
THE ISPD98 CIRCUIT BENCHMARK SUITE
Charles J. Alpert

IBM Austin Research Laboratory, Austin TX 78758
alpert@austin.ibm.com

Abstract
From 1985-1993, the MCNC regularly introduced and main-

tained circuit benchmarks for use by the Design Automation com-
munity. However, during the last five years, no new circuits have
been introduced that can be used for developing fundamental physi-
cal design applications, such as partitioning and placement. The
largest circuit in the existing set of benchmark suites has over
100,000 modules, but the second largest has just over 25,000 mod-
ules, which is small by today’s standards. This paper introduces the
ISPD98 benchmark suite which consists of 18 circuits with sizes
ranging from 13,000 to 210,000 modules. Experimental results for
three existing partitioners are presented so that future researchers in
partitioning can more easily evaluate their heuristics.

1 Introduction

For over a decade, the Design Automation (DA) community has
heavily relied on circuit benchmark suites to compare and validate
their algorithms. Hundreds and perhaps thousands of publications
have presented experimental results which use the circuits originally
released by the Microelectronics Center of North Carolina (MCNC)
and sponsored by ACM/SIGDA [3]. Indeed, papers in several fields,
such as partitioning and placement, hardly stand a chance of being
accepted into one of the major DA conferences without including
experimental results that utilize these benchmarks. These bench-
mark suites (e.g., ISCAS85, ISCAS89, LayoutSynthesis92,
Partitioning93, etc.) are currently maintained by the Collaborative
Benchmarking Laboratory at North Carolina State University
(www.cbl.ncsu.edu).

From 1985-1993, new suites of circuit benchmarks were regu-
larly released; however, no new circuits have been released since.
Most of these circuits are now obsolete, and do not adequately rep-
resent the complexity of modern designs. Consequently, there is a
widening gap between the problems that are being solved in the aca-
demic literature and the problems that need to be solved. For exam-
ple, a placer which achieves “5% improvement” on a design with 20
thousand moveable objects is not nearly as interesting or relevant as
a placer which achieves “5% improvement” on a design with 200
thousand moveable objects.

One might argue that hierarchical design methodologies elimi-
nate truly massive physical design problems. Currently, the only cir-
cuit in the existing suite of benchmarks with more than 26 thousand
modules is golem3. However, given that next generation micropro-
cessors will have between 20 and 50 million transistors, a physical
design problem with just 1% of this complexity will still have
between 200 and 500 thousand objects. It is not unreasonable to
expect partitioning and placement problems of relatively small mac-
ros to reach this complexity. Indeed, physical design problems of this

size have already been encountered within IBM. Given that golem3
is the only circuit in the public domain that can be said to represent
medium to large designs, it seems unlikely that the academic com-
munity will be able to supply the algorithms that can manage the
complexity expected in future designs.

The partitioning problem provides a perfect example of how both
the academic and industrial community is likely to suffer from the
lack of an up-to-date benchmark suite. Over the last few years, sev-
eral innovative partitioning algorithms have been proposed, e.g.,
[1][6][8][14], and the state of the art has advanced significantly (see
[2] for a survey). However, the most recent partitioners are achieving
virtually identical solution quality for most of the current bench-
marks. Table 1 shows the minimum cut bipartitioning results (with
a 45/55 partition size balance constraint) obtained by four algo-
rithms: Dutt/Deng1 [8], hMetis [14], MLC [1] and LSR/MFFS2 [6].
Observe that there are very small differences in solution quality for
almost every benchmark. Indeed, complete convergence has been
obtained by several partitioners for the smaller benchmarks balu
(cut=27), struct (cut=33) and s9234 (cut=40). Consequently, it
appears impossible for any future partitioner to obtain more than,

1 Dutt and Deng present a general scheme for improving any iterative
improvement engine. They present experiments with CLIP and CDIP on
iterative improvement engines using lookahead, not using lookahead,
and with probabilistic moves. Table 1 quotes the best results reported
over all of the algorithms the authors proposed.
2 The results in [6] actually use non-unit area. The data for the unit area
experiments quoted here was obtained directly from Sung Lim.

