
A PARALLEL ALGORITHM FOR ZERO SKEW CLOCK TREE ROUTING

Zhaoyun Xing1 Prithviraj Banerjee2 �

1 Sun Microsystems Laboratories
2550 Garcia Avenue

Mountain View, CA 94043
xing@eng.sun.com

2 Center for Parallel and Distributed Computing
Northwestern University

2145 Sheridan Road, Evanston, IL 60208
banerjee@ece.nwu.edu

ABSTRACT

In deep sub-micron fabrication technology, clock skew is
one of the dominant factors which determine system per-
formance. Previous works in zero skew clock tree rout-
ing assume that the wires have uniform size, and previous
wire-sizing algorithms for general signal nets do not pro-
duce the exact zero skew. In this paper, we �rst propose an
algorithm to get the exact zero skew wire-sizing by using an
iterative method to make the wire size improvement. Our
experiments on benchmark clock trees show that the algo-
rithm reduces the source sink delay more than 3 times that
of the clock trees with uniform wire sizes and keeps the clock
skew zero. Motivated by the computation intensive nature
of the zero skew clock tree construction and wire-sizing,
we propose a parallel algorithm using a cluster-based clock
tree construction algorithm and our zero skew wire-sizing
algorithm. Without sacri�cing the quality of the solution,
on the average we obtain speedups of 7.8 from the par-
allel clustering based clock tree construction algorithm on
an 8 processor SUN SPARC Server 1000E shared memory
multi-processor.

1. INTRODUCTION

In deep sub-micron fabrication technology, clock skew is
one of the dominant factors which determine system per-
formance. As a result, numerous researchers have worked
on the zero-skew clock tree construction [2, 9, 3, 4, 7, 13].
Among those, two models have been used to approximate
clock source sink delays. The �rst model assumes that the

�This research was supported in part by the Semiconductor

Research Corporation under contract SRC 96-DP-109 and the
Advanced Research Projects Agency under contract DAA-H04-

94-G0273 administered by the Army Research O�ce.

delay is proportional to the path wire-length, and it is there-
fore called the linear delay model. The second is called the
Elmore delay model which gives much more accurate ap-
proximation than the linear model.
Most of the zero skew clock tree construction procedures

use variations of the Deferred-Merge Embedding (DME) al-
gorithms [2, 3, 7]. The DME algorithm usually takes one
bottom-up phase and one top-down phase. In each step
of the bottom-up phase, one selected pair of the zero skew
subtrees will be merged into a larger zero skew tree. In-
stead of only one point, the feasible positions of the root of
the new large tree are a set of points. In each step of the
top-down phase, the position of one internal node will be
determined based on the objective of the optimization. The
DME algorithm can be applied to both the linear and the
Elmore models. The zero skew merging under the Elmore
model is based on the work of Tsay [13]. Among various
zero-skew clock tree construction schemes, CL, a cluster-
ing based construction algorithm [7], is the best in terms of
total wire-length.
Under the Elmore delay model, the delay of a clock tree

not only depends on its topology, but also on the size or
width of each connection wire. Cong et al. [6] optimize the
weighted source sink delay assuming that there are only a �-
nite number of wire-sizes available. This wire-sizing method
is called discrete wire-sizing. Chen et al. [5] generalize the
optimization assuming a wire can take a real range of sizes.
This method is called continuous wire-sizing. Kay et al. [11]
proposed an algorithm for wire sizing which can handle zero
skew clock tree wire sizing. But it requires linear relaxation
for the nonlinear optimization problem. When the number
of wires is large, it may take excessive amount of running
time to solve the linear programming problem.
In this paper, as described in Section 6., though it can be

