
Power Exploration for Dynamic Data Types

through Virtual Memory Management Re�nement

Julio L. da Silva Jr, Francky Catthoor, Diederik Verkest, Hugo De Man

IMEC, Kapeldreef 75, B-3001 Leuven, Belgium

Abstract

In this paper we present our novel power exploration method-
ology for applications with dynamic data types. Our method-
ology is crucial to obtain e�ective solutions in an embed-
ded (HW or SW) processor context. The contributions are
twofold. First we de�ne the complete search space for Vir-
tual Memory Management (VMM) mechanisms in a struc-
tured way with orthogonal decision trees. Secondly we present
our systematic methodology for exploration of the maximal
power that takes into account characteristics of the applica-
tion to heavily prune the search space guiding the choices of
a VMM mechanism. Finally we demonstrate for two indus-
trial examples that power can vary considerably depending
on the VMM chosen. Moreover these experiments show the
e�ectiveness of our exploration methodology.

1 Introduction

We target applications that require manipulation of large
amounts of data that are dynamically created and destroyed
at run time, such as protocol processing applications. These
applications are characterized by tight interaction between
control and data-
ow behavior, intensive data storage and
transfers, and stringent real-time requirements. Due to this,
the transport layers of these applications are usually (partly)
realised in hardware or embedded software. In the embed-
ded processor design for our target domain, a large part of
the area is due to memory units [21]. Also the power for
such data-dominated applications is heavily dominated by
the storage and transfers (as demonstrated by recent work in
the IRAM project at Berkeley, at IMEC [4] and at Princeton
[20]).

Given the data storage and transfers importance, we pro-
pose a systematic design methodology in which the dynamic
storage related issues are globally optimized as a �rst step,
before doing the software/hardware or processor partition-
ing and the detailed compilation on an embedded proces-
sor, or the scheduling, data-path and controller synthesis
for custom hardware mapping. This preprocessing supports
exploration of di�erent data types for Abstract Data Types
(ADTs) [24] and exploration of Virtual Memory Manage-
ment (VMM) mechanisms for these data types, abstracting
them from physical memory implementations.

This paper focuses on the exploration of maximal power
for di�erent VMM mechanisms in the above target domain.
The rest of the paper is organized as follows. First an
overview of related work is given. Then we outline our over-
all design
ow and situate the VMM step. After that the full
search space for this crucial step is formally de�ned. Based
on this search space and on characteristics of the applica-
tion, a novel methodology for deciding on power e�cient
VMMs is described. The large impact on maximal power
and performance issues will be illustrated based on an in-
dustrial Segment Protocol Processor (SPP) demonstrator
for the ATM adaptation layer (from Alcatel [21]), and also
on part of an operation and maintenance for ATM protocol
(see [8]).

2 Related Work

In the software communitymuch literature is available about
possible implementation choices for VMM mechanisms (see
[1, 23] and its references) but none of the earlier work pro-
vides a complete search space useful for a systematic explo-
ration. Moreover, in the SW community the main criterium
used for choosing a VMM mechanism is its speed and sec-
ondary its memory usage. Power is never an issue since their
target is a computer or workstation. However, our target is
an embedded hardware/software realization in which power
has a major impact [3].

The memory-oriented synthesis techniques proposed for
multimedia signal processing (MSP) applications are not
suited as such. In contrast to protocol processing appli-
cations that manipulate dynamic data types, MSP applica-
tions manipulate (multi-dimensional) array signal streams
that can be largely analyzed at compile time.

In [19] synthesis of network components is dealt with, but
at a much lower level of abstraction than the one proposed
in this paper.

Up to now no systematic power oriented exploration ap-
proach has been published to target this important �eld.
Indeed, most e�ort up to now has been spent, either on data-
path oriented work (e.g. [5]), on control-dominated logic or
on programmable processors (see [16] for a good overview).
Previous algorithm-level low power work [12, 25] has focused
on signal processing applications.

