MONITORING SYSTEM ACTIVITY FOR OS-DIRECTED
DYNAMIC POWER MANAGEMENT

Luca Benini* Alessandro Bogliolo

Stefano Cavallucci Bruno Riccd

DEIS - Universita di Bologna
Bologna, ITALY 40136

Abstract

! In this paper we describe a workload monitoring system
that has been specifically designed for supporting dynamic
power management in personal computers with tight power
constraints (such as laptop or notebook computers). Our
monitoring system is minimally intrusive, and has negligible
impact on system activity. Moreover, it can be used both
for on-line system monitoring and off-line data collection.

We used our monitoring tool to collect data on the usage
of system resources (disks, CPU, keyboard and mouse) for
a laptop computer, under several workload conditions. Our
analysis shows that resource usage is strongly resource and
workload dependent, and that on-line usage monitoring ca-
pability is a critical issue of the implementation of effective
power management policies.

1 Introduction

Reducing the power dissipation of hardware components in
portable computers is a primary design target. Numerous
computer-aided design techniques for low power have been
proposed [1], focusing on chip-level power optimization. Un-
fortunately, a portable computer is far more complex than
a single chip and the complexity of such a system is well
beyond the scope of any power-optimization tool. Never-
theless, the power consumption of portable computers has
been kept under control, and battery lifetime for a given
performance level is steadily improving.

This successful effort is rooted in technological innova-
tions and designer’s ingenuity. Low power system compo-
nents (CPUs, hard disk drives, displays, etc.) are available
thanks to improved integration and careful optimization.
The first task of the system designer is to select components
and organize the system architectures trying to achieve the
best balance between cost, performance and power.

Component selection is just the first step toward a low-
power design. Computers are flexible and are designed to

*Luca Benini is also with Hewlett Packard Laboratories and Stan-
ford University

1We would like to thank Prof. Giovanni De Micheli, at Stanford,
and Daniele Gordini, at DEIS, for many useful suggestions.

effectively support widely varying workloads. Different sys-
tem components may be stressed by different users (or by
the same user at different times), and it is almost never the
case that all resources in a laptop computer are operated at
their maximum performance level at the same time. In other
words, there is a large amount of idleness during operation.
Dynamic power management techniques exploit idleness to
reduce power dissipation [2].

The key idea in dynamic power management is that com-
ponent can be switched into a low-power sleep state when
they are not required for system operation (i.e., they are
idle). Several sleep states can be defined spanning the trade-
off between power consumption and time required to return
to a fully operational state. Similarly, several operational
states can be defined spanning the trade-off between power
and performance. A successful implementation of dynamic
power management relies on two key assumptions: 7) the
availability of power manageable components (also called re-
sources) that support multiple states of operation; i:) the
existence of a power manager that drives component tran-
sitions with the correct protocol and implements a power
management policy (an algorithm that decides when to shut
down idle components).

The importance of power management in the design of
successful computer architectures is well understood by in-
dustry leaders in the software and hardware areas. An ad-
vanced configuration and power management interface spec-
ification (ACPI), has been jointly developed by Intel, Mi-
crosoft and Toshiba [9]. The ACPI specifies the conventions
and protocols for the communication between resources and
power manager. Its main purpose is to ease the implemen-
tation of power-managed computers, both in terms of hard-
ware and software development. One key assumption behind
ACPI is that the power manager is a module of the operating
systems (OS). Hence, OS-directed dynamic power manage-
ment appears to be the frontier in system design for laptop
computers.

ACPI provides an interface for the communication be-
tween hardware components and software power manager
(in the OS), but it does not specify neither the power man-
agement policy nor the information that should be used to
drive the policy’s decisions. In this paper we present a tool
that has been specifically developed for collecting such in-
formation and making it available to the system designer for
analysis and to the power manager for use. Our tool is based
on the same system model that led to the development of
ACPI, but it is completely independent from it.

More specifically we implemented a system monitoring
and instrumentation package based on the Linux [7] operat-

ing system for monitoring the usage of system components
with high accuracy and low overhead. The package collects
the information required to: i) design the power manager;
1) drive power management policies and 4i:) estimate the
activity level of system components. While previously de-
veloped OS-based monitoring tools focused mainly on per-
formance estimation, our package is tailored toward collect-
ing and analyzing data that is relevant for dynamic power
management.