circuit #Modules Dutt/Deng hMetis MLC LSR/MFFS

biomed 6514 83 83 83 83

s13207 8772 66 55 55 61

s15850 10470 56 42 44 43

industry2 12637 174 167 164 ----

industry3 15406 241 254 243 ----

s35932 18148 42 42 41 44

s38584 20995 47 47 47 47

avq.small 21918 129 130 128 127

s38417 23849 65 51 49 50

avq.large 25178 127 127 128 127

Table 1: Partitioning results for the ten largest current benchmarks
(except for golem3). Solutions may have up to 10% deviation from

exact bisection, and each pad and cell is assigned unit area.

say, a 2% average improvement over the current best partitioner. This
state of affairs hardly means that partitioning is a solved problem.
Rather, with over five years of opportunities to optimize a fixed suite
of benchmarks, the DA community has collectively succeeded in
finding superior partitioning solutions for these benchmarks. How-
ever, virtually nothing is known about what partitioners will work
best or be most efficient on designs with 150 thousand or more move-
able objects. Without the introduction of new, larger circuits, the
CAD literature in pure partitioning will certainly die.

To offset the lack of public benchmarks, several works have stud-
ied random circuit generation. Success in this research domain could
certainly offset the lack of available large circuits, yet much work
remains. Early works, such as Bui et al. [5] and Garbers et al. [10],
propose classes of random graphs that have natural clustering and
partitioning solutions. More recent works, such as Darnauer and Dai
[7] and Hutton et al. [12], generate random circuits that seek to cap-
ture such properties of real circuits as Rent parameter, circuit shape
and depth, fanout distribution, reconvergence, etc. While these cir-
cuits are better than random graphs in representing real circuits, they
are no substitute for actual test cases.3

The purpose of this work is to release a new set of circuits, called
the ISPD98 benchmark suite, for physical design applications. The

Circuit # Cells # Pads #Modules # Nets # Pins Max%

ibm01 12506 246 12752 14111 50566 6.37

ibm02 19342 259 19601 19584 81199 11.36

ibm03 22853 283 23136 27401 93573 10.76

ibm04 27220 287 27507 31970 105859 9.16

ibm05 28146 1201 29347 28446 126308 0.00

ibm06 32332 166 32498 34826 128182 13.56

ibm07 45639 287 45926 48117 175639 4.76

ibm08 51023 286 51309 50513 204890 12.10

ibm09 53110 285 53395 60902 222088 5.42

ibm10 68685 744 69429 75196 297567 4.80

ibm11 70152 406 70558 81454 280786 4.48

ibm12 70439 637 71076 77240 317760 6.43

ibm13 83709 490 84199 99666 357075 4.22

ibm14 147088 517 147605 152772 546816 1.99

ibm15 161187 383 161570 186608 715823 11.00

ibm16 182980 504 183484 190048 778823 1.89

ibm17 184752 743 185495 189581 860036 0.94

ibm18 210341 272 210613 201920 819697 0.96

Table 2: ISPD98 circuit benchmark characteristics. Max% gives the
percent of the total area occupied by the largest module in the circuit.

circuit sizes range from 13,000 to 210,000 modules and were trans-
lated from internal IBM designs. The circuits can be downloaded via
the World Wide Web at vlsicad.cs.ucla.edu. In addition, some parti-
tioning results are presented to enable easy comparisons for future
work.

2. A New Set Of Circuits

Table 2 presents the characteristics of the 18 circuits in the
ISPD98 benchmark suite. The circuits are all generated from IBM
internal designs produced at the Austin, Burlington and Rochester
sites. The designs represent many types of parts, including bus arbi-
trators, bus bridge chips, memory and PCI bus interfaces, communi-
cation adaptors, memory controllers, processors, and graphics
adaptors. For each circuit, a cell is considered to be an internal move-
able object, a pad is an external (perhaps moveable) object, and a
module is either a cell or a pad. The last column, Max%, gives the
percent of the total area occupied by the largest module in the design.
This percentage gives some idea as to how easy it is to partition the
design under tight balance constraints.