3 Dynamic Memory Management Design Flow

Figure 1 gives an overview of the proposed dynamic mem-
ory management (DMM) design
ow. At the highest level,
the application is speci�ed in terms of abstract data types
(ADTs). The ADT re�nement step [24] re�nes these ADTs
into concrete data types. These usually consist of a combi-
nation of instantiations of concrete data types.

ADT ADT ADT

VMM
Refinement

memories

ADT refinement

ADTs

concrete DTs

VMSes

ADT

D
y
n
a
m
i
c

M
e
m
o
r
y

M
n
g
n
t

Physical
Memory Mngnt

Figure 1: Dynamic memory management design
ow

Next, the Virtual Memory Management (VMM) step de-
�nes a number of virtual memory segments (VMSes) and
their corresponding custom memory managers. Each VMS
consists of a reserved amount of memory to store all in-
stances of one or more concrete data types. To this end,
the VMS is divided into a number of blocks, each capable
of storing a single instance of the data type. The VMM
step determines, via analysis or simulation of a number of
scenarios, the amount of blocks that is required to store all
instances of that data type. If instances of the data type
have to be dynamically created and destroyed, the VMM
step also determines a custom memory manager for that
VMS. Its task is to return a handle to a free block in the
VMS when requested during creation of an instance (allo-
cation), and to mark a block as free again after destruction
of an instance (recycling). The ADT and VMM re�nement
are combined in the DMM stage.

During the subsequent Physical Memory Management
(PMM) stage, in our overall memory management
ow, the
VMSes will be assigned to a number of allocated memories.
This stage determines the size of the memories in terms of
bit width and word depth as well as the number and type
(read, write, or read/write) of ports on each memory. The
�nal result is a custom memory architecture, heavily opti-
mized for power and/or area, for the given application. An
environment which is suitable for this purpose has been pro-
posed in [15] but also other similar approaches could be used
as backend for our DMM stage.

In the next section the VMM re�nement step will be
detailed. ADT re�nement [24] and the PMM stage [15] are
out of the scope of this paper.

4 Virtual Memory Management Search Space

VMM consists of two tasks: allocation and recycling. Allo-
cation is the mechanism that searches the pool of free blocks
and returns a free block large enough in order to satisfy a
request of a given application. Recycling is the mechanism
that returns a block which is not used anymore to the pool
of free blocks enabling its reuse.

The application may free blocks in any order, creating
holes (free blocks) among alive blocks. If these holes are
small and numerous they cannot be used to satisfy future
requests for larger blocks. This problem is known as frag-
mentation. Fragmentation is divided in two categories: ex-
ternal and internal. External fragmentation happens when
the total memory space is available to satisfy a request, but

it is not contiguous. Internal fragmentation happens when
the free block chosen to satisfy a request is slightly larger
than the necessary one, resulting in a segment of memory
internal to a block not being used. Allocation mechanisms
make use of splitting and merging of free blocks to keep
memory fragmentation under control.

In the software community the programmer either uses
the default VMM mechanism provided in a library or imple-
ments his/her own mechanism when not satis�ed with per-
formance (speed or memory usage) of the default one. An
alternative is to use for instance the approach of [1] which
provides a set of VMM mechanisms. The programmer may
experiment with these mechanisms and then choose the most
convenient one. Yet another possibility, is to use a method-
ology [7] that evaluates characteristics of the application and
provides the best VMMmechanism for that application. We
follow the latter approach. However, in order to derive such
a method it is essential to understand all the relevant im-
plementation possibilities for VMM mechanisms.

A systematic exploration is only feasible in practice by
identifying the orthogonal decision trees in the available
search space from which all VMM schemes can then be de-
rived by combination. Based on the search space a method-
ology (manually or automatically steered) that chooses the
best VMM mechanisms for a given application can be de-
rived.

