
Low Power Logic Synthesis under a General Delay Model�

Unni Narayanan

Design Technology

Intel Corporation

Santa Clara, California

Peichen Pan

Design Technology

Intel Corporation

Portland, Oregon

C. L. Liu

Department of Computer Science

National Tsing Hua University

Hsinchu, Taiwan ROC

Abstract

Till now most e�orts in low power logic synthesis have con-
centrated on minimizing the total switching activity of a cir-
cuit under a zero delay model. This simpli�cation ignores
the e�ects of glitch transitions which may contribute as much
as 30% of the total power consumption of a circuit. Hence,
low power logic synthesis techniques which optimize power
under a zero delay model are often not successful in attain-
ing \real" power savings as measured under a more accurate
general delay model. In practice, to accurately estimate the
switching activity in a circuit under a general delay model
can be computationally expensive. Hence, to repeatedly call
accurate but slow power estimation tools to direct the synthe-
sis ow is not a viable approach in the design of low power
synthesis tools. In this paper we take advantage of a fast
method for estimating the total switching activity in a cir-
cuit under a general delay model to synthesize low power
circuits. Speci�cally, we use the approximation as a basis
for algorithms that solve two problems: (1) low power tech-
nology decomposition of gates under a general delay model
(2) low power retiming of sequential circuits under a general
delay model.

1 Introduction

The advent of portable digital devices such as laptop per-
sonal computers has made low power circuit design an in-
creasingly important research area. For example, laptop
computers have limited battery life, and so the circuitry in
the computer must be designed to dissipate as little power as
possible without sacri�cing performance in terms of speed.
Additionally, high power consumption increases the cost
of handling heat dissipation and diminishes the reliability
of today's increasingly complex circuits with higher tran-
sistor counts and faster clock rates. It has been shown
in [2] that in CMOS technology a large portion of power
dissipation on chip is due to dynamic power consumption

�This research was supported in part by the National Science
Foundation (NSF) under grant MIP-96-12184 and a research grant
from IBM.

at the gates which is computed according to the formula:PN

i=1
1=2 � CiV

2

ddfi where Ci is the output capacitance of
the ith gate, Vdd is the supply voltage, fi is the number
of transitions at the output of the ith gate, and N is the
total number of gates on the chip. Clearly a reduction in
fi will lead to a corresponding reduction in the total power
consumption of the circuit.

Till now most e�orts in low power logic synthesis have
focused on minimizing fi for each of the gates under a zero
delay model [9, 10, 13]. However, in reality gates have a
delay which may result in glitch transitions that increase the
total power consumption in the circuit. Glitch transitions
are transitions that take place at the output of a gate g
prior to the output attaining its steady state value. As an
example, consider the circuit in Figure 1.

����

�����
�����
�����

�����
�����
�����

a

c

d

b

Figure 1: Glitching properties of a simple circuit

4 54 5

T

0 1 2 3

c

4 5 4 5

4 5

T

0 1 2 3

a

4 5

T

0 1 2 3

c

T

0 1 2 3

T

0 1 2 3

T

0 1 2 3

b

d d

Input Waveforms

Zero Delay Model Unit Delay Model

Figure 2: Glitch transitions that are not accounted for in a
zero delay model.

Suppose we apply inputs to a and b as speci�ed by the
timing diagram in Figure 2. We see that under a unit delay



model the output of the and gate d experiences a 0 ! 1
transition at time 2 and experiences a 1 ! 0 transition at
time 3 prior to attaining its steady state value of 0. Un-
der a zero delay model these two transitions would not be
counted. Thus if Pa, the probability a is 1, is :9 and Pb,
the probability b is 1, is :1, then under the zero delay model
the expected number of transitions at d is :0378, but under
the unit delay model the expected number of transitions at
d is :0540 or a 43% di�erence in expected switching activ-
ity. In an arbitrary circuit glitching power can account for
as much as 30% of the total power dissipation [7]. Hence
most low power logic synthesis techniques which attempt to
minimize power under a zero delay model are often not suc-
cessful in attaining \real" power savings as measured under
a general delay model. Therefore, it is important to develop
synthesis techniques which directly minimize power under a
general delay model. Furthermore, in [1] the authors note
that glitch power is one of the few sources of power dissipa-
tion that can be estimated accurately prior to the physical
design step. Thus, savings in terms of glitch power during
logic synthesis can have a signi�cant impact on the �nal
circuit.