extended to the multi-staged clock routing, we consider the
single stage clock tree routing problem, i.e., the bu�er in-
sertion problem is not considered. Also, we assume there is
only one clock pulse source and there is no coupling capac-
itance. we �rst propose an algorithm to get the exact zero
skew wire-sizing. This approach uses an iterative method to
make wire size improvement. Each time when we make an
alternate choice of wire size for some segment, we propagate
this information to the root of the tree by zero skew merg-
ing to make sure that we indeed get an improvement. Our
experimental results show that this algorithm can reduce
the clock delays more than 3 times over the CL algorithm
using uniform wire sizes while the skew of clocks are set to
zero.
Like all the other layout synthesis problems such as place-

ment and routing, the clock routing process is a compu-
tation intensive process. For large clock tree nets of the



complex designs, it may take hours to route a clock tree.
Parallel processing is one of attractive methods to reduce
the increasing running time. There has been a lot of re-
search on developing parallel algorithms for a wide range of
VLSI CAD problems[1]. Until now there has been no work
on parallel clock tree routing. In this paper, we propose a
parallel algorithm for clock tree construction and its wire-
sizing. Our parallel clock tree construction is based on the
CL algorithm, and the parallel zero skew clock tree wire-
sizing is based on our zero skew wire-sizing algorithm. Our
experimental results show good performance in the parallel
algorithms of clock tree construction and zero skew wire-
sizing.
In summary, our key contributions in this paper are: (1)

Integrating the wire-sizing operation with the zero skew
clock tree routing, (2) A parallel algorithm to speedup the
zero skew clock tree construction and wire-sizing problems.
The remainder of the paper is organized as follows. Sec-

tion 2. de�nes the zero skew clock tree routing problem
using the Elmore delay model. Section 3. gives a zero skew
wire-sizing algorithm and the experimental results on some
benchmark clocks. In Section 4., we propose the parallel al-
gorithms for the zero skew clock tree construction, topology
improvement, and wire-sizing. Also, we report the exper-
imental results on those parallel algorithms in Section 5..
We conclude this paper in Section 6..

2. ZERO SKEW CLOCK TREE ROUTING

Throughout this paper, we make the following assumptions
and use the following notations. Assume T is a clock rout-
ing tree with n wire segments. The driver or root of T is s0,
which has resistance r0: T has a set of sinks fN1; � � � ;Nsg
with load capacitances csi ; 1 � i � s: For each wire segment
si, let li be the length of si and wi be the width of si:
Assume fW1; � � � ;Wrg is the set of discrete choices of wire
width for each wire. Let dec(si) be the set of descendants of
si excluding si. Let ans(wi) be the set of ancestors of si ex-
cluding si: Let �r be the resistance and �c be the capacitance
per unit square.
Based on the above assumption, under the �-model [5],

the resistance of wire segment si is ri = �rli=wi; and the ca-
pacitance of si is ci = �cliwi: The down-stream capacitance
of si is given by Ci =

P
sj2dec(si)

�cljwj+
P

Nj2dec(si)
csj; 1 �

i � n: Under the Elmore delay model the signal delay of sink
Ni is given by

Di =
P

sj2ans(si)
rj(Cj + cj=2)

=
P

sj2ans(si)
�rlj=wj(

P
sk2dec(sj)

�clkwk+

+
P

Nk2dec(sj)
csk + �cljwj=2)

(1)

If Di = Dj; 1 � i; j � s, then T is called a zero skew clock
tree.
In this paper we consider the following zero skew clock

tree routing problem

minimize f(l1; � � � ; ln; w1; � � � ; wn) = D
subject to Di = D; and wi 2 fW1; � � � ;Wrg; 1 � i � n

(2)

3. A ZERO SKEW WIRE-SIZING
ALGORITHM

When the topology of a clock tree is given, wire-sizing can
further reduce the delay of the clock trees. In this section,
we look at one wire-sizing algorithm which generates the

w

propagation path

Figure 1. When the size of a wire is locally opti-
mized, the e�ect of the wire size change is propa-
gated by zero skew merging to the root of the clock
tree. The length of all the wires along the propa-
gation path and their siblings may change but their
wire-sizes remain unchanged. The thick wires are
on the propagation path, and dashed wires are their
sibling.