In our search space (see Figure 2), any combination of a
leaf from each of the decision trees represents a valid VMM
mechanism1. A solid arc between two or more choices repre-
sents that all possible combinations between these branches
of the decision tree are feasible. A dashed arc between two
choices represents a set of possibilities that can vary from
one extreme to another in the decision tree over an enu-
merated axis. This search space representation is our �rst
contribution in this paper.

In the following subsections we present the decision trees
for allocation and recycling mechanisms. The de�nition of
the search space has enabled us to classify several classical
allocation mechanism, such as, ordered binary trees [17],
segregated lists [14], and buddy systems [13].

4.1 Keeping track of free blocks

The possibilities for keeping track of free blocks are depicted
in Figure 2a. Free blocks may have �xed allowable sizes
(such as powers of two in [10]) or not. The allocation mech-
anism keeps track of free blocks using either link �elds within
free blocks or lookup tables. Lookup tables may use state
variables indicating free or used blocks [2], or tables con-
taining ranges of sizes [14]. The free blocks may be indexed
by size, or address, or both [18], etc. The decision trees for
ADT re�nement are described in [24]. Free blocks may be
organized in data types such as: linked lists, trees, pointer
arrays or arrays.

Using link �elds within free blocks avoids overhead in
terms of memory usage as long as a minimum block size is
respected. On the other hand, lookup tables always incur
an overhead in terms of memory usage.

4.2 Recording information about the block

The possibilities for recording information about the block
are depicted in Figure 2b. A block may optionally con-
tain information about itself, such as size and/or whether it

1We do not consider implicit recycling mechanisms, known as
garbage collectors, in our search space.

f

e

a

db

c

free blocks
reusage

LIFO
ordered

FIFO
ordered

indexed
ordered

sequential fit

best
fit

first
fit

next
fit

worst
fit

free pool

single
pool

1 per
type/size

match

exact approximate

block splitting
(when)

small

part of free block
used first

first last
always

split
never
split

minimal
block size

large

respect
index

index
respected

no index
respected

respect
index

block merging
(when)

immediate never
merge

deferred

fixed
amount

unsatisfied
request

variable
amount

block merging
(how much)

enough
to satisfy
request

all
mergeable

blocks

maximal
block size

smalllarge index
respected

no
index

respected

free blocks
tracking

link fields
within blocks

simple
linked

double
linked

lookup
table

state
variable

ADT
Refinement

option

range
size

address other
index

index
order

size

NO
index

completely
indexedfixed not

fixed

block
size

other info

block info
recording

boundary
tags

no
recording

size

header

used/free

Figure 2: Decision trees for VMM mechanisms

is used or free, and/or information about relationship with
neighbors, and/or any other useful information.

Recording information about the block implies an over-
head in terms of memory usage. The smaller the block size
allocated, the more signi�cant the overhead is. However, it
is useful to record information about the block when im-
plementing policies for block merging and splitting. For in-
stance, boundary tags are used for general merging of free
blocks. They consist of a header and a footer, both of which
record the block size and if the block is in use or free. When
a block is freed the footer of the preceding block of memory
is examined. Adjacent free areas may then be merged to
form larger free blocks.

4.3 Choosing a free block

The possibilities for choosing a block from the free block
pool, in order to satisfy a given request, are depicted in
Figure 2c. Free blocks may be either in a single pool for
all blocks or grouped in sectors [14]. These sectors may
group blocks per size or type. The sectors may use either
an exact match policy, in which a sector groups blocks of
a speci�c size, or an approximate match policy, in which a
sector group blocks of a set of sizes.

In a sequential way the allocation mechanism tries to
satisfy a given request by �nding either the �rst free block
large enough (�rst �t) or the best match �t (best �t). A
variation of �rst �t (next �t) [10] keeps a pointer to the free
block after the previous allocated block. This pointer, is
used as a starting point for searching the next free block.
Opposed to best �t there is a policy known as worst �t.