In practice, to accurately estimate the switching activity
in a circuit under a general delay model can be computation-
ally expensive. Hence, to repeatedly call accurate but slow
power estimation tools to direct the synthesis ow is not a vi-
able approach in the the design of low power synthesis tools.
In this paper we present a fast method for estimating the
switching activity under a general delay model. While this
only an estimate of the total power consumption in a circuit,
we show that it is accurate enough to guide in the synthesis
of low power circuits. To demonstrate the e�ectiveness of
our estimate, we use the approximation as a basis for algo-
rithms that solve two problems: (1) low power technology
decomposition of simple gates under a general delay model
(2) low power retiming of sequential circuits under a general
delay model. For both problems our algorithms attain good
power savings when the resulting circuits are measured un-
der a general delay model by the power estimation tool in
Berkeley SIS. In Section 2 we present our power estimation
method which is a simpli�cation of a more general scheme
presented in [3]. In Section 3 we present the algorithm and
experimental results for low power technology decomposi-
tion of simple gates. In Section 4 we present the algorithm
and experimental results for the low power retiming of se-
quential circuits. Finally, in Section 5 we summarize our
work and present future directions for this research.

2 Switching Activity Under a General Delay Model

First we briey review two of the more popular power es-
timation methods which attempt to account for glitching
transitions and we explain why these methods are not of
practical value during logic synthesis. We will then present
our estimation method and study some of its properties.

2.1 Review of Power Estimation Methods

Other than outright simulation (which is very costly) there
are two basic approaches to gate level power estimation in
practice today: (1) the transition density method (2) sym-
bolic simulation. In the transition density method there is
the concept of the transition density for a gate g denoted
by D(g). The quantity D(g) is the expected number of
transitions at the output of gate g in unit time. In a very
important paper in [8], Najm showed that D(g) for a gate g

with n uncorrelated inputs x1; : : : ; xn can be computed as:
D(g) =

Pn

i=1
Pr(@f=@xi)D(xi) where f is the boolean func-

tion realized at the output of gate g with @f=@xi = fxi�fxi
and where fxi and fxi are respectively the positive and nega-
tive cofactors of f with respect to xi. The transition density
approach has the nice property of e�ciently and accurately
propagating glitches that appear at the primary inputs of a
circuit throughout the entire circuit. However, the disadvan-
tage of the transition density approach is that it estimates
power under a zero delay model. Hence, the transition den-
sity formulation accounts for glitches that are propagated
from the primary inputs of the circuit, but does not account
for glitches that are generated from within the circuit. In
practice, this is a serious limitation.

In symbolic simulation a symbolic network is constructed
from the original network and models the behavior of the
original network at two time instants [7]. For each primary
input i in the original network there are two primary inputs,
it1 and it2 , in the symbolic network which correspond to the
values of i in the original network at time instants t1 and
t2. Each primary output in the symbolic network is denoted
by Eg;t and has the property that Eg;t is 1 if and only if
the gate g in the original network experiences a transition at
time instant t. The probability that Eg;t = 1 is the probabil-
ity of a transition at the output of g in the original network
at time instant t. Thus,

P
8g;8t

Pr(Eg;t = 1) in the sym-

bolic network is the total expected number of transitions in
the original network. Symbolic simulation computes the ex-
pected number of transitions under the general delay model
completely taking into account spatial correlation (recon-
vergent fanouts). The problem is that symbolic simulation
requires a costly BDD evaluation for each primary output
of the symbolic network because the symbolic network may
contain internal correlations that were never present in the
original network.