Each circuit is a translation from VIM (IBM’s internal data for-
mat) into “net/are” format, a simple hypergraph representation orig-
inally proposed by Wei and Cheng [15] (see vlsicad.cs.ucla.edu for
benchmarks in this format). In addition, a new format called “netD”
is introduced, as described below. The circuits can be downloaded
from vlsicad.cs.ucla.edu and complete descriptions of the bench-
mark formats can also be found there. The translation from VIM to
“net/are” is performed as follows.

• All information relating to circuit functionality, timing
and technology is removed. Unfortunately, this limits the
direct applicability of these circuits (e.g., functional rep-
lication for partitioning); yet, the release of these circuits
would have been impossible otherwise. Nevertheless,
other applications besides pure partitioning can still be
developed from this suite of circuits by making reason-
able assumptions.

• All nets with more than 200 pins are removed from the
design; most of these are likely related to clock and power
distribution. The omission of these nets makes it more
difficult to distinguish sequential from combinational
cells. However, in modern design methodologies, layout
is generally performed without the clock nets since they
can bias the objective functions for partitioning and
placement. For example, a placement algorithm might try
to minimize the wirelength of the clock nets, forcing
sequential elements to be clustered together. This may
lead to an unbalanced clock distribution and misappropri-
ation of clock resources.

• Small components that are disconnected from the largest

3 In unrelated experiments, we obtained several randomly generated cir-
cuits from the authors of [12] and ran the partitioners FM, CLIP, MLF
and MLC [1] on these circuits. No partitioner distinguished itself as sig-
nificantly superior, yet the authors of [1] clearly show that the multilevel
approaches (MLF and MLC) significantly outperform FM and CLIP on
the ACM/SIGDA benchmark suites. These experiments indicate that the
randomly generated circuits are not yet adequate for benchmarking, at
least for partitioning applications.

component of the circuit are removed. This helps dis-
guise the design while having virtually no effect on the
layout since the disconnected components constitute a
very small percentage of the layout area. As a side benefit,
optimization techniques can be applied more easily. For
example, spectral methods will not compute non-degener-
ate eigenvectors, flow based methods only need to con-
struct a single network, and search based methods need to
start from only a single module.

• Duplicate pins are removed. If a given net is connected to
multiple pins incident to the same cell, then only one of
these pins is included in the translated circuit. This has no
effect on the topology of the netlist, but makes it easier to
write physical design tools. For example, it simplifies the
updating of gain buckets in Fiduccia-Mattheyses parti-
tioning.

• All internal cells and pads are randomly numbered. Pads
are assigned a default area of 0.

Figure 1: (a) Typical occurrences of bidirectional pads, and possible model-
ings by splitting (b) only the pad and (c) the pad and the cell.

One shortcoming with the original net/are format is that signal
direction information is not preserved, so we propose a new format
called “netD”. This format is identical to net/are format except that
each module in a given net is identified as either an input, output or
bidirectional pin for that net. This information should enable one to
apply standard directional clustering techniques such as cones and
MFFCs [6]. The netD format subsumes net format, but the web site
will maintain net format to ensure backward compatibility with exist-
ing tools.

pad cell

I1 I2 I3

O1 O2 O3

B B

pad 1
cell

I1 I2 I3

O1 O2 O3

PI I4

pad 2 PO O4

pad 1
cell 1

I1 I2 I3

O1 O2 O3

PI

I4pad 2 PO

O4

cell 2

(a)

(b)

(c)
O1 O2 O3

I1 I2 I3

A potential problem with interpreting the signal direction infor-
mation lies in handling bidirectional pads. Due to strict I/O limits in
many technologies, a large percentage of the pads (up to 90%) in
many designs are bidirectional. This makes it difficult to perform
many operations, such as computing the longest paths from primary
inputs to primary outputs, or generating cones. Figure 1(a) illustrates
a typical instance. Here, a 2-pin net connects a bidirectional pad to
an internal cell which also has contains three inputs (I1, I2, I3) and
three outputs (O1, O2, O3).