When sizes or types to be allocated are known at compile
time, keeping di�erent sectors per size improves allocation
speed and eliminates internal fragmentation, but it may in-

crease external fragmentation because blocks of one sector
can not be reused in another sector. So a trade o� is in-
volved.

4.4 Freeing used blocks

The possibilities for returning a recently freed block to the
pool of free blocks are depicted in Figure 2d. The indexed
ordered option [18] is usually slower than the FIFO and
LIFO [22] ordered options. It returns a block to the pool
of free blocks respecting an index order instead of simply
returning it to the top or bottom of the pool. However,
it may avoid wasted memory when combined with merging
and splitting techniques. The performance of an indexed
ordered scheme may be improved by using hashing, but it
does not work well for all ADT choices. There is a clear
trade o� between speed and area in this choice.

4.5 Splitting blocks being allocated

When the free block chosen to satisfy a request is larger than
the necessary one, a policy for splitting the block being allo-
cated should be implemented. The possibilities for splitting
are depicted in Figure 2e.

The splitting of a block may be done: never, sometimes
or always. The splitting may be done only if the block has
a minimum size [10]. Which part of the free block is used
�rst should be chosen. The splitting may have to respect
some index, such as size. The remainder of the split returns
to the pool of free blocks obeying a decision tree equivalent
to the one presented in Section 4.4.

4.6 Merging free blocks

When adjacent blocks are free they may be merged following
one of the possibilities depicted in Figure 2f. For instance,
for already large blocks it may be uninteresting to merge
them, because the result will be an even larger block for
which a suitable allocation request may never be issued.

In general it is interesting to defer the merging in order
to avoid subsequent splitting operations. Deferred merging
[11] may be implemented in di�erent ways: wait for a �xed
or variable amount of allocation requests before merging or
wait for an unsatis�ed allocation request before merging.
The amount of blocks to be merged should be chosen from
merging all mergeable blocks to merging only enough blocks
to satisfy the last request. When the free blocks are kept in
an indexed ordered way, the merging mechanism must also
respect the index used.

5 Methodology for Maximal Power Exploration

We have identi�ed a set of orthogonal decisions that should
be taken when implementing a VMM mechanism. The deci-
sions that should be taken in these trees are not totally in-
dependent however. A decision taken in one tree may a�ect
the cost characteristics of other decision trees. A systematic
exploration methodology consists of: identifying how much
each decision in
uences a given parameter, identifying the
dependencies among the decisions, and making proper use
of the knowledge about the applications.

Given a parameter (e.g. maximal power, average power
or area) to be minimized and given design constraints (e.g.
timing), the decisions should be taken starting with the ones
that have a major in
uence on the chosen parameter, but
also taking into account the e�ects on other trees.

In embedded implementations we must take advantage
of any information available at compile time. Taking into
account the knowledge of the applications that are using
the VMM mechanisms to be implemented allows to heavily
prune our search space. This knowledge enables us to �nd
a power e�cient VMM mechanism while avoiding unallow-
able memory overhead and fragmentation. Three important
factors help in guiding the choices in the decision trees pre-
viously described: the knowledge about all possible types or
sizes used in the application, the knowledge about the max-
imum amount of instances of each type requested by the
application, and the maximum total amount of data alive
at any time.

In a memory oriented power model, the access count
(number of accesses to memory) has the major (linear) in
u-
ence on power, because the memory size only has (strongly)
sublinear e�ect [9]. For a given record the access count is
the sum of the number of accesses during its allocation plus
the accesses during its lifetime plus the ones during dealloca-
tion. Hence, when the worst case number of accesses during
allocation and deallocation of a block is dominant over the
number of accesses during its lifetime, the maximal power
exploration can be based on the decision ordering presented
below. However, for other applications, the number of ac-
cesses to some VMSes during its lifetime may be dominant
over the number of accesses during allocation and deallo-
cation. In this case it does make sense to try to minimize
memory size which still in
uences power in a less direct way.
The methodology for size dominated applications is out of
the scope of this paper. Also other parameters such as area
overhead in logic, code size or complexity may be taken into
account.