2.2 A Simpli�ed Glitching Model

We note that a gate g in a circuit experiences a transition at
its output only if one of its inputs changes. This motivates
the following de�nition and theorem:

De�nition 2.1 The path length from a primary input i to
a gate g is the number of gates on the path from i to g.

Theorem 2.1 Suppose a set of inputs are applied to the
primary inputs of a circuit at time t. Then under the unit
delay model, the set of times a gate g experiences a transition
is Tg = ftijti = t+ i 8i 2 Lg where L is the set containing
the distinct path lengths from g to its primary inputs.

Let Pg;t(0 ! 1),Pg;t(1 ! 0), Pg;t(0 ! 0), and Pg;t(1 !
1) denote respectively the probabilities of 0 ! 1, 1 ! 0,
0 ! 0, and 1 ! 1 transitions at the output of gate g at
time t. Then we can de�ne the total power consumption in
a circuit as follows:

De�nition 2.2 Let G denote the set of all gates in a circuit.
Let Tg denote the set of possible transition times of gate g as
speci�ed by Theorem 2.1. Then the total power consumption
in a circuit under a unit delay model is :

X

8g2G;8t2Tg

Pg;t(0! 1) + Pg;t(1! 0)

Thus, in order to compute the power consumption in a
circuit we need to compute Pg;t(0 ! 1) and Pg;t(1! 0) for



each gate g. The precise formula for computing the transi-
tion probabilities for a speci�c gate depends on the function-
ality of the gate. First we require some basic terminology.
Let x; x0; y; y0 2 f0; 1g. Let S denote any subset of fanins of a
k input gate. Let P (S(x)) denote the probability that all the
signals in S have a value of x. Let P (S[(x! y); (x0 ! y0)])
denote the probability that at least one signal in S makes an
x! y transition and all the remaining signals make x0 ! y0

transitions. Let St denote the set of signals that change at
time t. Finally, let St denote the set of signals that do not
change at time t. Then we have the following theorem for
and, or, and not gates:

Theorem 2.2 Let g be and and gate. We have:

1. Pg;t(0 ! 1) = P (S
t�1

(1)) � P (St�1[(0 ! 1); (x! 1)])

2. Pg;t(1 ! 0) = P (S
t�1

(1)) � P (St�1[(1 ! 0); (1 ! x)])

3. Pg;t(1 ! 1) = P (S
t�1

(1)) � P (St�1(1! 1))

4. Pg;t(0 ! 0) = 1�Pg;t(0! 1)�Pg;t(1! 0)�Pg;t(1 !
1)

If g is an or gate then we have:

1. Pg;t(0 ! 1) = P (S
t�1

(0)) � P (St�1[(0 ! 1); (0 ! x)])

2. Pg;t(1 ! 0) = P (S
t�1

(0)) � P (St�1[(1 ! 0); (x! 0)])

3. Pg;t(1 ! 1) = 1�Pg;t(0! 1)�Pg;t(1! 0)�Pg;t(0 !
0)

4. Pg;t(0 ! 0) = P (S
t�1

(0)) � P (St�1(0! 0))

If g is a not gate then we have:

1. Pg;t(0 ! 1) = P (St�1(1! 0))

2. Pg;t(1 ! 0) = P (St�1(0! 1))

3. Pg;t(1 ! 1) = P (St�1(0! 0))

4. Pg;t(0 ! 0) = P (St�1(1! 1))

Theorems 2.1-2.2 suggest an e�cient algorithm for es-
timating total switching activity in a circuit: (1) In topo-
logical order for each gate apply Theorem 2.2 to compute
the probabilities of 0 ! 1, 1 ! 0, 0 ! 0, and 1 ! 1 tran-
sitions for each time instant t that the output of the gate
can change (the set of time instants can be computed using
Theorem 2.1). (2) Compute the total switching activity as
speci�ed by De�nition 2.2.