To apply cone-based techniques, one must construct an equiva-
lent circuit without bidirectional pads. One possibility is to split the
pad into a primary input (PI) and a primary output (PO) as shown in
Figure 1(b). A potential problem that arises is that the path that goes
from pad 1 through the cell and then to pad 2 does not really exist.
Special care would have to be taken to avoid these “false paths”. Fig-
ure 1(c) shows another alternative in which both the pad and cell are
replicated. All the appropriate paths are preserved, but having two
distinct cells becomes problematic since both cells must always
appear in the same partition. Neither (b) nor (c) may be the best way
to model bidirectional pads for cone-like constructions. We leave
this issue open to future researchers.

Circuit FM CLIP hMetis

Min Avg CPU Min Avg CPU Min Avg CPU

ibm01 191 466 4.1 181 390 5.5 181 236 2.4

ibm02 266 506 6.9 265 545 10.0 262 312 5.8

ibm03 1150 2131 16.3 1068 1593 16.1 959 1068 6.8

ibm04 603 1105 14.0 563 1030 16.0 542 588 7.3

ibm05 1874 3063 24.4 2146 3016 27.0 1740 1838 9.1

ibm06 973 1384 16.7 977 1520 19.6 885 1023 10.7

ibm07 1037 2036 26.5 929 1987 30.9 848 930 17.8

ibm08 1285 2757 41.0 1261 2137 48.7 1159 1194 25.7

ibm09 912 2547 40.1 674 1770 37.3 624 685 14.9

ibm10 1490 2660 51.2 1420 2745 59.0 1265 1573 29.8

ibm11 1459 4173 52.6 1063 2657 57.7 963 1146 26.3

ibm12 2256 3791 71.6 2387 3770 67.7 1899 2123 37.8

ibm13 1181 2249 59.3 913 1955 67.7 841 979 32.5

ibm14 2963 6824 163.1 2536 4176 181.0 1928 2126 71.8

ibm15 5106 7770 123.1 3571 5689 215.4 2750 3218 99.0

ibm16 2363 5668 143.5 2638 5974 213.6 1758 2339 103.3

ibm17 3052 7212 188.6 2803 6998 210.3 2341 2430 120.6

ibm18 1706 3686 204.5 2268 5227 334.0 1528 1669 89.2

Table 3: Min-cut bipartitioning results with up to 10% deviation from
exact bisection. Each cell and pad is assigned unit area.

Table 4: Min-cut bipartitioning results with up to 10% deviation from
exact bisection. Cells are assigned non-unit (actual) areas.

3. Partitioning Results

We now present results for three partitioners on the new suite of
circuits. The purpose is not to make a comparative evaluation of cur-
rent partitioners, but rather to provide a set of data for use by future
researchers. We ran three partitioning algorithms: Fiduccia-Matthey-
ses (FM) [9], CLIP [8], and hMetis [14]. Implementations of FM and
CLIP use a LIFO bucket structure and were obtained from the authors
of [1], and the hMetis executable was obtained from the authors of
[14]. FM is the industry standard iterative exchange heuristic, CLIP
is a modification of FM that biases cells to move in clusters, and hMe-
tis is a multilevel partitioner. hMetis offers a choice of several differ-
ent coarsening schemes, uncoarsening schemes, and V-cycle
refinement schemes. We use the default schemes as described in [13].

Results are presented for two different modelings of the cells: (i)
each cell and pad has unit area; (ii) each pad has area zero, and each
cell has non-unit (actual) area as specified in the appropriate area file.