We will now detail our methodology for access count
dominated applications. In Figure 3, the arrows show which
are the most signi�cant inter-dependencies among the deci-
sion trees in the VMM search space. The most important
decision tree involves choosing between using one sector per
type or using an entire pool for all types since this has a
global e�ect. It a�ects all data types and all the other de-
cisions. Next, the choice about the use of an index to order
the free blocks and the merging /splitting choices have also
an impact in several trees. However, this impact is now per
data type or set of data types that are grouped together,
according to the �rst decision.

recording information with block

keeping track of free blocks
free blocks

tracking
ADT

option
index
order

freeing policy

merging policy

block merging
(when)

block merging
(how much)

block merging
(what)

respect
index

splitting policy

block splitting
(when)

part of free block
used first

block splitting
(what)

respect
index

choosing a free block

sequential fit free poolmatch

Figure 3: Dependencies among decision trees

All other choices are done for each sector independently.
The second decision that has in
uence on several other deci-
sion trees is about the use of an index ordering. Apart from
these major inter-dependencies, the other decisions are in-
dependent in terms of in
uence on the number of accesses.
Thus we can choose in each decision tree the leaf that min-
imizes the number of accesses locally.

Next, we describe for each decision tree the local e�ect on
power by comparing the impact of each leaf of these trees on
the worst case number of accesses (NA)2. We also indicate in
the accompanying �gures each best local choice surrounded
by a dashed line.

Local in
uence on NA: choosing a free block

sequential fit

best
fit

first
fit

next
fit

worst
fit

free pool

single
pool

1 per
type/size

match

exact approximate> > >=~~
� NA is smaller when having one sector per type or size
instead of one entire pool for all blocks. Sequential �ts do
not scale well and depending on the size of the pool of free
blocks they are unusable due to the high NA necessary for
allocation. Having one sector per type or size decreases the
scalability problems inherent to sequential �t policies.
� NA is usually the same for next �t and �rst �t policies
and both are usually smaller than best �t. This is due to
the behavior of the best �t policy that not only requires a
block large enough for satisfying a request but also the best
�t for the given request.
� NA for an approximate match is smaller than �nding an
exact match.

Local in
uence on NA: keeping track of free blocks

free blocks
tracking

link fields
within free blocks

simple
linked

double
linked

lookup
table

state
variable

ADT option

range
size

address any other
index

index
order

size

NO
index

index>
>

>

block
size

fixed not
fixed

~

� NA is usually the same for �xed or not �xed allowable
sizes.
� NA for tracking blocks with lookup tables is smaller than
using link �eld within free blocks. Using a state variable
scheme requires fewer accesses than range size scheme.
� NA for indexed ordered structures is usually smaller than
for non-indexed ordered ones.
� NA for di�erent ADTs choices varies according to [24].

Local in
uence on NA: freeing used blocks

free blocks
reusage

LIFO
ordered

FIFO
ordered

indexed
ordered>~

� NA for FIFO and LIFO ordered is the same. However,
when an index ordered is used, returning free blocks must
obey this index and a larger NA is necessary to �nd out the
right location to return the free block.

2The NA is always the same for all leaves in the decision tree that
concerns recording information about the block (Figure 2b).

Local in
uence on NA: splitting blocks

block splitting
(when)

small
blocks

part of free block
used first

first lastalways
split

large
blocks

minimal
block size

> ~
respect
index

index
respected

NO index
respected>=>never

split

� NA is smaller when splitting is not used (it may be harder
to �nd desired block).
� NA is smaller when a minimum block size for splitting is
imposed instead of splitting already small blocks.
� NA is the same for using the last or �rst part of a free
block.
� NA is larger when the splitting of free blocks must respect
some index because after splitting the remainder must be
placed in the indexed structure in the right position.

