
1.  ABSTRACT
We present our methodology for developing models of 
on-chip SRAM memory organizations. The models were 
created to enable the quick evaluation of energy, area, 
and performance of different memory configurations 
considered during synthesis. The models are defined in 
terms of parameters, such as size and mode of operation, 
which are known at synthesis time. Our methodology 
does not require knowledge of the underlying memory 
circuitry and provides models with average percentage 
errors within 8%. We found that only 10 different memo-
ries from a large span of possible memory sizes are 
needed to obtain reasonably accurate models, with aver-
age errors within 15%. We further use these models to 
evaluate different low power memory organizations and 
have seen energy reductions of up to 88%. In this paper 
we present our modeling methodology, discuss the 
important aspects in developing the models, and show 
results of using the models in evaluating low power mem-
ory organizations.

2.  INTRODUCTION
Power consumption of digital systems has become a critical
design parameter. Extending battery life in portable
applications and reducing cooling requirements in higher
transistor density applications make power reduction a
crucial consideration during digital system design. 

An important class of digital systems include applications,
such as video image processing and speech recognition,
which are extremely memory-intensive. In such systems, a
significant amount of power is consumed during memory
accesses. Thus, utilizing low-power memory organizations
can greatly reduce the overall power consumption of the
system. 

This work targets on-chip memories created by memory
module generators in which there are many possible memory
organizations in terms of size, architecture, technology, etc.
To utilize low power memory configurations during
synthesis, we need models to quickly evaluate memory
energy, area, and performance. These models need to be in
terms of parameters, such as size, organization, and mode of
operation, which are known during synthesis time as
opposed to lower level parameters such as extracted

capacitance and resistance values. 

In the past few years, various different memory models have
been presented. Itoh [6] and Kamble [7] have presented
analytical models of memory power. Ko [8] did a
measurement-based characterization in which the power of a
few different memories were measured. Evans [5] compared
five different approaches for modeling the energy of SRAMs
and used the models to analyze different internal
architectures. Ogawa [12] used circuit reduction techniques
for faster characterization of power and delay of SRAMs.
Chinosi [3] developed a technique for the automatic
characterization of memory power for different modes of
operations for a certain sized memory. Landman [9] used a
simulation and model fitting approach to develop power
models in terms of the number of words and the bit width. 

Our models were developed to predict energy, delay, and
area across the different possible sizes and organizations
produced by memory module generators and for different
modes of memory operations. Our modeling uses a
simulation-based approach which enables the development
of black box models. Unlike analytical models, simulation-
based approaches do not require detailed knowledge of the
underlying circuits, just basic input/output timing
information which can be provided by the memory
generator. The models are in terms of high-level parameters
and can be easily used during synthesis. Our approach is
similar to [9] but is generalized enough to handle more
complex memory organizations and more modes of memory
operation with higher accuracy. 

The focus of this paper is not just on our modeling
methodology, but on defining the parameters and simulations
necessary in building accurate models quickly and easily and
showing how a synthesis tool can take advantage of these
models in creating low power memory configurations. 

3.  EXPERIMENTAL METHODOLOGY
Our experimental methodology is as follows. First,
memories are generated using Cascade’s Epoch memory
module generator [4]. Next, test vectors are automatically
generated and SPICE files are modified to prepare them for
simulations. Then, Avant!’s Star-Sim, fast circuit simulator,
is used to simulate for energy and delay [15]. From the
simulation data, models of memory energy, delay, and area
are developed using linear regression with the S-Plus
statistical package [14]. Finally, the models are validated to
ensure they are statistically sound. 

