Local Transformation Techniques for Multi-Level Logic Circuits Utilizing Circuit
Symmetries for Power Reduction *

Ki-Seok Chung

Department of Computer Science

University of Illinois at Urbana-Champaign

Urbana, IL 61801

Abstract

In this paper, we present several optimization tech-
niques for power reduction utilizing circuit symmetries.
There are four kinds of symmetries that we detect in
a given circuit implementation. First, we propose an
algorithm for detecting the four different types of sym-
metries in a given circuit implementation of a Boolean
function. Several re-synthesis techniques utilizing such
symmetries are proposed. These techniques enable us to
optimize power consumption and delay with no (or very
little) area overhead. We have carried out experiments
on MCNC benchmark circuits to demonstrate the effi-
ciency of the proposed techniques. The average power
reduction is 14% with little or none area and/or delay
overhead.

1 Introduction

Minimization of circuit area and delay has been the
main design objective in VLSI/CAD design for many
years. However, low power consumption has recently
emerged as another important design objective. Often
circuit designers try to reduce the power consumption
of a circuit at a cost of increasing the area and delay
of the circuit. Such a change of the design objectives
often leads to the re-synthesis of an existing circuit to
improve the circuit behavior in terms of the new design
objective. Also, practically, re-synthesis has a huge ad-
vantage over synthesis from scratch in terms of verifica-
tion cost and design time.

In this paper, we study the problem of re-
synthesizing a given circuit utilizing symmetries for
power reduction. We assume that the given circuit has
been optimized for area and delay, and we want to fur-
ther improve the circuit in terms of power consumption

*The work was partially supported by the National Science Foun-
dation under grant MIP-9222408 and NSF Career Award MIP95-
01615.

C. L. Liu

Department of Computer Science
National Tsing Hua University
Hsinchu, Taiwan, ROC

while maintaining the same functionality. This implies
that the re-synthesis techniques employed should not in-
crease the area or delay apparently while reducing the
power consumption. We found that re-synthesis utiliz-
ing symmetries is an efficient and powerful technique.

To re-synthesize a circuit utilizing symmetries, we
need to address the following issues: (i) how to de-
tect symmetries in a given circuit implementation of
a Boolean function and (ii) how to utilize the detected
symmetries for power reduction.

The remainder of the paper is organized as follows.
In the next section, we briefly summarize major ideas on
multi-level logic synthesis for low power and those on
symmetry detection. Then we present the definitions
of four types of symmetries. Next, we propose opti-
mization techniques for power reduction for each type
of symmetry. Then we discuss our algorithm for detect-
ing symmetries in a given implementation of a circuit.
Experimental results and conclusion will follow.

2 Related Works

A good survey of logic synthesis techniques for multi-
level combinational logic was presented in [1]. For low
power design, [13] presents an excellent survey. There
have been several studies focused on multi-level com-
binational logic synthesis for low power. In [5], the
authors presented techniques for computing power rel-
evant observability and satisfiability don’t care con-
ditions which guarantee monotonic power reduction.
In [11, 15], the authors determine local transformation
based on the computation of permissible functions([10]).
In [14], the authors studied the problem of area mini-
mization using logic perturbation. In [7, 18], the au-
thors used a similar idea to optimize circuit for power.
In [16], the authors studied the problem of identifying
subcircuits that can be disabled under a certain condi-
tion for power reduction.

Detecting the total or partial symmetry in a logic
circuit has been studied since the early 1950s (]2, 3, 6]).
Total symmetry of a function can be detected in polyno-
mial time. However, partial symmetry is much harder

to detect. Since exhaustive search of all the possible
symmetries is too costly in practice, several techniques
have been proposed ([9, 12, 17]). In [9], a symmetry de-
tection procedure using ROBDD was studied. In [12],
an efficient method to reorder the variables in the BDDs
dynamically so that symmetric variables can be located
as close as possible was proposed. In [17], generalized
Reed-Muller form was used for the detection of symme-
try.

Our approach is to re-synthesize a multi-level logic
circuit for power reduction utilizing symmetries. The
difference between this work and the other previous
works is that we detect circuit symmetry not only
among primary inputs but among any primary input
and internal signals. To the best of our knowledge, our
work is the first attempt to detect symmetries from a
given implementation of a circuit. Also we propose sev-
eral novel techniques for re-synthesis of a given circuit
utilizing the detected symmetries for power reduction.