Local in
uence on NA: merging free blocks

maximal block sizeblock merging
(when)

immediate never
merge

deferred

fixed
amount

unsatisfied
request

variable
amount

block merging
(how much)

enough to
satisfy request

all coalesceable
blocks

small
blocks

large
blocks

respect
index

index
respected

NO index
respected

>> >=
>

� NA is smaller when merging is not used (it may be harder
to �nd the desired block). Immediate merging requires a
larger NA than deferred merging.
� NA is smaller when a maximum block size for merging is
imposed instead of merging already large blocks.
� NA concerning the amount of blocks to be merged (all
or enough to satisfy request) depends on the application
behavior.
� NA is larger when the merging of free blocks must respect
some index because after the merging the block must be
placed in the indexed structure in the right position.

6 Experimental Results on Industrial Drivers

We present results for two applications: SPP [21], an im-
plementation of ATM Adaptation Layer 3/4, and F4 [8], an
operation and maintenance part for the ATM protocol. Us-
ing our systematic methodology we can e�ciently traverse
the search space of Section 4 for the best solutions in terms
of access count, power or area. In this paper we look only at
worst case access count and maximal power consumption.

In the SPP, the largest block size is 7 words and the
smallest is 2 words. The total memory size is targeted to
be 128 Kwords (each word 64 bits) for the main o�-chip
memory. In table 1, the three data types in the SPP that
correspond to the the largest amount of data in the main
o�-chip memory are presented. Also their relative area con-
tribution is shown. Cell stands for ATM cells, IPI stands
for Internal Packet Identi�er, and RR stands for Routing
Record.

Area Width VMSSize

(%) (bits) (No. of blocks)
Cell 62 448 11200
IPI 16 384 3350
RR 22 128 13400

Table 1: SPP Data Types.

In table 2 we show �gures for each data type using three
VMM schemes selected from our decision trees. All three

schemes use LIFO single linked lists for tracking free blocks.
Scheme 1 uses three di�erent VMSes, one for each data type.
Scheme 2 uses one VMS for all data types. Scheme 3 uses
two di�erent VMSes, one for Cell and another for IPI and
RR. Scheme 2 and 3 use merging/splitting to avoid internal
fragmentation since they allow di�erent data types to share
the same storage area.

Scheme1 Scheme2 Scheme3
Power Power Power Power Power Power

LT VMM LT VMM LT VMM

(%) (%) (%) (%) (%) (%)

Cell 62 28 22 74 61 28
IPI 5.98 0.02 2.2 0.1 6.18 0.02
RR 3.98 0.02 1.55 0.15 4.78 0.02

Table 2: SPP - Power distribution using 3 VMM mecha-
nisms.

Note that power is given in relative numbers instead of
absolute numbers due to the con�dentiality of the memory
power model being used. Although we have shown only
three possible VMM schemes, a large range of power budgets
exists and it is crucial to identify a (nearly) optimal solution
in the many decision trees of Section 4. Our methodology
does allow to identify these optimal choices.

Cell is an access count dominated data type, while IPI
and RR are size dominated data types, concerning num-
ber of accesses during lifetime compared to number of ac-
cesses during (de)allocation. The power consumed during
(de)allocation (VMM) for IPI and RR is much smaller com-
pared to the power consumed during their lifetime (LT). The
power consumed during (de)allocation (VMM) for Cell is in
the same order of magnitude as the power consumed dur-
ing its lifetime (LT). This is valid independent of the VMM
scheme being used.

In table 3 we show the relative power consumption of
the di�erent VMM schemes. We can see that Scheme 2 con-
sumes 2.89 times as much power as Scheme 1, while Scheme
3 consumes 1.01 times as much. By using Scheme 3, power
increases only 1% and it allows IPI and RR to share the
same memory (obeying exclusion of lifetimes), resulting in
a decreased area.

Scheme1 Scheme2 Scheme3
Cell 1 3.1 1
IPI 1 1.05 1.05
RR 1 1.09 1.09
Total 1 2.89 1.01

Table 3: SPP - Power comparison of 3 VMM mechanisms.