The data collection tool is designed for on-line as well
as off-line data analysis. In the first mode, it provides the
data used by the power management policy to take decisions
during system operation. In the second mode it can be used
to study usage patterns and design effective power manage-
ment policies. Particular care has been taken to minimize
the perturbation of normal system activity caused by mon-
itoring.

The paper is organized as follows. In the next section
we review the basic concepts of OS-directed power man-
agement, and we propose a general model for formulating
power management policies in a rigorous fashion. In Sec-
tion 3 we describe the architecture of our instrumentation
and analysis tool, while in Section 4 we discuss implementa-
tion details and provide experimental evidence and insights
gained thanks to the data collected by our tool. Section 5
concludes the work.

2 0OS-directed power management

The high-level architecture of the software interface between
user applications and hardware can be summarized as fol-
lows. Applications communicate with hardware abstrac-
tions provided by the operating system. The operating sys-
tem implements explicit communication to hardware devices
through device drivers. Notice that some hardware com-
ponents are not controlled through device drivers. For in-
stance, the CPU and main memory are not visible as devices,
but are implicitly controlled by the OS (both are needed for
running the OS itself). Hardware components that perform
very-high bandwidth communication with the CPU tend to
be controlled bypassing device drivers for performance rea-
sons.

The OS is most effective in power-managing components
that are explicitly controlled through device drivers. Hard-
ware components controlled through device drivers will be
called ezplicit. Some of the components which are largest
contributors to the power budget (CPU, main memory) are
not abstracted as devices. We call such components implicit.
Individually monitoring and managing implicit components
is difficult and usually requires some form of hardware sup-
port. We take a conservative (albeit sub-optimal from the
power viewpoint) approach: the only implicit device that is
monitored is the CPU itself, while all explicit devices can be
monitored.

2.1 Power management

As shown in Figure 1, a complete power manager consists
of three conceptual blocks: a policy, a controller and an
observer. The policy takes decisions on power management
commands, that are actuated through the controller. The
observer monitors the system activity and informs the policy
of the activity level of the system. The focus of this work is
on the design of the observer block.

Without observation, it is almost impossible to devise
effective power management policies. The simplest policy is

Observer)
Policy

Controller

|

HARDWARE

Figure 1: Components of a power manager: policy, observer
and controller

greedy: devices are switched to a low-power state as soon as
they are inactive. The greedy policy rises two major issues.
First, if there are multiple sleep states, how to choose the
most appropriate one. Second, and most important, since
transition to sleep states and back to active have a power
and performance cost, the power manager should guaran-
tee that, in average, the state transitions do reduce power
without compromising performance beyond an acceptable
level. It is important to realize that the decision on when to
transition to sleep state, and what state to choose critically
depend on the operating conditions. For instance, if the us-
age pattern is bursty, it is highly convenient to never turn
off a component during an usage burst, and to de-activate
as soon as a period of inactivity is detected.

The task of choosing an optimal policy that minimizes
power consumption under performance constraints (or vice-
versa) based on usage patterns is called policy optimization.
Recent studies [3, 4, 10, 11] have shown that policy opti-
mization relies on the availability of observation data on the
usage patterns of the system components. Policies such as
the greedy one, that ignore observation data, are bound to
be much less effective than policies that are customized on
usage.

Furthermore, personal computers are highly flexible,
general-purpose machines that can be used in a wide variety
of ways. The load of system components changes over time,
depending on which applications are running and what the
user is doing with them. Hence, the most effective power
management policies should be adaptive. Dynamic adap-
tation of a policy can be performed only if we assume the
availability of an observation mechanism that collects data
on usage patterns on-line, during normal system operation.

In the next section we will describe the basic require-
ment and the architecture of a system activity observer, that
has been specifically designed for interaction with a policy
within the operating system of a personal computer. The
data can be just collected for off-line processing or analyzed
and processed on-line.