3 Definitions of Symmetry
3.1 Cofactor

The cofactor of a Boolean function f(z1,...,z,)
with respect to x; is f,;, = f(z1,...,1,...,z,). The
cofactor of f(z1,...,z,) with respect to &; is fz =

f(z1,...,0,...,2,). The Shannon’s expansion of a
function f is defined by:

f(:Ul,...,ZL“n) :xifzi +fiffi (1)

flx1,...,x,) is said to depend on wx; if and only if
fe: # fz,. It is easy to see that the Equation 1 can
be generalized with respect to two variables x; and x;
as follows:

f(.’L’l, e 7$Tl) = xiwjfzizj +$lfjf$,f] +fz$]ff,z1 +fz$_]ffzf]

(2)
A function f(z1,...,zy) is symmetric in {z;,z;} (or
{zi,#;}) if and only if the interchange of the variables
x; and x;(<;) leaves the function invariant. A function
f is symmetric in a subset X' of the support X if any
permutation of the variables in X' leaves the function
invariant. In this case, X' is called a symmetry subset
of f.
3.2 Symmetry types and conditions

In [4], the notion of symmetric function was extended
and five different types of symmetry were defined. We
observe that some of them are essentially the same and
re-classify them into three. We then introduce one more
type of symmetry.

Nonequivalence and Equivalence Symmetry

A function f is nonequivalence symmetric in vari-
ables z; and z; if and only if f;,,; = fze;. This cor-
responds to the original definition of symmetry given
above. Hence later on, the term “symmetry” will mean
“nonequivalence symmetry”. A function f is said to be

equivalence symmetric in variables z; and z; if and only
if feix; = faie;- Let f T Sy, ., denote that function f
is symmetric in z; and ;.
Multi-form Symmetry

A function f is multi-form symmetric in support
variables z; and z; if and only if f is both nonequiv-
alence and equivalence symmetric in them. In other
WOI“dS, fwifj = ffiwj and ff,-fj = fzizj- Let f C M,
denote f is multi-form symmetry in z; and ;.

HTj

Single-Variable Symmetry

A function f is single-variable symmetric in the vari-
able x; in the space z; = 1 if and only if f.,7; = fi,s;.
Similarly, a function f is single-variable symmetric in
the variable z; in the space z; = 0 if and only if
fz—iz_j = fz—zz] Let f C Vm—%t,- (Vx_z—)xj) denote that f is
single-variable symmetric in ; under x; = 1(z; = 0).
Pseudo Symmetry

Suppose there are two Boolean functions f and g
over n support variables. Suppose for some support
variable set X = {1,...,2,—1}, the support of f is
X U{zs}(zs ¢ X) and that of g is X U {z,}(z, € X).
Two functions f and g are said to be pseudo symmetric
in support variable z; and z,, respectively, if and only
if fo; = 9o, and fe; = ge,. Let {f,g} C Py, ., denote
the pseudo symmetry of f and g with respect to zy and
x4, respectively.

4 Re-synthesis Utilizing Circuit Symme-
tries for Power Reduction

First, we discuss how symmetries in a circuit can
be utilized for power reduction. We will present our
symmetry detection algorithm later. Remember that
our primary goal is to reduce the power consumption
while taking into account the trade-offs between power
and delay. In all methods, the area overhead is either
zero or very small.

4.1 Re-synthesis without Area Overhead -
Swapping Connections

According to the definition of symmetry subsets, a
function remains invariant under any permutation of
variables in the symmetry group. In the correspond-
ing circuit implementation, “permutation” means swap-
ping connections. See Figure 1-(a). Through swapping,
we might find a better circuit in terms of power con-
sumption. Figure 2-(a) shows a circuit where g C S ;.
Therefore, we can swap the connections and obtain the
circuit in Figure 2-(b) which is functionally equivalent
to the circuit in Figure 2-(a).

Since a multi-form symmetry implies a nonequiva-
lence symmetry (Ss:), we can swap connections of s
and tif f C M, ;. Furthermore, since a multi-form sym-
metry implies an equivalence symmetry (Ss.), if there
exists a signal which corresponds to 5(f), then we can
swap the connections to 5(¢) and t(s) if f T M. See
Figure 3 for an example using a real circuit.