In the F4 application, only three data types are shown in
table 4, which correspond to the the largest amount of data.
Cell stands for ATM cells, table1 is used for dynamic process
management, and table2 is used for fault management.

Area Width VMSSize

(%) (bits) (No. of blocks)
Cell 71 448 256
table1 27 172 256
table2 2 13 256

Table 4: F4 Data Types.

In table 5 we show �gures for each data type using two
VMM schemes. Scheme 1 uses three di�erent VMSes, one

for each data type. Scheme 2 uses one VMS for all data
types. Scheme 2 uses merging/splitting to avoid internal
fragmentation since it allows di�erent data types to share
the same storage area.

Scheme1 Scheme2
Power Power Power Power

LT VMM LT VMM

(%) (%) (%) (%)

Cell 51.7 26.9 5.5 84.4
table1 18.2 2.0 1.9 6.4
table2 0.7 0.5 0.1 1.7

Table 5: F4 - Power distribution using 2 VMM mechanisms.

Note that all three data types in the F4 are access count
dominated data types. Scheme 2 allows these data types to
share the same storage space but it is nearly 10 times worse
than Scheme 1 in terms of power consumption.

7 Conclusion

The maximal power exploration methodology proposed in
this paper is in use in the Matisse design
ow [6]. It helps
to obtain e�ective solutions in an embedded (HW or SW)
processor context by exploring di�erent VMM mechanisms
for applications with dynamic data types.

We have de�ned the search space for VMM mechanisms
in a structured way with orthogonal decision trees. Based
on this search space we have presented a systematic power
exploration methodology that takes into account character-
istics of the applications to prune the search space and guide
the choices of a VMM.

We have shown preliminary results for maximum power
consumption of di�erent VMM schemes on the SPP demon-
strator and on the F4 module. These results are quite
promising and show the e�ectiveness of our exploration method-
ology.

In the future we intend to do experiments for average
power consumption. It is still an open research topic to
extend the search space to include implicit recycling mech-
anisms (known as garbage collectors) and the subsequent
de�nition of a power exploration methodology that supports
such mechanisms.

Acknowledgements: We gratefully acknowledge the discussions

with our colleagues at IMEC and Alcatel and especially the con-

tributions of M. Miranda, C. Ykman, A. Vandecappelle, S. Wuy-

tack and G. de Jong. This research has been partly funded by

the Flemish IWT and Alcatel in the HASTEC project, by the Es-

prit project MEDIA (No.21929), and by a Brazilian Government

Fellowship (CAPES).

References

[1] G.Attardi, T.Flagea, \A Customisable Memory Manage-
ment Framework", Proc. of the USENIX C++ Conference,
Cambridge, MA, 1994.

[2] H.Boehm, M.Weiser, \Garbage collection in an uncoop-
erative environment", Software Practice and Experience,
Vol.18, pp.807-820, Sep. 1988.

[3] R.W.Brodersen, \The network computer and its future",
Proc. IEEE Int. Solid-State Circuits Conf.,San Francisco,
CA, pp.32-36, Feb. 1997.

[4] F.Catthoor, et al., \Global communication and memory
optimizing transformations for low power signal processing
systems", IEEE workshop on VLSI signal processing, La

Jolla CA, Oct. 1994. Also in VLSI Signal Processing VII,
J.Rabaey, P.Chau, J.Eldon (eds.), IEEE Press, New York,
pp.178-187, 1994.

[5] \Low power CMOS design", (eds. A.Chandrakasan,
R.Brodersen), IEEE Press, 1998.

[6] J.L.da Silva Jr, et al., \E�cient System Exploration and
Synthesis of Applications with Dynamic Data Storage
and Intensive Data Transfer", accepted for Proc. 35th
ACM/IEEE Design Automation Conf., San Francisco CA,
June 1998.