3 System monitoring

The power management policy requires input information
regarding the usage of each hardware resource. To be more
specific, power management policies [3, 4, 10, 11] need infor-
mation regarding: i) the distribution of inter-arrival times of
request to the resources i) the distribution of service times
for the requests. Such data can be easily extracted from a
stream of time-stamped events E; that can be represented
as a 3-tuple E; = (ti,ri, i), where t; is the time-stamp, r; is

the resource identifier and s; is the resource-dependent iden-
tifier of the type of event. Before describing the architecture
of the observer, we analyze the basic requirements and con-
straints for its implementation. Low perturbation of normal
system activity. This is the primary constraint. Monitoring
should be transparent to the end user and should modify
the usage patterns of hardware resources as little as possi-
ble. Notice that this requirement is subtly different from the
one enforced for performance monitoring. When monitoring
performance, it is important not to perturb the system when
it is actively servicing requests, while periods of inactivity
are of no interest and they can be reduced or changed by the
monitoring tool. In contrast, we are interested in monitoring
both the busy and the idle times.

Flexibility. It should be easy to monitor multiple types
of resources, to select which resources to monitor and when,
and to arbitrarily filter the stream of events. Moreover, the
number and types of observed resources should be dynam-
ically controllable. This feature is particularly useful for
laptop computers where new devices can be installed during
system operation (i.e., plug-and-play capability).

Accuracy. Well-known system utilities give access to
cumulative counts of accesses to system resources. This
functionality is not sufficient to obtain accurate statistics
of inter-arrival times and service times. One important fea-
ture of the observer is the capability of time-stamping the
events with high resolution.

These requirements have been taken into account in
our implementation, with particular emphasis on non-
intrusiveness. Since for power management purposes both
idle and active periods are of interest, the best time for ex-
ecuting monitoring activity is immediately before and after
active periods. In this way, the duration of active periods
is only slightly increased (if the monitoring activities have
short execution time compared to the active periods) at the
expense of a small decrease of the duration of idle periods.

3.1 Observer architecture

The observer is implemented as an extension of the Linux
operating system [7]. The core data structure for storing the
time-stamped events is stored in kernel memory space, that
is linked to run in physical-address space. Hence, storing
events in kernel space prevents the usage of memory pag-
ing, thus avoiding the severe performance penalty possibly
caused by TLB misses.

On the other hand, storing the event list in kernel space
imposes a tight limitation on its maximum size. In our im-
plementation, the list cannot grow larger than 64KB, which
corresponds t0 Lyaz = 4096 events. The event list is imple-
mented as a circular buffer and it is allocated once for all
(for performance reasons). The circular structure protects
against memory violations. If the number of unprocessed
events stored in the list grows larger than the number of
slots, older events are overwritten. Event loss causes a de-
crease in accuracy in monitoring but does not damage nor-
mal system operation.

The size limitation of the event list in kernel memory
is not a concern if events are processed and discarded as
soon as they are registered (on-line monitoring). However,
event loss should be avoided if the observer is collecting long
event traces for off-line processing. The observer supports
off-line monitoring through a simple dumping mechanism
that can be summarized as follows. Whenever the number
of unprocessed events reaches a value Liow < Lmaz, a wake-
up signal is sent to a dedicated process. The process is

void NotifyEvent (event_list, resource_id,

event_type, online_proc)
{
time = GetTimeStamp();

UpdateLast (event_list, time, resource.id,
event_type) ;
if (online_proc) {
ProcessLastEvent (event_list);

else {
if (NEvents(event list) == L)
SendSignal (dump_proc) ;

Figure 2: Procedure that updates the event list

normally inactive, waiting for the wake-up signal, thus it
does not alter normal system activity. Whenever the wake-
up signal is asserted, the process becomes active and can be
scheduled.

We decided not to modify the default scheduling algo-
rithm of the Linux operating system, therefore, we cannot
guarantee that the waiting process will be scheduled as soon
as the signal is asserted. If the list-processing process is
not scheduled right after signal assertion, new events can be
generated before the event list is examined. Lj,, is set to
a smaller value than L,,,; to minimize the probability of
event loss in the interval between the assertion of the wake-
up signal and the scheduling of the process that empties the
list. Clearly, the execution of this process does alter normal
system activity. However, the perturbation is limited by the
fact that the list is processed only when it is almost full.

