y1 � z2 � �2

y2 � y1 � z3 � �3

-
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Figure 3. A further reduction example

Obviously we can see that if �2 + �3 � �1 holds, then
the constraint y2 � �1 is in fact redundant and can be
removed. Such redundancy happens when a sub-oorplan
with multiple-level slicing tree structure is encountered and
the associated constants �'s or �i's satisfy certain inequal-
ities (in this example, �2 + �3 � �1). It is not di�cult to
see that for each such sub-oorplan, the number of possible
redundant constraints is at most the number of its slicing
tree structure levels minus one.

To conclude this section, we give a remark on the rela-
tion between the convex formulation in [4] and that in [2].
The formulation in [4] does not directly handle aspect ratio
constraints. However, it allows constraints in the form of

xi � xj � �` (6)

or
yi � yj � �` (7)

to be included. In view of Proposition 1, (6) and (7) to-
gether can be thought as a form of expressing aspect ratio
constraints. Therefore the two formulations in [2] and [4]
are in fact equivalent, although they are formed with dif-
ferent conceptual reasoning.

3. AN EXAMPLE

Consider the oorplan topology in Figure 3, where the num-
ber of blocks n is 23, the maximal number of blocks adjacent
to either side of two adjacent sides of the enveloping rect-
angle p is 8, and r is 11. Thus, the corresponding oorplan
area minimization problem can be formulated as a convex
optimization problem with

2n+ 1� p = 39

variables and

4n+ q � p� r = 73 + q

constraints. The sub-oorplan Cell abcd may contribute to
a further reduction. Its four-level slicing tree structure may
possibly result in up to 3 redundant constraints and lead
to the number of constraints equal to 70 + q. On the other
hand, using the formulation in [2], the convex optimization
formulation would have 70 variables and 115+q constraints.

APPENDIX A

Let x, y, z be variables and a a constant. Then applying

the transform �$ e
�� to all variables leads to the following
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Figure 4. A general example

equivalencies

xy = a () �x+ �y = �a

x � ay () �x � �a+ �y

x� y � z () log(e
�z
+ e

�y
)� �x � 0

(x� y)z � a () log (e
�a��z

+ e
�y
)� �x � 0

where �a = log a. Furthermore, the set of new variables
that satisfy each of the inequalities on the right hand side
is convex.
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