Circuit FM CLIP hMetis

Min Avg CPU Min Avg CPU Min Avg CPU

ibm01 270 486 4.5 246 462 5.5 188 262 2.4

ibm02 313 3872 3.9 439 4163 7.3 121 228 4.7

ibm03 1624 12348 0.3 1915 9720 27.4 234 341 5.2

ibm04 554 2383 14.1 488 1232 11.5 444 525 6.0

ibm05 1874 3063 24.4 2146 3016 27.0 1744 1828 9.8

ibm06 1479 14007 36.5 1303 15658 76.9 491 685 10.3

ibm07 870 1716 24.1 748 1711 35.7 818 1030 16.1

ibm08 1411 13422 28.1 2176 15907 84.0 1178 1343 24.0

ibm09 750 3235 32.1 527 2828 31.6 573 780 15.1

ibm10 982 2244 37.1 971 2242 58.3 286 515 22.1

ibm11 1319 3562 49.9 977 2527 56.6 756 1107 24.0

ibm12 2306 10723 49.3 2713 10112 36.9 472 965 29.5

ibm13 1196 2129 48.9 1023 2075 69.4 755 1102 33.8

ibm14 3015 6558 143.0 2426 4208 157.0 1945 2161 76.6

ibm15 7197 85465 25.5 5292 62105 794.0 2143 2676 78.9

ibm16 2173 5267 13.7 2314 5975 24.5 2076 2437 90.0

ibm17 2818 6725 185.2 3634 7024 227.2 2297 2412 140.8

ibm18 1664 3539 217.2 3043 5234 363.8 1528 1650 96.3

The reasons for including both are somewhat historical. Unit areas
are more prominent in the literature (partly due to the absence of area
data) and is in some sense a “purer” partitioning problem. Imple-
mentation of a partitioner is much simpler with unit areas since
enforcement of balance constraints is simple. However, non-unit
(actual) areas affords a much more realistic problem formulation. As
the following results show, there are some problems with partition-
ing with non-unit areas that need to be addressed.

Table 5: Min-cut bipartitioning results with up to 2% deviation from
exact bisection. Each cell and pad is assigned unit area.

Table 3 presents bipartitioning results for the designs for unit cell
and pad area and allowing up to 10% deviation from exact bisection,
i.e., each partition must have between 45% and 55% of the total area.
Both the minimum and average cuts over 100 runs of each algorithm
are reported. The CPU column gives the average time required for a
single run of each algorithm. Runtimes are reported for an 135 MHz
IBM RS6000 S/595. Table 4 presents the same set of experiments
except that the cells have non-unit areas, given in the “are” file.

Tables 5 and 6 present similar results for the three partitioners,
this time allowing up to 2% deviation from exact bisection, i.e., each
partition must consist of between 49% and 51% of the total area.
Table 5 presents results for unit cell and pad area, while Table 6 pre-