The high-level pseudo-code of the list-update proce-
dure, NotifyEvent, is shown in Figure 2. The parameters
are the event list (implemented as a circular queue), the
unique resource identifier, the event type and a Boolean flag,
online _proc, that has value true when on-line processing
of the events is performed. Upon entering NotifyEvent,
the current time is recorded by procedure GetTimeStamp
(to be analyzed later) and the new event is stored in the
circular queue. Then, if on-line processing is active, the
newly stored event is processed and “consumed” by func-
tion ProcessLastEvent. If off-line processing is selected,
the number of events in the list is checked against Ljy. If
there are L, events in the list, the wakeup signal is sent to
the process dump_proc. The process becomes active and will
be scheduled. Notice that the signal is issued only when the
number of events in the list is equal to Ljs,. This avoids the
issue of multiple signals if dump_proc is not scheduled right
away.

Function GetTimeStamp exploits a special feature of the
X86 architecture (which, needless to say, is de-facto standard
for personal computers). The function accesses a 64 bit reg-
ister containing the number of clock cycles from the activa-
tion of the CPU. The time resolution of the time-stamp ob-
tained by GetTimeStamp is equal to the clock cycle (e.g., 10ns
for a 100MHz Pentium processor), which is more than suffi-
cient for the typical time granularity of power-management
transitions (microseconds in the fastest case). Counter count
saturation is not an issue because the counter would take
more than 500 years to saturate the count for a processor
with 1GHz clock frequency.

The on-line event processing function ProcessLastEvent
and the process for examining and freeing the event list off-

line can be freely customized by the system designer. In
the next section we describe an example of usage of the
monitor for off-line analysis. In this case, the only function
of dump_proc is to append the time-stamped events at the
end of a file.

3.2 Monitoring explicit resources

Explicit resources are managed by the OS through device
drivers. Our monitoring approach requires a simple modi-
fication of the device drivers of the resources under obser-
vation. The modification is simply the insertion of a call
to NotifyEvent immediately before the driver sends execu-
tion commands to the hardware and immediately after the
driver becomes ready to communicate to the kernel that the
hardware has completed the required service. The insertion
points of the calls to NotifyEvent strongly depend on the
resource class being monitored and on the interpretation
given to service initiation and completion. In particular,
since we are interested in monitoring the actual usage of
resources, we need to distinguish between char devices and
block devices. Char devices are blocking: when the driver
of a char device is serving a request, it cannot accept any
other request. In contrast, requests to block devices are
enqueued and possibly reordered before being served. As
a consequence, char devices can be monitored at a higher
abstraction level (thanks to the direct mapping between a
request and the corresponding service) while block devices
need to be monitored at physical level.

In the serial-port driver, calls to NotifyEvent are located
at the beginning and at the end of the receive_char and
transmit_char routines, that are directly called by the ker-
nel. In the IDE-disk driver, event notification is performed
by the handlers that physically manage data transfers. Be-
fore being translated into a call to the handler, a high-level
read/write command is processed by a hierarchy of rou-
tines implementing the disk-management policy. Monitor-
ing high-level read/write commands wouldn’t provide direct
information about the actual workload of the disk.

In any case, monitoring does not change the flow of ex-
ecution of the device driver, and it has minimal impact on
the execution time, because the execution of NotifyEvent
just requires the update of a few memory locations and the
access to the cycle counter for obtaining the time-stamp.
Notice also that NotifyEvent is called only when necessary
and only for resources that are actively monitored. At boot
time, the observer is initialized by specifying which resources
should be monitored.

3.3 Monitoring the CPU

The CPU and all hardware components required for its op-
eration (chipset, RAM, bus controllers, etc.) are not con-
trolled through device drivers. Fortunately, it is possible to
monitor the CPU and its ancillary components by observ-
ing that OS kernel itself is nothing else than executable code
running on the CPU. Hence, whenever the kernel is running,
the CPU is active.

There is a simple way to detect when the kernel is not
running and no active process needs the CPU. In the Linux
scheduler, a process is defined, called idle process that has
lowest execution priority, thus it is scheduled when neither
the kernel nor the user processes need to execute. Detecting
the scheduling of the idle process is a simple way to monitor
activity and idleness of the CPU.