[7] D.Grunwald, B.Zorn, \CustoMalloc: E�cient Synthsized
Memory Allocators", Software: Practice & Experience,
Vol.23, No.8, pp.851-869, August 1993.

[8] A.Hemani, et al. \Design of Operation and Maintenance
Part of the ATM Protocol", Journal on Communications,
Hungarian Scienti�c Society for Telecommunications, spe-
cial issue on ATM networks, 1995.

[9] K.Itoh, et al., \Trends in low-power RAM circuit technolo-
gies", special issue on \Low power electronics" of the Pro-
ceedings of the IEEE, Vol.83, No.4, pp.524-543, April 1995.

[10] D.Knuth, \The Art of Computer Programming, volume
1: Fundamental Algorithms", Addison-Wesley, Reading,
Massachusetts, 1973.

[11] B.Margolin, et al., \Analysis of free-storage algorithms",
IBM Systems Journal, Vol.10, pp.283-304, April 1971.

[12] P.Panda, N.Dutt, \Low power mapping of behavioral ar-
rays to multiple memories", Proc. IEEE Intnl. Symp. on
Low Power Design, Monterey CA, pp.289-292, Aug. 1996.

[13] J.Peterson, T.Norman, \Buddy Systems", Communica-
tions of the ACM, Vol.20, pp.421-431, June 1977.

[14] P.Purdom, et al., \Statistical investigation of three stor-
age allocation algorithms", BIT, Vol.11, pp.187-195, Nov.
1971.

[15] P.Slock, et al., \Fast and Extensive System-Level Mem-
ory Exploration for ATM Applications", Proceedings 10th
ACM/IEEE International Symposium on System-Level
Synthesis, Antwerp, Belgium, Sep. 1997.

[16] D.Singh, J.Rabaey, M.Pedram, F.Catthoor, S.Rajgopal,
N.Sehgal, T.Mozdzen, \Power conscious CAD tools and
methodologies: a perspective", special issue on \Low power
design" of the Proceedings of the IEEE, Vol.83, No.4,
pp.570-594, April 1995.

[17] T.Standish, \Data Structure Techniques", Addison-
Wesley, Reading, Massachusetts, 1980.

[18] C.Stephenson, \Fast �ts: New methods for dynamic stor-
age allocation", Proc. 9th Symposium on Operating Sys-
tems Principles, pp.30-32, Oct. 1983.

[19] B.Svantesson, et al., \Modeling and synthesis of opera-
tional and management system (OAM) of ATM switch fab-
rics", Proc. 13th Norchip Conf., pp.115-122, Nov. 1995.

[20] V.Tiwari, et al., \Instruction-level power analysis and opti-
mization of software", Journal of VLSI Signal Processing,
No.13, Kluwer, Boston, pp.223-238, 1996.

[21] Y. Therasse, G. Petit, and M. Delvaux. \VLSI architec-
ture of a SDMS/ATM router", Annales des Telecommuni-
cations, 48(3-4), 1993.

[22] C.Weinstock, \Dynamic Storage Allocation Techniques",
PhD. Thesis, Carnegie-Mellon University, Pittsburgh,
April 1976.

[23] P.R.Wilson, et al., \Dynamic Storage Allocation: A Sur-
vey and Critical Review", Proc. Intnl. Wsh. on Memory
Management, Kinross, Scotland, UK, Sep. 1995.

[24] S. Wuytack, F. Catthoor, H. De Man, "Transforming
Set Data Types to Power Optimal Data Structures",
IEEE Transactions on Computer-aided Design, Vol.CAD-
15, No.6, pp.619-629, June 1996.

[25] S.Wuytack, et al., \Power Exploration for Data Domi-
nated Video Applications", Proc. IEEE Intnl. Symp. on
Low Power Design, Monterey CA, pp.359-364, Aug. 1996.

	Main Page
	ISLPED98
	Front Matter
	Table of Contents
	Session Index
	Author Index