Figure 1: Swapping connections: (a) Symmetry f C
St (b) Pseudo symmetry {f,g} C Ps,

Figure 2: (a) Symmetry g C Se,; (b) Equivalent circuit
with connections swapped

A similar yet more interesting case can be seen in a
circuit with pseudo symmetry. In this case, to ensure
that the functionality of the circuit remains invariant,
we need to swap two pairs of connections as shown in
Figure 1-(b). See Figure 4 for a concrete example.

a i h
b i
7 f

;Df :

Figure 3: (a) Multi-form symmetry f C M., (b) An
equivalent circuit with connections swapped (c¢) An-
other equivalent circuit with connections swapped

4.2 Re-synthesis with Area Overhead -
Structural Transformation

Besides connection swapping, following techniques
can be employed for power reduction. It should be
noted, however, that these techniques do not preserve
the area of the initial implementation. In other words,
it may reduce or may increase the total area of the cir-
cuit.

Multi-form Symmetry

Suppose a signal f is multi-form symmetric in two
signals s and ¢. It means that if in clock cycle i,
s =t =0(s =t = 1), and in the next clock cycle
i+1,s =1t =1(s =t = 0), then the value of f is
unchanged (because fs; = fs) and the transitions in s

Figure 4: (a) Pseudo symmetry {k,q} T P, (b) An
equivalent circuit with connections swapped

and ¢ are immaterial. Similarly, when s =0 and ¢t =1
in one clock cycle and s = 1 and ¢t = 0 in the next
clock cycle (or vice versa), the value of f is unchanged
(because fs = fsz). Consequently, reduction in switch-
ing activities can be obtained by removing some of the
unnecessary transitions in the transitive fan-outs of the
variables s and ¢. The redesign is carried out as follows:
(We assume that f is multi-form symmetric in s and ¢
with ¢ having more transitions than s.)

1. Connect constant signal O(or 1) in place of ¢. The
choice between 0 and 1 is dependent on the type
of the gates in the fan-out of ¢.

2. Add a two input XOR (XNOR) gate if 0(1) is se-
lected for ¢, with s and ¢ as the inputs to the XOR
(XNOR) gate. Then, connect the output of the
XOR (XNOR) gate to the fan-out of (the origi-
nal) s

Figure 5-(a) shows the transformation where 0 and
XOR are chosen to be used. In this transformation,

the area overhead is at most equal to the introduction
of a new gate (g0), but there may be some removal of
gates (gl,g2) in the transitive fan-out of ¢.

Figure 5: Structural transformation for (a) Multi-form
symmetry f T M;; (b) Single-Variable symmetry f C
Vs—>t (C) Both f C Vs—)t and f C Ss,t

Single-Variable Symmetry
Recall that f C Vs implies that fi; = fgz. This
means that if s = 1, f does not depend on ¢, which

implies that if s = 1, then we can remove the spurious
transitions on the transitive fan-out of ¢ due to the value
changes in ¢. This can be implemented by adding a gate
as shown in Figure 5-(b). The gate added will be an OR
gate for any V;_; and an AND gate for any V;_,;. We
can observe that the additional OR (AND) gate will be
used for gating signals of ¢ when s = 1(s = 0).

Single-Variable Symmetry with Nonequivalence
Symmetry

Recall that if both f C Vs and f C Ss ¢, then fo =
fst = fs¢t- This means that as long as the values of s and
t remain 1 and 1, 0 and 1 or 1 and 0 over consecutive
clock cycles, respectively, the value of f will remain
unchanged and spurious switchings in the transitive fan-
out of s and t due to the value changes in signals s and
t can be suppressed. Thus, we only need to be able to
distinguish between the signal value combination of s =
0 and t = 0 from the other signal value combinations.
Hence, an additional OR gate (g0) is introduced in the
corresponding transformation as shown in Figure 5-(c).
For the case where fg = fo = fs: (equivalently, if both
f C Vsye and f T Ssy), an additional AND gate will
be used. To summarize:

1. Connect constant signal 0(1) in place of ¢. The
choice between 0 and 1 is dependent on the type
of the gates in the fan-out of ¢.

2. Introduce an OR (AND) gate with both s and t as
inputs to the gate. The output of this OR (AND)
gate becomes the fan-out of (the original) s.