Circuit FM CLIP hMetis

Min Avg CPU Min Avg CPU Min Avg CPU

ibm01 203 513 4.2 207 519 5.9 203 274 2.5

ibm02 352 536 8.3 357 585 8.1 353 384 6.4

ibm03 1180 2274 15.7 1054 1578 12.0 957 1048 7.2

ibm04 820 1340 15.0 632 1167 20.5 598 660 7.3

ibm05 2017 3142 24.4 1820 3002 27.7 1738 3476 9.1

ibm06 1087 1575 22.6 1017 1561 20.3 981 1116 9.9

ibm07 1133 2429 28.8 1041 1960 37.5 983 1043 14.9

ibm08 1271 2881 57.8 1279 2589 49.8 1159 1217 25.4

ibm09 1261 2720 39.0 676 1795 39.5 629 670 15.8

ibm10 1711 2668 50.7 1540 2613 54.6 1329 1549 30.7

ibm11 1941 5063 56.7 1263 2878 70.3 1075 1307 30.4

ibm12 2507 3841 56.9 2251 3753 68.1 2014 2297 33.8

ibm13 1414 2780 54.1 1013 2231 67.9 860 1100 34.8

ibm14 3668 7926 157.1 2425 4247 215.1 1897 2185 74.5

ibm15 5328 8822 139.4 3850 5795 193.8 3007 3520 108.9

ibm16 3345 6294 153.8 2815 6219 270.4 2309 2571 120.3

ibm17 3651 8096 194.3 3859 7512 259.8 2479 2719 159.4

ibm18 1778 3836 243.1 2685 5853 374.7 1603 1818 149.2

sents results for non-unit area. Observe that some of the cut sizes for
both FM and CLIP are very large in both Tables 4 and 6 for several
circuits, e.g., ibm05, ibm07, ibm12 and ibm15. These large results do
not necessarily reflect that FM and CLIP are poor algorithms, but
rather that the implementation [1] is not particularly good at satisfy-
ing balance criteria when there are large variations in cell sizes.
Indeed, the problem of even finding an exact bisection is NP-Com-
plete when cells have non-unit areas [11]. Thus, when area con-
straints are fairly restricted and there are several cells with large
areas, sophisticated balancing and rebalancing schemes need to be
incorporated (at least in an iterative approach). This aspect of iterative
partitioning has not been very actively researched. Some open ques-
tions include how to choose which partition to move a cell from, how
to rebalance a solution that has become unbalanced by a given move,
and how to handle designs with very large cells (e.g., more than 10%
of the total area).

Table 6: Min-cut bipartitioning results with up to 2% deviation from
exact bisection. Cells are assigned non-unit (actual) areas.

Circuit FM CLIP hMetis

Min Avg CPU Min Avg CPU Min Avg CPU

ibm01 450 2701 2.1 471 2456 4.6 188 297 2.3

ibm02 648 12253 0.6 1228 12158 2.2 113 200 5.5

ibm03 2459 16944 0.5 2569 16695 0.8 427 629 5.5

ibm04 3201 20281 0.5 17782 20178 0.5 458 582 6.7

ibm05 2397 3420 26.4 1990 3156 29.9 1745 3490 9.7

ibm06 1436 16578 2.7 1499 18154 16.1 498 836 10.1

ibm07 4139 31096 2.2 14166 31326 4.1 868 1074 17.6

ibm08 2010 29962 8.3 4283 30694 22.2 1272 1426 23.4

ibm09 3246 36433 1.4 2144 37124 1.3 572 754 17.8

ibm10 3210 44262 2.8 5958 46700 3.3 629 797 22.8

ibm11 4814 44071 5.5 2269 46795 54.8 801 1202 27.6

ibm12 4761 47680 4.8 41858 49428 1.7 1297 1740 34.0

ibm13 3982 58288 3.1 2750 54160 64.9 857 1216 30.8

ibm14 3083 28618 13.2 2571 6022 12.7 1914 2239 74.8

ibm15 7221 > 105 12.9 5173 82026 418.9 2435 3202 99.6

ibm16 3416 > 105 17.8 3677 74700 103.4 2277 2652 107.4

ibm17 3634 7873 259.8 4213 6864 182.9 2389 2683 125.9

ibm18 1906 3786 252.2 3156 6113 415.5 1630 1834 146.3

.

Table 7: Net cut, Sum of Degrees, and CPU times for 100 runs of
hMetis 4-way partitioning for both unit and non-unit areas. Solutions

were allowed to deviate up to 10% from exact quadrisection, i.e.,
each partition has between 22.5% and 27.5% of the total area.