We make several observations. First, the algorithm ex-
actly computes the expected number of transitions under a
unit delay model if the circuit has no reconvergent fanouts
(this is the same value that would be computed by sym-
bolic simulation). Second, the algorithm can easily be mod-
i�ed to estimate transitions under a general delay model
by using accurate delay information to determine the exact
transition times of fanins to a gate. We note that this al-
gorithm turns outs to be a special case of a more general
approach proposed in [3]. In that work, the authors modify
the Parker-McCluskey method [11] to compute switching ac-
tivities under a general delay model. Their algorithm takes
as a parameter the number of levels in the transitive fanin
of each gate that should be considered to account for spatial
correlations due to reconvergent fanouts. We observe that
our approach and their approach are identical when their
algorithm backtracks just one level in the transitive fanin
of the gate. In [3] they report that this estimate is within
20% of the actual switching activity for benchmark circuits
which have internal correlations.

3 Low Power Technology Decomposition

The technology decomposition problem is the problem of
transforming a gate with many fanins into an equivalent
tree representation where each gate has a small number (say
two) fanins. Di�erent decompositions vary in terms of their
total switching activities. We �rst review previous work in
the area of low power technology decomposition. After this
we present our algorithm for decomposition under a general
delay model. Finally we will present experimental results.

3.1 Previous Results in Low Power Decomposition

Most work in the area of low power technology decompo-
sition has assumed a zero delay model. The most impor-
tant results are found in [9, 15] where the authors show
that for static CMOS logic, the Hu�man algorithm synthe-
sizes the zero delay power optimal decomposition when the
on probabilities of the fanins are all less than or equal to
0:5. Similarly, the authors show that the Anti-Hu�man al-
gorithm synthesizes the zero delay power optimal decompo-
sition when the product of the on probabilities are greater
than 0:5. However, in reality the best decomposition de-
pends on the structure of the transitive fanins to the gate as
well as the on probabilities of the fanins. Thus, the optimal
zero delay result does not hold under a general delay model.
This is illustrated in Figure 3.

����

��
��
��
��

����
��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�

�
�
�

��
��
��
��

��
��
��
��

a b c d

�
�
�
�

�
�
�
�
��
��
��
��

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

c d

a b

��
��
��
��

����

���
���
���
���

��
��
��

��
��
��

��
��
��
��

���
���
���
���

��
��
��

��
��
��

��
��
��
��

(2)(1)

a b

c

d

q q

q

Figure 3: Problems with optimal zero delay decomposition

Suppose we wish to decompose the and gate in Figure 3
and the on probabilities to the primary inputs are Pa = :28,
Pb = :28, Pc = :50, and Pd = :50. We observe that the on
probability at the output q of the or gate is :48. Hence,
the optimal zero delay algorithm will decompose the and
gate as in (1). But, under a unit delay model (with a 20
MHZ clock and Vdd = 5V) we �nd that the and tree in (1)
dissipates 4:64 microwatts and the and tree in (2) dissipates
3:39 microwatts - nearly a 27% di�erence in power. Even
if we include the power of the or gate we �nd that (1)
dissipates 8:34 microwatts and (2) dissipates 7:09 microwatts
which is still a 15% di�erence in total power consumption.
Hence, we see that the optimal zero delay decomposition
algorithm can be very suboptimal in practice.

3.2 A Technology Decomposition Algorithm

We propose a greedy approach for decomposing an n input
gate. The algorithm works as follows:

1. Enumerate the gates in topological order.

2. For each gate in the ordering do the following:

(a) For each pair of signals use Theorem 2.2 to com-
pute the power that would be dissipated by a two
input gate with the pair as its fanins.



(b) Combine the two signals which consume the least
power. Remove the two signals from the set of
signals. Add the output signal of the new gate to
the set of signals.

(c) While there is more than one signal remaining in
the set of signals go to Step (a).

This is a straightforward greedy heuristic with the impor-
tant twist that we use Theorem 2.2 to greedily determine the
best signal pairings in the decomposition. For both exam-
ples in previous section, this heuristic returns the optimal
decomposition. Finally, we note that for a combinational
circuit the topological ordering guarantees that the decom-
position of a gate never a�ects the glitching properties of a
gate that has already been decomposed.