A call to NotifyEvent is inserted immediately after the
priority computation of the scheduler returns the idle pro-

keyboard

0 100 200 300 0 100 200 300 400
Time (ms) Time (ms)

Figure 3: Statistical analysis of the inter-arrival time. For
each device, three curves are plotted in lin-log scale: the
probability density (solid line), the probability distribution
(bold line) and its complement to 1 (dashed line). Data refer
to software development.

cess as the highest priority process, and immediately before
the exit from the idle process. The CPU idle is the time
spent in the idle process.

The CPU idle state is nothing but a loop of hlt instruc-
tions (i.e., the idle task), periodically interrupted by a timer
interrupt that activates the scheduler to recompute priori-
ties. We remark that priority computation does not require
exiting from the idle state, since the scheduler always ex-
ecutes in the context of the last active process. As long
as the idle task is re-scheduled as the highest priority pro-
cess, no context switch is performed and no CPU activity is
detected.

4 Implementation and results

The monitoring system described in the paper has been im-
plemented as an add-on package (called ipm) for the RedHat-
4.1 distribution of Linux 2.0.29. In the current ipm release,
monitoring support is available for CPU, keyboard, serial
and parallel ports, PS2 mouse, IDE hard disk and CD-ROM.
We tested our package on a HP Omnibook 5500CT with
133MHz Pentium processor and 48MB of RAM. To evalu-
ate the impact of system monitoring on execution time we
used the Linux kernel re-compilation as a CPU and disk
intensive benchmark. Re-compilation was first performed
without monitoring and then repeated while collecting event
traces for CPU only, Hard Disk only, CPU and Hard Disk,
entire system. Each experiment was repeated 10 times and
the average CPU usage was taken as a significant measure
of the actual performance (the maximum deviation being
less than 0.01%). The system was re-booted after each run
to empty the cache. The measured monitoring overheads
were of 0.13% for the CPU, 0.14% for the hard disk, 0.30%
for CPU and disk, and 0.38% for the entire system. Notice
that the overhead of concurrent CPU and disk monitoring is
slightly larger than the sum of the overhead of the separate
monitoring of the two resources. This is because of the larger
number of disk events generated by the dump_proc routine.
On-line system monitoring wouldn’t cause this additional

overhead.

A second set of experiments were performed to show
how real-world data provided by ipm can be used to steer
power management. Full-system monitoring was enabled
and event traces were collected under typical operating con-
ditions corresponding to different workloads: editing (Edit-
ing), file-system browsing (FSBrowsing), software develop-
ment (SoftDev) and graphical interactive games (Games).
The maximum size of a one-hour full-system event stream
was of about 3MB.

Traces were studied off-line to extract significant statis-
tical properties. Four random variables were characterized
for each resource: inter-arrival time (IT), service time (ST),
number of service requests per time slice (SR) and percent-
age busy time per time slice (BT). Probability densities and
distributions of ITs are plotted in Fig. 3 for CPU, key-
board, mouse and hard-disk. Though all data refer to the
same session of system development, the four devices have
completely different statistics. The probability density of
the CPU presents regular peaks at multiples of 10ms, that
is the period of the timer that interrupts the idle task to re-
compute priorities. Since decisions are usually taken upon
priority computation, most of the service requests are pro-
cessed at multiples of 10ms. The time-continuous behavior
of the first 200ms is due to the effect of interrupt signals
that may force the CPU to awake at any time. Notice that
the probability of the CPU staying idle for more that 1s is
almost negligible.

The statistical distribution of keyboard events differs
from that of other devices for two main reasons: i) it doesn’t
start from zero (the minimum IT time depends on the user
typing speed, that is much slower than 1ms) and i) it doesn’t
decay significantly in the first second. In contrast, the time
between most mouse’s events is around 1ms. This is due
to the rate at which events are generated when the mouse
is moved. This rate does not depend on the user. Finally,
the IT of hard disk services is mainly concentrated below
100ms, and only once every 100 requests it is above 0.5s.