exact zero skew clock trees with less source-sink delays than
those with the uniform wire sizes.
The zero skew wire-sizing algorithm uses an iterative ap-

proach. In each step, one wire segment is selected and an al-
ternate wire-size is tried. Because of the change of wire-size
of this segment, the zero skew property will not hold. To
make the skew of the tree still zero, we have to re-merge the
subtree rooted at the current wire with its sibling. This re-
merging generates a new subtree rooted at the parent of the
current wire. In this step, we assume that the sibling wire
uses the same wire size. Moreover, the zero skew re-merging
may change the wire-length of its sibling. Then the new
parent wire needs to re-merge with its sibling. This prop-
agation continues until all the wire segments on the path
from the current wire to the root wire s0 are re-merged. If
the new generated tree has less delay then we accept the
new wire size, otherwise this wire is ignored, and we pro-
ceed to the next optimization step. Figure 1 illustrates this
propagation process.

3.1. Analysis of the Zero Skew Wire-Sizing Algo-
rithm

Throughout the analyses of the paper, assumeM stands for
the number of iteration in the zero skew wire-sizing algo-
rithm. Assume the tree generated by the CL algorithm is
well balanced. Then the height of the tree is O(log(n)). In
the zero skew wire-sizing algorithm, each propagation will
take O(log(n)) time. In each iteration, we will try r�1 dif-
ferent wire sizes for each wire. This takes O(n(r�1) log(n)):
Therefore, the total running time is O((r � 1)Mn log(n)):
In the worst case, it may take nr iteration to make wire-

sizing algorithm converge. To avoid the iteration explode,
in the wire-sizing algorithm, a number M is used as the
number of iterations.

3.2. Experimental Results

We implemented and tested the zero skew wire-sizing al-
gorithm on several benchmark clocks r1 - r5 [13] on a



SUN SPARCstation 5. The topology of the clock tree
is generated by the CL algorithm without local opti-
mization. In our experiments, the set of wire widths is
f1�m; 2�m; 3�m; 4�mg: The algorithm is executed until
there is no change. Table 1 lists the delay and the run
time results of the zero skew wire-sizing algorithm. Table 2
lists the results of scaled delays of r1-5 by the CL algorithm
with uniform minimum wire width (1�m), and the CL algo-
rithm with uniform maximum wire width (4�m). The scale
is based on the zero skew wire-sizing algorithm. Our exper-
iments show that our zero skew wire-sizing algorithm can
generate clocks with source sink delay three times less than
those generated by CL algorithm with either minimum or
maximum uniform wire size. The results of running times
indicate that our algorithm is e�cient.

circuit wire # delay (ns) runtime(s)
r1 533 0.35 9.7
r2 1195 1.12 22.3
r3 1723 0.82 86.4
r4 3805 4.12 91.2
r5 6201 5.39 672.4

Table 1. Delay and run-time results of the zero skew
wire-sizing algorithm.

circuit zero skew uniform 1�m uniform 4�m
r1 1.0 3.71 2.80
r2 1.0 2.88 2.14
r3 1.0 6.35 4.45
r4 1.0 3.73 2.61
r5 1.0 4.25 3.56

Table 2. Comparisons of clock delays by wire-sizing
algorithms.

4. PARALLEL ZERO SKEW CLOCK TREE
ROUTING

Even though the run times in Table 1 show that our algo-
rithm is very e�cient, the run times are expected to be in
the hours for very large clock trees having 10,000 to 100,000
wire segments as is expected in future complex micropro-
cessor designs. It is therefore important to look at parallel
algorithms to reduce the run times. In this section, we
propose a parallel algorithm for the zero skew clock tree
routing. This algorithm consists of zero skew clock tree
construction and wire-sizing. The clock tree construction is
based on the clustering algorithm CL with local improve-
ment. The wire-sizing is based on our zero skew wire-sizing
algorithm. To illustrate the parallelism di�erences inside
CL and local improvement, we discuss their parallel algo-
rithms separately.