3.1  Generated Memories
Cascade’s basic asynchronous SRAMs with chip and output
enables were used. To generate a memory in Cascade, the
number of address lines, the number of words, and the bit
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width are specified. Additionally, the number of bits per
column (BPC), which gives you control over the aspect ratio
of the memory, can be specified. The legal BPC values in
Cascade are 1, 2, 4, 8, and 16. Therefore, a unique memory
size is not defined just by the number of words and bit
width. It is defined by the number of rows, number of
columns, and bit width; where: 

(1)

(2)

(3)

(4)

The number of rows can range from 4-256, the number of
columns from 1-256, and the bit width from 1-256. By
varying the number of rows, columns, and bit width there
are 62,992 different possible legal memory sizes. It is
obviously impossible to simulate all possibilities, so a
subset must be chosen. Twenty-five different basic Cascade
SRAMs were generated in .6u technology with a 3.3V
supply. The largest and smallest size memories were
included and the rest were chosen randomly. The subset of
chosen memories was examined to ensure a good variation
in the number of rows, number of columns, bit width,
number of row and column address lines, BPC, and total
number of storage bits in the memory. 

3.2  Memory Simulations
After obtaining the SPICE files from the generated
memories, Star-Sim simulations were run to measure energy
and delay. During these runs data was collected for the
various modes of the memories. Since an entire memory
was simulated at once as opposed to separate simulations
for the different pieces of the memories, creating the test
vectors for the simulations was easy. Knowledge of the
memories’ internal circuitry was not required, only the I/O
timing information supplied by Cascade. These simulations
are necessary because the delay estimates provided by
Cascade are overly conservative and the power estimates do
not account for different memory modes of operation.

3.2.1  Energy Simulations
The average energy per operation was measured. Read and
write energy were treated separately. The energy was also
measured while the chip and output enable lines were
toggling and for different levels of switching activity on the
address lines. 

The hierarchical SPICE netlist was instrumented to
separately measure the energy of the different memory
components. The separate components in the memories are
the address transition detection (ATD) logic, memory cells,
chip enable multiplexors, row and column decoders,
precharge logic, senseamps, and extra buffers. 

With a write operation, there were two additional
parameters to consider. Once the address changes at the start
of a write cycle, the write enable line must remain high for
the address setup time. Next, the write enable line is lowered
during which time the data is written. Finally, the write
enable line is raised for the address hold time before the

address changes to again start the next cycle. 

Due to static power dissipation, the amount of time the write
enable is held low affects the energy. Additionally, the
amount of time the write enable signal remains high before
it is lowered can impact the energy. Since these are
asynchronous memories, address transition detection (ATD)
logic is used to detect a change on the address lines and start
a memory access. If the write enable line remains high
longer than the required address setup time, a memory read
will occur before a write, thus, resulting in additional
energy. 

In synchronous designs there are different ways to generate
the write enable signal from the clock, each of which results
in different address setup and write enable low times.
Therefore, including these parameters in the models of
memory energy is important. 

3.2.2  Delay Simulations
The worst case delay for a memory operation was measured.
The read time (the address changing to the data appearing
on the output), the write bit time (write enable going low to
the data being written to the memory cells), and the write
out time (the write enable going low to the data appearing
on the output) were measured. Cascade specified values for
hold and setup times were used. 

Delays for when the chip enable is activated and with and
without a capacitive load were measured as well. The rise
and fall times of the four physical corners of the memory
were measured and the worst delay for each was taken.

3.3  Developing Memory Models
Three categories of memory models were developed from
the simulations: area, delay, and energy. All the models are
linear equations in terms of parameters known during
synthesis. For area, there are width and height models. For
delay, there are read, write bit, write out, setup, and hold
time models. For energy, there are distinct models for read
and write operations. 

Each energy model is composed of separate models for the
components of the memory (ATD, senseamps, etc.). The
sum of the individual component models forms the total
energy read and write models. Having separate models for
the different components of the energy enables us to
develop more accurate models and gain more insight into
the energy trade-offs of the generated memories. 

Table 1 summarizes the parameters used in all of the
models. The size parameters are used for all of the models.
The others parameters relating to the mode of operation are
used for both delay and energy. CE, OE, and RW are all
Boolean variables which indicate whether or not the
specified action is occurring. 