In the following we refer to a simple example to demon-
strate how off-line processing of event traces can be used to
find optimal policies for power management. We refer to
an ideal power manageable hard disk with a unique active
state and a unique sleep state. In the sleep state, not only
the electronic components of the drive are turned off, but
the disk is also spun down, thus making power consump-
tion almost zero. On the other hand, transitions between
sleep and active states are slow (mainly because of mechan-
ical inertia) and cause additional power consumption (the
additional current absorbed by the motor to accelerate the
disk). Though in principle the disk can be put in sleep
mode whenever it goes idle, in practice this is a good choice
only when the idle period is long enough to compensate the
additional spin-up power consumption and the overall per-
formance penalty. Once power consumptions and transition
times are known, it is possible to evaluate the minimum
idle time (MIT) that makes the sleep state convenient. We
assume this time to be MIT=100sec.

Since service times (ST) are always negligible if com-
pared with the idle times of interest, IT provides a good
measure of the idle time. From Fig. 3 we read that the
probability of having idle periods longer than MIT is well
below 1%. This percentage, however, doesn’t tell us how
much power we can save by switching the disk to the sleep
state whenever IT is greater than MIT. This is shown in
Fig. 4.a. For each value of MIT, the solid curve reports
the overall time (per hour) spent by the disk in idle periods

1.0

—— HD-HD
—— HD-Mouse
——- HD-KeyBoard
——- HD-CPU

Correlation
o
@

0 100 200
Time (100ms)

0.0

Figure 5: Auto and cross correlation of random variables
SR, representing the number of service requests received by
a resource in a time slice of 100ms.

longer than MIT when the user is doing software develop-
ment (i.e., alternating editing, compilation and execution
tasks). The starting point of the curve (corresponding to
MIT=0) represents the total idle time of the disk, that is
more than 99% of the reference hour. The point correspond-
ing to MIT=100sec. represents the total amount of time in
which we could save power by switching the disk to the sleep
state. Fig. 4.b shows that this figure is strongly dependent
on the operating conditions.

The graphs of Fig. 4 refer to the ideal situation of a
power manager that knows in advance the length of each
idle period and decides consequently whether to switch to
the sleep state or stay active. Unfortunately, inter-arrival
times are random variables. When a resource goes idle we
don’t know when the next service request will be issued.
To actually implement a power manager that takes advan-
tage of idle periods longer than MIT, we need a statistical
criterion to recognize those periods as soon as possible by
predicting their length. Since the only information available
to make a prediction is the history of the system, we study
the correlation among the event of interest (i.e., the time of
the next request) and all previously collected data. Discrete-
time random variables SR and BT (with discretization time
step of 100ms) were used for correlation analysis. Auto and
cross correlations of random variables SR are plotted in Fig.
5 as a function of time. We remark that all correlations are
greater than zero. This means that the activity of any part
of the system usually increases the probability of a request
to be sent to the disk. However, cross correlations are much
lower than the autocorrelation of subsequent disk events. As
a consequence, the history of the disk is the best candidate
to steer the prediction of the arrival time of the next disk
event.

Policy optimization for power management is a complex
task that is far beyond the scope of this paper. Here we
refer to a time-out mechanism that is the simplest imple-
mentation of a power manager based on the history of the
resource to be managed. A time-out counter is re-started
each time the disk goes idle. The disk is switched to the
sleep state if it is still idle when the time-out is reached.
The assumption behind this policy is that there is a good
correlation between the event A="the disk has been idle for
time-out seconds” and the event B="the disk will be idle for
at least MIT more seconds”. The conditional probability of
event B given event A is plotted in Fig. 6 as a function of
the time-out period (assuming MIT = 100s). The time-out

3e+06

2e+06

Overall Idle time (ms)

1e+06

0 TR | . L ‘ ‘ ‘
0 100000 200000 300000 400000 500000 600000
Minimum idle time (ms)

a)

700000

3e+06

@

E

o

E 2e+06

2

k=3

K] [

9] |

>

o |
|

le+06 |- ——- FSBrows | S~ 1
— —- Editing } S~
| -
|
|
|
0 . | .
0 50000 100000 150000 200000
Minimum idle time (ms)

Figure 4: Ideal sleep time (per hour) of the example hard disk as a function of the minimum idle time required to save power
by switching the resource off and on. Data refer to a) software development and b) four different workloads.