Pseudo Symmetry

Let sup(f) denote the set of support variables for a
function represented by f. Pseudo symmetry implies
that for some support set X, where s,t ¢ X, there are
two functions f, g where sup(f) = {s}UX and sup(g) =
{t} UX and g5 = fr and g5 = f;. This means that we
can share the function evaluation when s = ¢. This
observation leads to a re-synthesis structure as shown
in Figure 6. In this structure, f always computes f7,
and g computes g5 (Or, f computes f; and g computes
9s)-

5 Selection of Transformations

In Sections 4.1 and 4.2, we showed how a circuit
can be re-synthesized for the occurrence of each type of
symmetry. However, in a circuit, there may be many
occurrences of various types of symmetries. Thus, the
question is: “How do we select one transformation over
the others in order to maximize the effectiveness of the
transformation?”

Remember that a transformation with respect to sig-
nals x and y utilizes a certain (set of) symmetry of the
two signals in the circuit. We have found that depend-
ing on how the signals in the symmetric subset are cor-
related, a transformation can be more effective in terms

Figure 6: Transformation for pseudo symmetry

of the reduction in switching activity than the others.
There are two different notions of correlations: tempo-
ral correlation and spatial correlation [8].

We have found that there is a direct relationship
between a certain correlation and the effectiveness of a
transformation. Suppose a circuit is symmetric in z and
y. Let O, denote the occurrence probability of « being
a and y being b (approximation to the spatial correla-
tion), and let Typp,cq denote the transition probability
between the two states where signal x goes from a to
c and signal y goes from b to d (approximation to the
temporal correlation)!. Table 1 summarizes the rela-
tions. 1 represents that the corresponding value should
be high, and | represents that the value should be low
in order for a transformation to be effective for power
reduction. Remember that each transformation utilizes
a certain type of symmetry. Therefore, we use the type
of symmetry to indicate the corresponding transforma-
tion.

[Type(z,y) | Type of symmetry | Correlation |
Sect. 4.1 S;;,y Op1 T or O1p T
Se.,y Ogo T or O11 1
(or Sz,y)
| Sect. 4.2 | My y || Too,11 T A To1,10 T |
Vi—»y A Sm,y 011 wlr
(OI‘ Vy’gm; N Sz,y)
Sect. 4.2 Vioy A Say Ooo T
(or Vysae A Sazy)
Vy%z A Sa:,g OIO ~L
(or Va—y A Saz,3)
Vz—»y A Sm,g 001 J,
(OI‘ Vy’gm; AN Sz,y’)
Visy 701,00
Sect. 4.2 Vise 70,10
Vyse To1,11
Vz—»y T10,11 T

Table 1: Desired correlation in order for a transforma-
tion to be effective for power reduction

1For the sake of brevity, we assume that T4y ca = Ted,ab-

6 An Algorithm for Symmetry Detection
in a Circuit Implementation

In this section, we describe our algorithm for de-
tecting the four types of symmetries defined in Sec-
tion 3.2. Even though there are several symmetry detec-
tion methods in the literature, they are not suitable for
logic re-synthesis because they do not utilize the struc-
tural information provided by the given circuit structure
and they only detect symmetry with respect to primary
inputs.

Let s be the first signal considered and call it a
source, and t be the second signal considered and call
it a target. Let FI(v) and FO(u) be the set of fan-
ins of v and the set of fan-outs of u, respectively. Let
C, represent the function of the cone that v repre-
sent. Let TFI(v) and TFO(u) represent transitive fan-
in and transitive fan-out, respectively. Let Level(v) be
the maximum distant from the primary inputs.

6.1 An Observation

The key observation that leads to our symmetry de-

tection algorithm is as follows:

Observation 6.1 Let f be a single output function.
Suppose we want to check the symmetry between two
given signals s and t. Assume that there is no mul-
tiple fan-out from s and t to f. Let c be a signal in
TFO(s)NTFO(t).(See Figure 7-(a).) Then if ¢ is sym-
metric in s and t, then f is symmetric in s and t as
well.

o

(a) (b)

Figure 7: (a) Key observation of symmetry detection
from a circuit, (b) Symmetry detection from a circuit
with multiple fan-outs

The observation above implies the following: First, if
Lewvel(c) << Level(f), the cost of symmetry detection
at ¢ will be much cheaper than at f. Second, we observe
that the symmetry at ¢ with respect to s and ¢ does not
depend on what Cs or C; is (shaded regions in Figure 7-
(a)). Finally, the switching activities for any signal in
TFO(c) or any signal outside of C, are unchanged when
the connections to s and t are swapped. Thus, our
problem is to find the ¢ which is as close as to s and ¢
as possible.