4.1. Parallel Zero Skew Clock Tree Construction

The clustering based algorithm CL is the best zero skew
clock tree construction algorithm in terms of the total wire-
length. Based on this algorithm, in this section we propose
a parallel algorithm to reduce the extremely large running
times when the number of sinks increases.
For a given set of zero skew subtrees which need to be

merged into a large zero skew tree, CL �rst �nds the nearest
neighbor graph. The nodes in this graph are the roots of
the zero skew subtrees, and an edge is given if one node is
the nearest neighbor of the other. The edge weight is the
distance between two nodes. The edges are sorted in an

P

P

P

P

0 1

2 3

B

C

dA

Figure 2. Node partition and parallel nearest neigh-
bor computation. Solid dots are the roots of the
zero skew subtrees. After grid partition, each pro-
cessor has two nodes. After the local nearest neigh-
bor computation, node A has the nearest neighbor
B with a distance of d. Since the bounding square of
A with side length of 2d does not overlap with ter-
ritories of the other processors, B is also the global
nearest neighbor of A. Moreover, since the bound-
ing square of B overlaps with the territory of pro-
cessor p2 we have to check all the nodes in p2 to get
the nearest neighbor of B which is C. In addition,
since the bounding square of B does not overlap
with the territories of processors p1 and p3, we do
not have to check any of their nodes.

increasing edge weight order. The nodes (roots of the sub-
trees) are zero skew merged in that order. A node can have
multiple edges and if either of the nodes of an edge have
been merged, the edge is ignored. This process continues
until there is only one node (one tree) left.
The dominant parts of the computation in CL are the

nearest neighbor graph construction and edge sorting. The
most e�cient implementation of the nearest neighbor com-
putation is by Delaunay triangulation, which has a com-
plexity of O(n log(n)):
Assume that all the sinks are randomly distributed in a

box B and there are p processors. To get an e�cient parallel
nearest neighbor computation, we partition B evenly into p
two dimensional grids such that each process is assigned a
rectangular area and has its own set of nodes. The parallel
CL algorithm proceeds as follows. First, each processor in-
dependently constructs the nearest neighbor graph based on
all the nodes it owns. Second, we have to extend this local
nearest neighbor to the global nearest neighbor. For a given
node N , assume its edge weight, the distance to its nearest
neighbor, is d. Form a bounding square with N as the cen-
ter and 2 � d as the side length. For any processor, if this
square does not overlap with its territory, then all the nodes
owned by the processor have a distance of at least d from
N. Thus the nearest neighbor of node N cannot be owned
by that processor. Otherwise, we need to compare the dis-
tance between N and each node owned by the processor
against the current edge weight to get the nearest neighbor
of N. Third, after we construct the nearest neighbor graph,
each processor sorts all the edges it owns. Fourth, like in
merge sort, the edges are merged such that they are in a in-
creasing weight order. Figure 2 illustrates an example node
partition and nearest neighbor graph construction.

4.1.1. Analysis of the Parallel CL Algorithm

Assume there are n subtrees to be zero skew merged. If
the distribution of those subtrees is even, then each pro-



cessor owns n=p nodes. The local nearest neighbor com-
putation takes O(n=p log(n=p)) time. Assume n nodes re-
side on a

p
n �

p
n grid. After the local nearest neigh-

bor computation, the distance of each node to its nearest
neighbor is 1. For each processor, the ownership check-
ing of the nodes owned by the other processors is only

necessary at most 4
p
n=p on the boundary of the terri-

tory. This takes O(4
p
n=pn=p) = O((n=p)

3

2 ): The sort-
ing of the local edges takes O(n=p log(n=p)): Assuming
the sending of one edge information takes time c, then
the merging of the sorted edges takes O(cn) time. In
summary, the total running time of the parallel CL algo-

rithm is O((n=p) log(n=p))+O((n=p)
3

2 )+O(cn): Recall that
the serial CL algorithm takes O(n log(n)): When the term

O((n=p)
3

2 ) is not dominant (which is the case for even when
n is fairly large, as shown by our experiments in Section 5.),
we may get super-linear speedup from the parallel CL algo-
rithm.