Finally, Table 7 and Table 8 respectively present results for 4-way
and 8-way partitioning, obtained by recursively applying hMetis.
The solutions are the best recorded over 100 runs, and CPU is the
amount of time for a single run. Note that hMetis first performs 100
runs of 2-way partitioning, chooses the best solution, then performs
100 runs on each of the two subpartitions. In the tables, “Cut” refers
to the total number of nets cut by the solution, and “SOD” refers to
the Sum of Degrees objective. Sum of Degrees is the sum over all
partitions of the number of cut nets incident to the partition (see [1]).
The same parameters are used as for hMetis bipartitioning, and the
area of each partition can vary up to 10% from exact quadrisection
or octisection. Results are given for both unit and non-unit areas.
Note that for ibm03, hMetis is unable to find an 8-way partitioning
solution for non-unit areas. This is most likely due to the presence of
the large module which occupies 10.76% of the total area.

Circuit Unit Area Non-Unit (Actual) Area

Cut SOD CPU Cut SOD CPU

ibm01 496 1017 4.4 494 1029 4.4

ibm02 640 1351 11.2 354 740 9.3

ibm03 1737 3720 11.2 1155 2368 12.1

ibm04 1712 3596 14.0 1410 2997 13.5

ibm05 3092 6851 15.4 3103 6877 15.2

ibm06 1645 3795 16.8 1147 2451 17.1

ibm07 2179 4604 31.0 1915 4019 25.9

ibm08 2436 5231 41.6 2172 4241 36.6

ibm09 1723 3599 28.2 968 2021 30.7

ibm10 2328 4964 50.6 1531 3149 48.4

ibm11 3267 4847 45.8 2048 4220 46.8

ibm12 3784 8076 55.9 2445 5080 59.9

ibm13 1800 3893 54.8 1394 2960 56.3

ibm14 3399 7585 122.0 3342 7131 121.0

ibm15 5124 10925 169.1 4795 10241 145.2

ibm16 3944 8283 170.6 3646 7690 154.0

ibm17 5465 11373 228.8 5538 11501 200.6

ibm18 2908 6758 173.1 2919 6662 175.4

4. Conclusions

A new set of benchmarks is introduced for physical design appli-
cations. Results for several experiments are reported to serve as a
stepping stone for future work in partitioning. It is our hope that oth-
ers in industry will follow suit and make efforts to publish their data
as well. Providing data in these simple formats does not compromise
the intellectual property of the design, yet gives enough topological
information to form real challenges to modern PD tools.

Table 8: Net cut, Sum of Degrees, and CPU times for 100 runs of
hMetis 8-way partitioning for both unit and non-unit areas. Solutions
were allowed to deviate up to 10% from exact octisection, i.e., each

partition has between 11.25% and 13.75% of the total area.

Acknowledgments

The release of these circuits would have been impossible without
the help of several IBM colleagues. Many thanks are due to Steve
Quay and Paul Villaruvia for helping with the translation code, to
Tom Lanzoni, Steve Mercier, Mike Trick and Bruce Winter for mak-
ing the design data available, and to Patrick O’Connor, George
Doerre, Jim Baker, Jim Barnhart, Jon Byrn, Greg Dancker, Sumit
DasGupta, Nancy Duffield, Ray Eberhard, Al McGreevy, Dan
Moertl, Greg Still, Don Fuchik and Scott Smith for their support of

Circuit Unit Area Non-Unit (Actual) Area

Cut SOD CPU Cut SOD CPU

ibm01 767 1642 6.4 790 1728 6.0

ibm02 1887 4002 16.2 650 1418 14.6

ibm03 2492 5858 14.5 --- --- ---

ibm04 2821 6252 19.8 2576 5702 18.9

light 4482 11755 19.6 4548 11892 19.4

ibm05 2309 5837 24.7 1771 4272 24.1

ibm06 3344 7599 38.1 3061 7113 35.8

ibm07 3647 8725 51.8 3143 7549 48.1

ibm08 2663 5895 38.4 2045 4351 41.6

ibm10 3845 8454 70.6 2218 4828 67.4

ibm11 3585 7897 59.9 3137 6784 55.8

ibm12 6122 13483 76.3 4315 9013 84.8

ibm13 2972 6794 71.7 2332 5210 75.5

ibm14 5308 12025 163.7 5005 11744 156.1

ibm15 6943 15379 189.0 6967 16026 186.8

ibm16 6300 13640 223.9 5567 12121 227.1

ibm17 9052 19882 293.6 8736 18997 307.2

ibm18 5441 12663 239.3 5349 12504 249.2

this project. Also, thanks to University of Minnesota Professors
George Karypis and Vipin Kumar for supplying the hMetis execut-
able and for their helpful discussions, and thanks to Jason Cong,
Andrew Kahng, Sung Lim, and Dongmin Xu for their assistance.