The models were developed using stepwise linear regression
in the S-Plus statistical package. The initial models were the
specified variables defined in Table 1. The stepwise
regression improves the initial model by iteratively adding
and deleting terms. It can consider multiple interaction

Rows Words BPC⁄=

Columns Bitwidth BPC⋅=

RowAddressLines ceil lg Rows( )( )=

ColumnAddressLines lg BPC( )=



terms. For example, since the number of rows and number
of columns are both variables specified in the model, it can
consider adding the term  to the model. It adds and
deletes terms based upon the AIC criteria [1] which tries to

improve the coefficient of multiple determination, ,
without overfitting the model. It adds terms which
nontrivially contribute to the model and removes useless
terms which do not. 

Table 1: Parameters Used In Models

Using stepwise regression in our modeling methodology
allows us to develop accurate models quickly and easily. It
automatically determines which parameters are important to
the models and finds the interactions between the
independent variables. Without stepwise regression we
would have to specify the form of equation which is difficult
to do with a large number of parameters and would require
detailed knowledge of the underlying memory circuitry to
determine the interaction between the variables. 

3.4  Model Validation
Table 2 shows the statistical data for the developed models.
The second and third columns have the statistics for the
model-building data set which are the coefficient of multiple

determination, , and the residual standard error for each
of the models. The area models had the best fits followed by
the energy and delay models. 

Simulations for 25 additional memories were run to build a
validation data set. The statistics for this set, shown in
columns four and five, include the square of the correlation

between the measured and predicted values, , and the
square root of the mean squared prediction error, .

These values can be compared to the  and the residual
standard error of the model-building data set to measure our
models’ predictive ability. The predictions for the energy
and area models are very accurate. The accuracy drops
slightly for the delay models. 

Table 2: Statistical Data

The last column in the table shows the average absolute
percentage error for all of the simulated memories. This is
calculated by the equation:

(5)

The average percentage error is fairly low but jumps to 13%
for the write energy. The problem occurs because there is
more than a 500x difference in write energy between the
largest and smallest data points. The extremely small
memories have energy values smaller than the standard
error of the equations and therefore, can end up with
percentage errors larger than 100%. To account for this
problem, each data point, i, was given the following weight: 

(6)

(  is the maximum energy for all the data points
and  is the energy for data point, i.) A weighted

stepwise regression was done for the read and write energy.
Rows 8 and 9 show the weighted regression results. This
weighting boosts the importance of the smaller energy data
points and improves the average absolute percentage error.
The improvement was less than 1% for the read energy.
However, the write energy absolute percentage error was cut
in half. 

Rows 10 and 11 show results for simplified models. These
models were developed doing a weighted linear regression
using the equation from [9] as opposed to using stepwise
regression. This equation, shown below, does not account
for different aspect ratios within the memory or for different
modes of operation. 

(7)

The simple read model had fits and standard errors slightly
worse than our model. However, the simple write model was
inaccurate with residual and predicted errors approximately

Abbr. Parameter Models Used In

Rows # of Rows energy, delay, area

Cols # of Columns energy, delay, area

BW Bit Width (width of data word) energy, delay, area

Addr # of Address Lines energy, delay, area

R.Addr # of Row Address Lines energy, delay, area

C.Addr # of Column Address Lines energy, delay, area

Sw # of Addr Lines Switching per access energy

R.Sw # of Row Addr Lines Switching per access energy

C.Sw # of Column Addr Lines Switching per access energy

CE Chip Enable signal toggling (0, 1) energy, delay

OE  Output Enable signal toggling (0,1) energy

Cap Capacitive Load (fF) delay

WTL Time Write Enable Held Low (ns) write energy

RW Extra read before write (0,1) write energy

Rows Cols⋅

R
2

R
2

r
2

MSPR

R
2

Model-Building 
Data Set

Validation Data 
Set

Model R2

Residual 
St. 