3.3 Experimental Results

Table 1 contains experimental results for technology decom-
position in which we compare the power dissipated by cir-
cuits synthesized with the balanced approach (denoted by
a B) against those synthesized with our heuristic (denoted
by an H). For the experiments the primary inputs had on
probabilities of :5. We used the power estimation tool in
SIS (assuming a 20 MHZ clock and Vdd=5V) and param-
eters extracted from the technology library mcnc.genlib to
measure the power under a general delay model. Under
the general delay model we obtain an average power savings
of 11:5%. This savings might appear to be small, but the
reader is reminded that this is \real" power savings which
includes glitching power. We note that our current imple-
mentation of the heuristic uses a unit delay model when it
greedily decomposes a gate, however, the algorithm can eas-
ily be modi�ed to decompose gates based upon the arrival
times from a general delay model. We would expect the
results to improve with such an enhanced implementation.

Name PI PO Size B N % Red.

cm138 6 8 26 127.9 111.8 12.6

cu 14 11 76 441.4 411.3 6.8

decod 5 16 50 260.9 250.2 4.1

duke2 22 29 885 3733.7 2946.8 21.1

example2 86 66 342 1808.3 1675.0 7.4

frg1 29 3 789 3969.0 3349.4 8.7

misex3c 14 14 1348 6667.1 5643.2 15.4

pcler8 27 17 78 316.1 277.4 12.2

ttt2 25 21 652 3695.0 3355.7 9.2

vg2 25 8 796 3947.1 3248.4 17.7

Average 11.5

Table 1: Comparison of decomposition heuristics under a
general delay model as measured by SIS

4 Low Power Retiming of Sequential Circuits

Retiming is a procedure that was originally proposed by
Leisersen and Saxe in [5] to reduce the cycle time of se-
quential circuits. Informally, retiming can be described as a
repositioning of latches in a circuit that preserves the func-
tionality of a circuit.

From Theorem 2.1, we know that in a combinational cir-
cuit the number of times a gate experiences a transition at
its output is related to the number of distinct path lengths
from the primary inputs of the circuit to the gate. For a

sequential circuit the number of times that a gate experi-
ences a transition is related to the number of distinct path
lengths from the nearest level of latches in the transitive
fanin of the gate. This is because the latches are controlled
by a global clock which prevent the propagation of glitches
into the transitive fanout of the latch. Retiming repositions
the latches in a circuit consequently a�ects the number of
times each gate may experience a transition. Consider the
example in Figure 4. The numbers beside the gates are the
number of distinct path lengths to each gate from the near-
est level of latches in the transitive fanin of the gate. A
forward retiming of g2 has many implications. First, g1 and
g2 become more imbalanced and will tend to glitch more. It
is also very important to note that although the glitches at
g2 will not be propagated to g3 and beyond, the retiming
has made g3 more imbalanced. Hence, g3 and its transitive
fanout may actually glitch more because of the retiming.

2

11 1

1

2

2

11

1 1

1 1 1 1

1 1

1

21

3 2

3

1

2

3

11

2

3
g

1
g g

g g

g

Figure 4: Retiming a�ects power dissipation in a circuit

4.1 Previous Results in Low Power Retiming

There are two previous results on low power retiming. In [6],
the authors conduct an empirical study of power dissipa-
tion when varying levels of pipelining are added to a circuit.
They observe that by adding more levels of pipelining to
a sequential circuit more gates are likely to have balanced
paths and so there is a power reduction. They also note
that the power reduction is eventually o�set by the power
consumed by additional latches required for deep pipelining.
In [7], the authors propose an algorithm for pipeline inser-
tion in a sequential circuit. Since this is the only known
algorithm for low power retiming, it warrants close inspec-
tion. The �rst step of their algorithm is to perform a de-
tailed power estimation of all the gates in the network. Each
gate is then weighted by three factors: (1) The amount of
glitching activity at the gate (the di�erence between the
switching activity under a general delay model and the zero
delay model) (2) The probability that a transition at a gate
results in transitions in the gate's transitive fanout (at most
two levels ahead) (3) The number of fanouts of the gate.
Latches are then placed in a greedy fashion in front of the
gates based upon their weights. In an attempt to reduce
the total latch count, the �nal step of their algorithm is to
forward retime gates which are not on the same paths as
the gates that were greedily retimed. The approach in [7]
has three limitations: (1) Their algorithm requires a costly
simulation for each level of pipelining that is inserted. (2)
As was previously illustrated in Figure 4, placing a latch in
front of a gate may prevent the propagation of a glitch at the
cost of the generation of a new glitch. (3) Their algorithm
may introduce large latch counts.