1.0 T T T

0.8

Z
] 06
E
2
s
©
2
2 i
5 04
g l 1 | r . |
S A LT S
C e L !]
T 'I SoftDev
0.2 I I —— Games 4
- ——- FSBrowsing
—— - Editing

0.0 -
0 50000

100000 150000

Timeout (ms)

200000

Figure 6: Conditional probability of the disk staying idle for
at least 100 more seconds as a function of the elapsed idle
time.

has to be chosen in order to maximize this probability. In-
terestingly, the conditional probability strongly depends on
the operating Conditions: a time-out of 100s leads to a 80%
of good predictions if the user is developing software, while
it gives almost no information (the conditional probability
being less than 20%) if user is editing a text document.

The results of our analyses can be summarized as follows.
First, under the usage models we experimented, all system
resources are idle for a significant fraction of the opera-
tion time. Thus, power management techniques that min-
imize the power dissipation of idle components show good
promise. Second, the duration of idle periods, although non-
deterministic, can be estimated with good accuracy, given
the availability of tools for collecting a significant amount of
past history. Third, the distribution of usage and idle peri-
ods strongly depends on usage models. In other words, the
workload for all system resources is strongly non-stationary.
Hence, on-line monitoring is key for implementing effective
power-management policies. Such policies should be able
to adapt to non-stationary operating conditions. Finally,
although some cross correlation between usage of different
resource does exist, it is not a dominant factor with respect
to auto correlation. Consequently, the single-resource, adap-
tive policies based on past system history, seem to be a good
choice for the practical implementation of dynamic power
management.

5 Conclusion

In this paper we presented a workload monitoring tool specif-
ically designed for support of aggressive power management
strategies for laptop computers, and more generally for any
power-sensitive system whose resources are managed by an
operating system. Our implementation is based on the Linux
operating system and has been tested on machines based on
the Intel X86 architecture. A low-overhead system activity
monitoring tool is a key component of any OS-based dy-
namic power management architecture, because it provides
the input data required by the power-management policy to
take optimal decision on when and how to switch off idle re-
sources. We performed extensive experimentation and mon-
itoring of system activity with our tool and we presented a
detailed statistical analysis of resource usage. In particular
we addressed the key issue of predicting the duration of idle
periods.

References

[1] W. Nebel and J. Mermet (Eds.), Low power design in deep sub-
micron electronics. Kluwer (1997).

[2] L. Benini and G. De Micheli. Dynamic Power Management:
design techniques and CAD tools. Kluwer (1997).

[3] M. Srivastava, A. Chandrakasan and R. Brodersen, “Predictive
system shutdown and other architectural techniques or energy
efficient programmable computation,” IEEE Transactions on
Very Large Scale Integration Systems vol. 4, no. 1, pp. 42-55,
March 1996.

[4] R. Golding, P. Bosh et al, “Idleness is not sloth,” in Proceedings
of Winter USENIX Technical Conference, pp.201-212 (1995).
Derman, C. and Veinott A. Jr. Constrained Dynamic Program-
ming. Management Science (1970).

[6] L. Kleinrock. Queuing Systems Voll. LLII. Wiley, 1976.

[7] L. Torvalds, “Linux kernel implementation,” Proceedings of
Open Systems. Looking into the Future. AUUG ’94, pp. 9-14,
Sept. 1994.

Microsoft, “OnNow: the evolution of the PC platform,”
http://www.microsoft.com/hwdev/ONNOW.HTM 1997.

Intel, Microsoft and Toshiba, “Advanced Configuration and
Power Interface”, http://www.teleport.com/ acpi/ 1996.

[5

[8

[9

[10] C. Hwang et al., “A predictive system shutdown method for
energy saving of event-driven computation,” in Proceedings of
IEEE International Conference on Computer Aided Design,

pp. 28-32, Nov. 1997.

G. Paleologo, L. Benini, A. Bogliolo and G. De Micheli, “Pol-
icy optimization for dynamic power management” to appear in
Proceedings of Design Automation Conference, June 1998.

(1]

	Main Page
	ISLPED98
	Front Matter
	Table of Contents
	Session Index
	Author Index