4.2. Parallel Improvement Algorithm

The improvement algorithm in CL accounts for the best
quality of CL in terms of total wire-length. In the im-
provement algorithm, for any internal node v, assume Tv
is a subtree of v with at most 2m� 1 nodes for some pos-
itive integer 4 � m � 6: Then Tv has at most m leaves.
Without changing the capacitances and delays of those leaf
nodes, using exhaustive search an optimal zero skew merg-
ing sequence can be given. A di�erent merging sequence
generates a di�erent tree topology. Though the original ob-
jective of improvement is to minimize the total wire-length,
the optimization approach can also be applied to the opti-
mization of source sink delay. In every iteration, the nodes
of the tree will be optimized in a bottom up order. The
improvement algorithm terminates after a �xed number of
iterations, or when there is no delay change after execution
of two consecutive iterations. If m is 4, then the search is
equivalent to a search tree with depth of 2. Using the depth
number instead of the number of nodes can save some e�ort
in implementation.
The improvement over one internal node will not e�ect

the improvement over another internal node with higher
depth counting from the root of the tree. If all proces-
sors hold some subtrees from the same depth, then the im-
provement over those subtrees can be done independently.
Since the enumeration takes almost the same time for all
the nodes, the parallelism depends on the number of nodes
owned by each processor. Unfortunately, the CL algorithm
can produce unbalanced trees. To make a good paralleliza-
tion, we have to design a good subtree partitioning scheme.
Assume there are p processors. We want to have each pro-

cessor have some subtrees from the same depth and make
the total node count balanced. Let n be the total number
of nodes in a tree. Assume the subtree assignment occurs
in depth d and there are s subtrees in this depth. Also,
assume that the subtree Tv has nv nodes. The optimal par-
titioning strategy will be to �nd a partition of s weighted
objects into p subsets such that the total weight di�erence
is minimized. Since the two set partition problem can be
easily reduced to this problem, this problem is NP-complete
[8]. Therefore, we propose a heuristic to give a fairly good
partition. To balance the load, we use � > 0 be the maxi-
mum percentage di�erence of total node counts among all
processors. Assume the nodes with depth less than d to
be m. Since those nodes will not be distributed, the to-
tal number of distributed nodes is n�m: On the average,

6 8

16 2

p1 p0 p1p1

Figure 3. Subtree partition. Assume there are two
processors. The subtree assignment will not occur
on nodes of depth 1 since it will make an assignment
of 16 nodes and 2 nodes on two processors. This is
too o� balance. But in depth of 2, we have 4 sub-
trees. After execution of our partitioning scheme,
processor 0 gets one subtree with 8 nodes and pro-
cessor 1 gets three subtrees with total number of
nodes also 8. This is a well balanced partition.

each processor should expect to have subtrees with a to-
tal l = (n � m)=p number of nodes. To make a balance
assignment, we sort the subtrees in depth d in decreasing
order of their node counts. The subtree assignment is pro-
cessed one processor a time. If the total number of nodes
assigned to the current processor does not exceed the av-
erage and adding the next subtree does not make the total
node count over (1 + :5 � �)l, then assign the next subtree
to the current processor. If the current processor is under-
loaded and the addition of the next subtree will make the
total node count over (1+ :5 ��), then we do the same test
on the subtree at the end of the unassigned subtree list to
see if we can assign that subtree to the current processor.
This process continues until all the subtrees are assigned.
After the assignment, if the di�erence among the loads of
all processor exceeds �, the partition will go the next depth
of tree unless the depth is maximum already.
After the partitioning, the tree will be cut into two parts.