4.2 Estimation of Power in Sequential Circuits

An ongoing and considerably di�cult research problem is
that of estimating power in a sequential circuit [7]. Before
we present our low power retiming algorithm we re�ne our
estimation procedure in Section 2 to handle sequential cir-
cuits:

1. We approximate the total power consumed as ��S+� �
K where S is our estimate of the switching activity, K
is the total latch count, and � and � are user speci�ed
weights.

2. For a latch L on a cycle we set the transition proba-
bilities to be: PL;t1(0 ! 1) = :25, PL;t1(1 ! 0) = :25,
PL;t1(0 ! 0) = :25, and PL;t1(1 ! 1) = :25 where t1
is the time instant that a new set of inputs is applied
to the primary inputs in the circuit.

4.3 A Low Power Retiming Algorithm

We have several insights from the analysis of the pipeline
insertion algorithm from [7]. First, retiming an individual
gate can have a signi�cant impact on the total switching
activity in the circuit. Thus, any retiming based upon the
switching activity of individual gates is not su�cient to re-
duce the total power. Second, the latch count can have a
signi�cant e�ect on the power consumption of the circuit.
However, we note here that retiming a circuit to minimize
the total number of latches (a problem that has already
been solved in [5]) is not tantamount to minimizing power
because the cost in terms of latch power may vary with dif-
ferent technologies and, of course, the switching activity in
the combinational portions of the circuit will have a signi�-
cant impact on the total power. These observations lead to
the following algorithm:

1. Enumerate the gates in topological order.

2. For each gate g in the ordering:

(a) Backward retime g.

(b) If g is retimed then estimate the power as de-
scribed in Section 4.2.

i. If the power increases then restore the latches
to their original positions.

ii. If the power decreases then anchor the latches
behind g.

As with the technology decomposition algorithm we pro-
cess the gates in topological order. Hence, we will never
move latches from the fanins of gates that have already been
retimed.

4.4 Experimental Results

We present three tables of experimental results. Since there
are not any known low power retiming algorithms for se-
quential circuits, we use a greedy heuristic similar to the
pipelining approach in [7] as a point of comparison. The
greedy heuristic backward retimes gates based upon their
glitching activities (the di�erence between the estimated
unit delay power and zero delay power). In the greedy
heuristic, if a gate is retimed the latches behind the gate
are then anchored and the gate cannot be retimed further.
H(100; 1) denotes our approach in which each transition is
assigned a weight of 100 and each latch is assigned a weights
of 1. The columns designated as Constrained indicate that

for both the greedy heuristic and our approach all the re-
timings were limited to within at most 5 levels of logic. Un-
constrained indicates that the retimings were not limited.
L denotes the total number of latches in the retimed cir-
cuit. T denotes the total power (switching activity and latch
power). C denotes the combinational power exclusively. In
Table 2 we consider the total power consumed by the cir-
cuit. We estimated the power using the power estimation
tool in SIS (assuming Vdd = 5V and a 20MHZ clock) under
a general delay model with delay parameters extracted from
mcnc.genlib and mcnc latch.genlib. All of the primary in-
puts had on probabilities of :5. In Table 3 we consider just
the combinational power, and the measurements are orga-
nized in an identical fashion to Table 2. Finally, in Table 4,
we report the total power, and the measurements are orga-
nized in an identical fashion to Table 2.