When there are multiple fan-outs and reconvergent
fan-outs in the transitive fan-out of s and t, TFO(s) N
TFO(t) will in general be a set of signals where the
signals in the set may be independent of each other as

¢l and ¢2 in Figure 7-(b). The extension is straightfor-
ward. For each fan-out path from s and ¢, there should
be a signal ¢ that is symmetric in s and t. Again, we
try to find the set of such ¢’s which are as close to s and
t as possible.
6.2 Detection Algorithm

Our symmetry detection algorithm is given here. It
detects the four types of symmetry with respect to sig-
nal ¢ and all other signals which are independent of ¢.

DETECTING SYMMETRY FROM A CIRCUIT IMPLEMENTATION 7
Compute the primary input support for each signal
Simulate 7 to compute switching activity
Identify the signal ¢t with the highest switching activity
Update the support for signal n € TFO(t)

For every signal s that is independent of ¢
Update the support for signal n € TFO(s)
Identify the set of check points CP for symmetry detection
For every checkpoint ¢ € CP
Construct a minimal cone with respect to ¢, s,t
Check the four types of symmetries at ¢ in s,
If All the necessary checkpoints are found
Stop
EndFor
EndFor
END

7 Experimental Result

We have implemented the algorithm for symmetry
detection and the re-synthesis techniques presented in
this paper. The programs were written in C++ run-
ning on a Sun SparclO workstation. We carried out
experiments on many MCNC benchmark circuits.

From a given circuit, we identify a signal which has
the highest switching activity. The switching activity
of each signal line is estimated on the basis of the on-
probabilities of the primary inputs using SIS?. Then we
try to detect the existence of any of the four types of
symmetries in the circuit with respect to this signal and
other signals. Then the circuit is re-synthesized using
the techniques presented above. After the transforma-
tion, we re-evaluate the switching activities in the new
circuit. And we iterate this process by selecting the
signal with the highest switching activity. In this ex-
periment, the number of iterations was 0.2 x the total
number of gates in the circuit. The power consump-
tion, area, and delay were computed after executing a
SIS script: “sweep; eliminate -1; map -m 0.” The
power measurement was conducted using the power es-
timation tool in SIS 1.2 assuming a 20MHz clock and
5V. Furthermore, we measured the power of mapped
circuits using the well-known MCNC generic library.

Table 2 summarizes the result. #PI and #PO repre-
sent the number of primary inputs and primary outputs,
respectively. Size is the number of gates in the cir-
cuit when the circuit is decomposed using tech_decomp

2power.estimate -d GENERAL and power_print were used.

Circuit #PI | #PO | Size Before After % Power || Time
Power [Delay | Area || Power | Delay [Area (sec)
cml62a 14 5 83 203 16.7 78 182 13.7 78 10.7 21
pml 13 10 93 299.2 14.5 109 277 15 114 7.4 14
cu 14 11 94 357.7 13 109 321.3 11.6 114 10.2 20
cmlb2a 11 1 36 119 11.3 32 82.4 11 43 30.7 2
pcler8 27 17 94 224.1 27.7 165 200.1 33.5 144 10.7 35
sct 19 13 237 548.2 18.1 232 517.4 23.7 237 5.6 329
cmb 16 4 78 241.2 8.4 7 218 16.5 77 9.6 17
i2 201 1 233 730.9 18 306 630.4 22.5 317 13.7 2304
mux 21 1 160 564.5 25.5 188 391.7 40.3 228 30.6 505
cm8ba 11 3 76 123.7 21 72 100.3 26.7 84 18.9 18
9symml 9 1 243 1000.2 28.3 353 973.6 28.7 355 2.7 450
b9 41 17 219 514.0 16.8 191 394 16.7 198 7.7 324
cc 21 13 103 367.8 13.5 113 339.0 13.6 107 7.8 23
c8 28 17 315 924.6 18.1 375 822.5 18.8 378 11.0 1226

Table 2: Re-synthesis of logic circuit utilizing symmetries

command in SIS. The columns under Before show the
power consumption, area, and delay of the circuits be-
fore re-synthesis and those under After show the result
after applying re-synthesis techniques. % Power shows
the percentage of power reduction achieved through re-
synthesis. Time shows the user CPU time for the de-
tection of the symmetries and the applications of corre-
sponding transformations®. We were able to obtain the
average power savings of 14% with very little area and
delay overhead.