The top part consists of nodes with depth less than d, and
the bottom part consists of the rest of nodes. The improve-
ment in the bottom part is done in a distributed manner
across processors �rst. Then the information about subtrees
will be synchronized. Finally, the improvement of the top
part can be done by all the processors simultaneously. This
completes one iteration of the improvement. The improve-
ment will terminate if no source sink delay improvement
occurs after this iteration. In the next iteration, since the
topology is changed we have to repartition the tree and re-
peat this process all over again. Figure 3 illustrates the
process of subtree partitioning.

4.2.1. Analysis of the Parallel Improvement Algorithm

Assume there are m nodes in the top part and it takes
Q to enumerate the optimal topology for the tree Tv: The
improvement of the nodes in the top part takes O(mQ)
time. After partitioning, each processor has at most
(n�m)(1 + �)=p nodes. The improvement of those nodes



takes (n � m)(1 + �)Q=p time. Assume it takes c to
send one node information. It takes O(c(n � m)) time
to synchronize all the improvements. In summary, the to-
tal running time of the parallel improvement algorithm is
O((mQ + (n � m)(1 + �)Q=p + cn)M): As shown by our
experiments in Section 5., m is small in most the cases. Re-
call that the serial improvement algorithm takes O(nMQ)
time. Though the overhead term O(cnM) could become
quite signi�cant, we can still expect a good speedup from
the parallel improvement algorithm.

4.3. Parallel Zero Skew Wire-Sizing Algorithm

In the section of parallel improvement algorithm, we give a
subtree partitioning scheme. This scheme can also be used
in parallel zero skew wire-sizing algorithm. When doing
wire-sizing the topology will not be changing, but the length
of the wires or their siblings that are on the path to the
root may change. Recall that in the subtree partition, the
tree is partitioned into the top part and the bottom part.
Only the nodes in the bottom part are distributed among
the processors, and the nodes in the top part are shared
among the processors. There is a wire corresponding to
each node except the root node. In each iteration of the
zero skew wire-sizing algorithm, we �rst let each processor
do the wire-sizing for the top part. Then similar to the
parallel improvement algorithm, each process can do the
wire-sizing for all the wires in the bottom part of the tree
in a distributed manner. After this we need to synchronize
all the information about the roots of subtrees owned by the
other processors. Unfortunately, the serial algorithm of the
zero skew wire-sizing cannot be simulated by a distributed
memory parallel algorithms since the length of the wire can
be changed by several processors at one time. But as shown
in the experimental results, for any given iteration there is
no direct correlation between the source sink delay and the
number of processors.

4.3.1. Analysis of the Parallel Zero Skew Wire-Sizing
Algorithm

Assume there arem nodes in the top part. The zero skew
wire-sizing algorithm in the top part takes O(m log(m))
time. After our partitioning, each processor has at most
(n �m)(1 + �)=p wires. The improvement of those nodes
takes (n�m)(1+�) log(n)=p time. Assume it takes c time
units to send one node information. It takes O(cm)) time
to synchronize all the shared wires in the top part. In sum-
mary, the total running time of the parallel improvement al-
gorithm is O((m log(m)+(n�m)(1+�) log(n)=p+cm)M):
As shown by our experiments in Section 5., m is small in
most the cases. Recall that the serial zero skew wire-sizing
algorithm takes O(Mn log(n)) time. We may get super-
linear speedup from the parallel zero skew wire-sizing algo-
rithm.

5. EXPERIMENTAL RESULTS

Using the message passing interface (MPI)[12], which is
portable across a wide range of parallel platforms, we imple-
mented the parallel CL algorithm, the parallel improvement
algorithm, and the parallel zero skew wire-sizing algorithm.
We report results on the SPARC Server 1000E, an 8 proces-
sor shared memory multiprocessor. We report our results
on benchmark circuits r4 and r5. Also, to make a projection
of the advancing technology and to test the e�ectiveness of
our parallel algorithms, we report our results on t1, t2, and
t4. Clock t1, t2, and t4 consists of 10000, 20000, and 40000
randomly generated sink pins on an area of 10cm x 10cm.