We immediately see from Table 2, that under a general
delay model we attain an average 49% power savings over
the greedy approach. A close inspection reveals that the cir-
cuits, retimed by our algorithm have far fewer latches than
the greedy approach. Thus, a large portion of the power sav-
ings is due to the di�erence in the number of latches. How-
ever, when we just the consider the combinational power the
results are quite interesting. From Table 3 we see that we
attain about an average 7% power savings over the greedy
heuristic in terms of pure switching power. Furthermore, for
some circuits such as s420 our heuristic achieves as much as
a 28% reduction in combinational power. This indicates that
the heuristic does indeed reduce the overall switching activ-
ity. This is especially signi�cant because the results in [6]
indicate that an increased number of latches in a circuit
achieve greater balance and consequently reduce switching
activity due to glitches. But our results show that a judi-
cious placement of fewer latches can actually attain
better overall balance than a greedy placement of
more latches in a circuit.

Finally, we note that in reality the power consumed by
a single latch is considerably greater than the power con-
sumed by a single transition. Thus, if we use more realistic
weight assignments for the transitions and latches, we see
that even further power reduction is possible. In Table 4,
we show compare three variants of our heuristic allowing un-
constrained retiming. We see that the more realistic weight
assignment in H(1; 100) garners an additional 7% power re-
duction.

Benchmark Unconstrained
Description H(100; 1) H(1; 1) H(1; 100)

Name PI PO S T T T

mm4a 7 4 299 1028.4 1040.2 1065.4

s208 10 1 125 306 333.3 300

s298 3 6 195 551.8 559.6 530.6

s344 9 11 211 839.8 852 850.1

s349 9 11 218 854.9 874.3 859.4

s386 7 7 203 717.6 700.9 702.9

s400 3 6 260 930.3 418.5 407.2

s420 18 1 261 385.9 390.2 363.1

s641 35 23 206 850.9 849.9 845.3

Average 718.40 668.77 658.22

Table 4: Comparison of three versions of our heurstic under
a general delay model with SIS.



Benchmark Constrained Unconstrained
Description Greedy H(100; 1) % Greedy H(100; 1) %

Name PI PO S L R L T Sav. L T L T Sav.

mm4a 7 4 299 16 1069.1 12 1014.6 5.0977 14 1057.2 12 1028.4 2.7242

s208 10 1 125 25 636.6 8 316.4 50.298 32 1038.9 8 306 70.546

s298 3 6 195 97 1939.4 18 698.8 63.968 70 1505.1 14 551.8 63.338

s344 9 11 211 48 1689.4 15 835.2 50.562 48 1684 15 839.8 50.131

s349 9 11 218 49 1724.6 15 857.8 50.261 49 1728.3 15 854.9 50.535

s386 7 7 203 86 2049.9 6 730.3 64.374 86 2025.3 6 717.6 64.568

s400 3 6 260 120 1689.7 65 869.7 48.529 95 1232.2 65 930.3 24.501

s420 18 1 261 46 931.1 16 394 57.684 62 1730.9 16 385.9 77.705

s641 35 23 206 74 1676 19 836.3 50.101 63 1504.2 19 850.9 43.432

Average 48.99 49.72

Table 2: Total power of greedy and H(100; 1) under a general delay model with SIS.

Benchmark Constrained Unconstrained
Description Greedy H(100; 1) % Greedy H(100; 1) %

Name PI PO S L C L C Sav. L C L C Sav.

mm4a 7 4 299 16 841.6 12 895.7 -6.4282 14 903.9 12 873.4 3.3743

s208 10 1 125 25 232.1 8 253.0 -9.0047 32 299.1 8 247.0 17.419

s298 3 6 195 97 393.9 18 442.4 -12.313 70 374.8 14 362.4 3.3084

s344 9 11 211 48 608.0 15 544.9 10.378 48 598.4 15 553.9 7.4365

s349 9 11 218 49 619.6 15 570.2 7.9729 49 626.4 15 542.4 13.41

s386 7 7 203 86 695.8 6 674.1 3.1187 86 696.0 6 660.7 5.0718

s400 3 6 260 120 295.9 65 286.8 3.0754 95 301.6 65 344.7 -14.29

s420 18 1 261 46 344.0 16 310.8 9.6512 62 443.7 16 319.4 28.014

s641 35 23 206 74 670.0 19 686.6 -2.4776 63 660.3 19 678.0 -2.6806

Average 0.44 6.78

Table 3: Combinational power of greedy and H(100; 1) under a general delay model with SIS.