8 Conclusion

We proposed several techniques for re-synthesizing
multi-level circuits utilizing symmetries for power re-
duction in this paper. We studied: (i) definitions of
different types of symmetry, (ii) how to detect such sym-
metries in a given implementation of a circuit and (iii)
how to utilize the detected symmetries for power reduc-
tion. We find that re-synthesis utilizing circuit symme-
try is very efficient and powerful for power reduction.

We are currently investigating several challenging is-
sues related to this work. Our future work includes:

e Considering internal don’t care conditions in the
circuit to detect more symmetries and extending
the set of applicable transformations with the ex-
istence of such don’t care conditions

e Developing an efficient technology decomposition
algorithm which can be used with symmetry de-
tection

References
[1] R. K. Brayton, G. D. Hachtel, and A. L. Sangiovanii-Vincentelli.
Multilevel logic synthesis. Proceedings of the IEEE, 78(2):264—
300, February 1990.

[2] S. R. Das and C. L. Sheng. On detecting total and partial sym-
metry of switching functions. IEEE Transactions on Comput-
ers, 20(3):352-355, March 1971.

Donald L. Dietmeyer and Peter R. Schneider. Identification
of symmetry, redundancy and equivalence of boolean functions.
IEEE Transactions on Electronic Computers, EC-16(6):804—
817, December 1967.

3

3It does not include the time for the power estimation.

4

(5]

[6

[7

(8]

9

(10]

(11]

(12]

(13]

(14]

(15]

[16]

(17]

(18]

Colin R. Edwards and S. L. Hurst. A digital synthesis procedure
under function symmetries and mapping methods. IEEE Trans-
actions on Computers, C-27(11):985-997, November 1978.

Sasan Iman and Massoud Pedram. An approach for multilevel
logic optimization targeting low power. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
15(8):889-901, August 1996.

Zvi Kohavi. Switching And Finite Automata Theory, 2nd Edi-
tion. McGraw-Hill, 1978.

Wolfgang Kunz and Dhiraj K. Pradhan. Recursive learning: A
new implication technique for efficient solutions to cad problems
= test, verification, and optimization. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
13(9):1069-1078, September 1994.

Radu Marculescu, Diana Marculescu, and Massoud Pedram.
Switching activity analysis considering spatiotemporal correla-
tions. In International Conference on Computer-Aided Design,
pages 294-299, November 1994.

Dirk Moller, Janett Mohnke, and Michael Weber. Detection of
symmetry of boolean functions represented by ROBDDs. In In-
ternational Conference on Computer-Aided Design, pages 680—
684, November 1993.

Saburo Muroga, Yahiko Kambayashi, Hung Chi Lai, and Jay Niel
Culliney. The transduction method-design of logic networks
based on permissible functions. IEEE Transactions on Com-
puters, 38(10):1404-1423, October 1989.

Rajendran Panda and Farid Najm. Post-mapping transforma-
tions for low-power synthesis. In Design Automation Confer-
ence, pages 650—655, 1997.

Shipra Panda, Fabio Somenzi, and Bernard F. Plessier. Sym-
metry detection and dynamic variable ordering of decision dia-
grams. In International Conference on Computer-Aided De-
sign, pages 628—631, 1994.

Massoud Pedram. Power minimization in IC design: principles
and applications. ACM Transactions on Design Automation of
Electronic Systems, 1(1):3-56, January 1996.

Perturb and Simplify: Multi level Boolean Network Optimizer.
Shih-chieh chang and malgorzata marek-sadowska. In Interna-
tional Conference on Computer-Aided Design, pages 2—5, 1994.

Bernhard Rohfleisch, Alfred Kélbl, and Bernd Wurth. Reducing
power dissipation after technology mapping by structural trans-
formation. In Design Automation Conference, pages 789-794,
1996.

Vivek Tiwari, Sharad Malik, and P. Ashar. Guarded evaluation:
Pushing power management to logic synthesis. In International
Symposium on Low Power Design, pages 221-226, September
1995.

Chieh-Chung Tsai and Malgorzata Marek-Sadowska.
ized reed-muller forms as a tool to detect symmetries.
Transactions on Computers, 45(1):33-40, January 1996.

General-
IEEE

Qi Wang and Sarma B.K. Vrudhula. Multi-level logic optimiza-
tion for low power using local logic transformation. In Interna-
tional Conference on Computer-Aided Design, pages 270-277,
1996.

	Main Page
	ISLPED98
	Front Matter
	Table of Contents
	Session Index
	Author Index