N r4 r5 t1 t2 t4 AVG
T(s) 9.12 19.43 80.93 196.40 331.92

1 SD 1.00 1.00 1.00 1.00 1.00 1.00
S 1.00 1.00 1.00 1.00 1.00 1.00
SD 1.00 1.00 1.00 1.00 1.00 1.00

2 S 2.45 2.30 1.86 2.14 1.65 2.20
SD 1.00 1.00 1.00 1.00 1.00 1.00

4 S 5.49 5.94 3.28 4.27 3.19 4.40
SD 1.00 1.00 1.00 1.00 1.00 1.00

8 S 10.13 9.52 8.96 6.04 4.44 7.82

Table 3. Run time and speedup results for the par-
allel CL algorithm. N: processor number, T: run-
time, SD: scaled dealy, S: speedup, AVG: average.

The unit square resistance is 0.033 
; and unit square ca-
pacitance is 1.9e-17F . In both the parallel improvement
algorithm and parallel zero skew wire-sizing algorithm, we
set � = 50%: All the scales are made by that of a serial run.
Table 3 lists the result for the parallel CL algorithm. It

showed that in most of the cases, we obtained super-linear
speedups while the quality of the results is identical to the
serial run. To show the e�ectiveness of our subtree partition
algorithm,
Table 4 lists the results of the run time and speedup of the

parallel improvement algorithm using 6 iterations. Since
the synchronization cost after each iteration to keep the
same execution with the single processor is quite signi�cant,
we cannot get super-linear speedups. But the speedups are
still signi�cant. Again the quality of the results of the paral-
lel improvement algorithm is exactly the same as the serial
run.

N r4 r5 t1 t2 t4 AVG
T(s) 17.67 27.20 90.18 181.67 392.11

1 SD 1.00 1.00 1.00 1.00 1.00 1.00
S 1.00 1.00 1.00 1.00 1.00 1.00
SD 1.00 1.00 1.00 1.00 1.00 1.00

2 S 1.78 1.76 1.63 1.68 1.83 1.73
SD 1.00 1.00 1.00 1.00 1.00 1.00

4 S 3.01 2.96 3.03 2.98 3.34 3.11
SD 1.00 1.00 1.00 1.00 1.00 1.00

8 S 4.09 3.91 4.15 3.96 4.06 4.05

Table 4. Run time and speedup results for the par-
allel improvement algorithm. N: processor number,
T: runtime, SD: scaled dealy, S: speedup, AVG: av-
erage.

Table 5 lists the results of the scaled source sink delays
and the speedup of our parallel zero skew wire-sizing al-
gorithm using 6 iterations. We do not force any synchro-
nization between iterations. This result shows that there is
no direct correlation between source sink delay and number
of processors. The results of the parallel run are di�erent
from the serial run. Most of the time, the parallel execution
generates shorter source sink delay in the same number of
iterations. Since we do not synchronize between iteration
the convergence is faster for the wire-sizing of fewer nodes.
For the same reason, there are many super-linear multi-
processor runs.

6. CONCLUSION AND FUTURE WORK

In this paper, an algorithm for performing the wire-sizing of
a zero skew clock tree is given using the Elmore delay model.
Our experiments on benchmark clock trees show that this



N r4 r5 t1 t2 t4 AVG
T(s) 61.06 27.20 90.18 181.67 392.11
SD 1.00 1.00 1.00 1.00 1.00 1.00