5 Conclusion

In this paper we used an estimate of the general delay switch-
ing activity to synthesize low power circuits. This estimate
was the basis of algorithms that addressed two problems: (1)
Low power technology decomposition of simple gates under
a general delay model (2) Low power retiming of sequential
circuits under a general delay model. For both problems,
we attained good power savings when measuring the power
under an accurate delay model. There are other di�cult
problems in low power synthesis. For example, low power
technology mapping under a general delay model remains
a challenge (since mapping often undoes premapping opti-
mizations). Prior work in low power mapping has always
been based upon a zero delay model. We believe that ap-
proaches similar to those presented in this paper could yield
new insights into problems such as technology mapping.

References

[1] Daniel Brand and Chandu Visweswariah. Inaccuracies in power
estimation during logic synthesis. In International Conference

on Computer-Aided Design, pages 388{384, 1996.

[2] Anantha P. Chandrakasan and Robert W. Broderson. Low

Power Digital CMOS Design. Kluwer Academic Publishers,
1995.

[3] Jose C. Costa, Jose C. Monteiro, and Srinivas Devadas. Switch-
ing activity estimation using limited depth reconvergent path
analysis. In International Symposium on low power electronics

and design, pages 184{189, 1997.

[4] Eric Lehman, Yosinori Watanabe, Joel Grodstein, and Heather
Harkness. Logic decomposition during technology mapping.
In International Conference on Compuer-Aided Design, pages
264{271, 1995.

[5] Charles E. Leiserson and James B. Saxe. Retiming synchronous
circuitry. Algorithmica, 6:5{35, 1991.

[6] Jeroen Leitjen, Jef van Meerbergen, and Jochen Jess. Analy-
sis and reduction of glitches in synchronous network. Received:
1996.

[7] Jose Monteiro and Srinivas Devadas. Computer-Aided Design

Techniques for Low Power Sequential Logic Circuits. Kluwer
Academic Publishers, 1997.

[8] F. Najm. Transition density, a stochastic measure of activity in
digital circuits. In International Conference on Compuer-Aided

Design, pages 644{649, June 1991.

[9] U. Narayanan, Hon Wai Leong, Ki-Seok Chung, and C. L. Liu.
Low power multiplexer decomposition. In International Sym-

posium on low power electronics and design, pages 269{274,
1997.

[10] U. Narayanan and C. L. Liu. Low power logic synthesis for xor
based circuits. In International Conference on Computer-Aided

Design, 1997.

[11] K. Parker and E. McCluskey. Probabilistic treatment of gen-
eral combinational networks. IEEE Transactions on Electronic

Computers, C-24(6):668{670, 1975.

[12] G. I. Stamoulis. A monte-carlo approach for the accurate and ef-
�cient estimation of average transition probabilities in sequential
logic circuits. In IEEE Custom Integrated Circuits Conference,
pages 221{224, 1996.

[13] Sarma B. K. Vrudhula and Hong-Yu Xie. Techniques for cmos
power estimation and logic synthesis for low power. In Interna-

tional Workshop on Low Power Design, pages 21{26, 1994.

[14] Neil H. E. Weste and Kamran Eshraghian. Principles of CMOS

VLSI Design: A Systems Perspective. Addison-Wesley, 1993.

[15] Hai Zhou and D. F. Wong. An exact gate decomposition al-
gorithm for low-power technology mapping. In International

Conference on Computer-Aided Design, 1997.


	Main Page
	ISLPED98
	Front Matter
	Table of Contents
	Session Index
	Author Index