References

[1] C. J. Alpert, J.-H. Huang and A. B. Kahng, “Multilevel Circuit Partition-
ing”, 34th IEEE/ACM Design Automation Conference, 1997, pp. 530-
533.

[2] C. J. Alpert and A. B. Kahng, “Recent Directions in Netlist Partitioning:
A Survey”, Integration, the VLSI Journal, 19 (1995), pp. 1-81.

[3] F. Brglez, “ACM/SIGDA Design Automation Benchmarks: Catalyst or
Anathema?”,IEEE Design & Test, 10(3), September, 1993, pp. 87-
91.

[4] F. Brglez, D. Bryan and K. Kozminski, “Combinational Profiles of
Sequential Benchmark Circuits”,International Conference on Cir-
cuits and Systems, 1989, pp. 1929-1934.

[5] T. Bui, S. Chaudhuri, T. Leighton and M. Sipser, “Graph Bisection Algo-
rithms with Good Average Case Behavior”,Combinatorica 7(2),
1987, pp. 171-191.

[6] J. Cong, H. P. Li, S. K. Lim, T. Shibuya and D. Xu, “Large Scale Circuit
Partitioning with Loose/Stable Net Removal and Signal Flow Based
Clustering”, IEEE/ACM International Conference on Computer
Aided Design, 1997, pp. 441-446.

[7] J. Darnauer and W. Dai, “A Method for Generating Random Circuits and
Its Application to Routability Measurement”,4th ACM/SIGDA Inter-
national Symposium on FPGAs, 1996, pp. 66-72.

[8] D. Dutt and W. Deng, “VLSI Circuit Partitioning by Cluster-Removal
Using Iterative Improvement Techniques”, IEEE/ACM International
Conference on Computer Aided Design, 1996, pp. 194-200.

[9] C. M. Fiduccia and R. M. Mattheyses, “A Linear Time Heuristic for
Improving Network Partitions”,Proceedings. IEEE/ACM Design
Automation Conference, 1982, pp. 175-181.

[10] J. Garbers, H.J. Promel and A. Steger, “Finding Clusters in VLSI Cir-
cuits”, IEEE/ACM International Conference on Computer Aided
Design, 1990, pp. 520-523.

[11] M. R. Garey and D. S. Johnson,Computers and Intractability, A Guide
to the Theory of NP-Completeness, W. H. Freeman and Company:
New York, 1979, pp. 223.

[12] M. Hutton, J. P. Grossman, J. Rose and D. Corneil, “Characterization
and Parameterized Random Generation of Digital Circuits”,33rd
IEEE/ACM Design Automation Conference, 1996, pp. 94-99.

[13] G. Karypis, R. Aggarwal, V. Kumar and S. Shekhar, “hMetis, A Hyper-
graph Partitioning Package, Version 1.0”,Manuscript, December
1997.

[14] G. Karypis, R. Aggarwal, V. Kumar and S. Shekhar, “Multilevel Circuit
Partitioning”,34th IEEE/ACM Design Automation Conference, 1997,
pp. 526-529.

[15] Y.-C. Wei and C.-K. Cheng, “Towards Efficient Hierarchical Designs
by Ratio Cut Partitioning”,IEEE/ACM International Conference on
Computer Aided Design, 1989, pp. 298-301.

	Main Page
	ISPD98
	Front Matter
	Table of Contents
	Session Index
	Author Index