1 S 1.00 1.00 1.00 1.00 1.00 1.00
SD 0.93 0.902 0.82 0.84 1.09 0.92

2 S 2.66 2.09 2.58 1.72 1.74 2.16
SD 1.21 1.24 0.86 0.40 0.79 0.90

4 S 4.83 3.69 3.46 2.94 3.34 3.65
SD 1.28 1.24 0.75 0.98 1.22 1.09

8 S 6.89 6.95 9.18 4.59 4.27 6.38

Table 5. Scaled delay and speedup results for the
parallel zero skew wire-sizing algorithm. The delay
is scaled by the result of one processor run. N:
processor number, T: runtime, SD: scaled dealy, S:
speedup, AVG: average.

algorithm reduces the source sink delay more than 3 times
that of the clocks with uniform wire sizes and keep the clock
skew zero. Motivated by the computation intensive nature
of the zero skew clock tree construction and wire-sizing, we
propose a parallel algorithm based on cluster based clock
tree construction algorithm and our zero skew wire-sizing
algorithm.
This work may have the following extensions. After

bu�ers are added in multi-staged clock tree generation, this
scheme can be used to improve the clock delay in each stage
by providing a way for e�ective topology construction and
wire sizing. Generally, clock tree routing is done after place-
ment and before detailed routing. The couple capacitance
information is not available at this stage. Therefore, this
scheme can not directly deal with coupling capacitance. But
if clock tree routing is being carried out at the same time
as detailed routing, it can handle the coupling capacitance
easily.

REFERENCES

[1] P. Banerjee, Parallel Algorithms for VLSI Computer-
Aided Design, PTR Prentice Hall, Englewood Cli�s,
New Jersey 07632, 1994.

[2] K. D. Boese and A. B. Kahng, \Zero-Skew Clock
Routing Trees with Minimum Wire-length", Proc.
IEEE Intl. ASIC Conf., Rochester, NY, September
1992, pp. 17-21.

[3] T. H. Chao, Y. C. Hsu, and J. M. Ho, \Zero Skew
Clock Net Routing", Proc. ACM/IEEE DAC, Ana-
heim, CA, June 1992, pp. 518-523

[4] T. H. Chao, Y. C. Hsu, J. M. Ho, K. D. Boese, and
A. B. Kahng, \Zero Skew Clock Routing with Min-
imum Wire-length", IEEE Trans. Circuits and Sys-
tems, 39(1992), pp. 799-814.

[5] C. Chen and D. F. Wong, \A Fast Algorithm for Op-
timal Wire-Sizing under Elmore Delay Model", Proc.
IEEE ISCAS, May 1996. pp 412 - 415.

[6] J. Cong and K. Leung, \Optimal Wire-sizing under
the Distributed Elmore Delay Model", Proc. IEEE
ICCAD, July 1993. pp. 634-639.

[7] M. Edahiro, \A Clustering-Based Optimization Al-
gorithm in Zero-Skew Routings", Proc. ACM/IEEE
DAC, 1993, pp. 612-616.

[8] M. R. Garey and D. S. Johnson, Computers
and Intractability, A Guide to the Theory of NP-
Completeness, W. H. Freeman and Company, New
York, 1979.

[9] A. B. Kahng, J. Cong, and G. Robins, \High-
Performance Clock Routing Based on Recursive Geo-
metric Matching", Proc. ACM/IEEE DAC, 1990, pp.
573-579.

[10] A. B. Kahng and G. Robins, On Optimal Interconnec-
tions for VLSI, Kluwer Academic Publishers, 1995.

[11] R. Kay, G. Bucheuv, and L. Pileggi, \EWA: Exact
Wiring-Sizing Algorithm", Proc. Intl Symp on Phys-
ical Design, April 1997, pp 178 - 185.

[12] Message-Passing Interface Forum, \Document for a
Standard Message-passing Interface," University of
Tennessee, Knoxville, TN, Tech. Rep. CS-93-214,
1993.

[13] R. S. Tsay, \Exact Zero Skew," Proc. IEEE Intl.
Conf. Computer-Aided Design, Santa Clara, Novem-
ber 1991, pp. 336-322.


	Main Page
	ISPD98
	Front Matter
	Table of Contents
	Session Index
	Author Index