Error r2
Avg 

|%err|

Height ( ) .9998 15.81 .9998 14.99 1.5%

Width ( ) .9999 9.59 .9994 16.94 1.8%

Write Bit Time (s) .9755 9.78e-11 .8920 1.99e-10 6.1%

Write Out Time (s) .9762 1.06e-10 .9318 1.69e-10 5.5%

Read Time (s) .9703 1.50e-10 .9059 2.26e-10 3.4%

Read Energy (J) .9962 1.57e-11 .9879 2.31e-11 8.4%

Write Energy (J) .9990 3.40e-11 .9864 4.77e-11 13%

Weighted Read Energy (J) .9953 1.75e-11 .9855 2.68e-11 7.8%

Weighted Write Energy (J) .9975 5.32e-11 .9866 4.60e-11 6.1%

Simple Read Energy .9831 2.79e-11 .9424 4.76e-11 19%

Simple Write Energy .8340 3.87e-10 .6939 5.91e-10 69%

Non-Comp. Read Energy .9959 1.40e-11 .9810 2.68e-11 9.6%

Non-Comp. Write Energy .9963 5.84e-11 .9761 6.13e-11 10%
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an order of magnitude larger. The average percentage error
was considerably larger for both the read and write models. 

The last two rows of the table are the results for models
created doing weighted stepwise regression for the total
energy as opposed to separate componentized models for
each portion of the memory (senseamps, ATD, etc.). The fits
and standard errors were comparable for these models.
However, the average percentage errors were worse.

4.  IMPORTANT FACTORS OF MODELS
Using our methodology, very accurate models of energy,
area, and delay were created. However, running many
memory simulations can be CPU intensive. The simulations
ranged from a few minutes to a few days of CPU time,
depending on the size of the memory. Therefore, to create
accurate models quickly and easily, it is necessary to
determine which factors are most important while
developing the model. 

4.1  Parameters of Models
Table 3 shows the independent parameters used in each of
the read energy models. TypeIII ANOVA (analysis of
variance) tables [11] were examined to see how much each
independent variable reduces the sum of square error in the
model. The variables in the table are listed in order of
importance (from highest to lowest variance). 

The ANOVA tables for all of the components show that the
most important variables to the models are the size
parameters, followed by the address switching parameters,
followed by the chip and output enable toggling. 

Table 3: Components of Read Energy

Columns 3 and 4 in Table 3 show the average percentage
and maximum percentage of read energy consumed in each
of the memory components. This was calculated by using
the models to make predictions on the 62,992 different
Cascade memories. The precharge logic and senseamps
consumed the largest average percentage of energy,
consuming 42% and 35% respectively. The standard
deviations for these averages are quite high. Therefore, the

distribution of the energy and the effects of the different
parameters vary throughout the memory design space. The
models for the average energy (in pJ) consumed during a
read access in the precharge logic and senseamps are shown
below:

(8)

(9)

Both the precharge and senseamp models are dependent
solely on size parameters. The switching and chip and
output enable toggling parameters are important parameters
for the ATD and buffer models which consume much lower
average percentages of energy. However, these components
have higher maximum percentages of energy, 58% and 16%
respectively. The switching parameters are significant in
memory configurations with a large ratio of number of
address lines to total bits of storage. Chip and output enable
toggling parameters are important in memories with a low
number of storage bits where the energy of the buffers is not
overshadowed by the precharge and senseamp energy. 

4.2  Number of Memories in Data-Set
Since the size parameters are the most important to the
models, the question to answer is how many different sized
memories are needed to get accurate models? An
experiment was conducted in which different read energy
models were developed from subsets of the 25 model-
building data set memories. For a certain sized subset, a
weighted stepwise linear regression was run, and the rest of
the data from the 50 simulated memories (model-building
data set plus validation data set) were used as validation
data. 

Table 4 shows the statistical results of the subset models.
There were four different sized subsets: 5, 10, 15, and 20.
The sizes of the validation data sets for each of these were
45, 40, 35, and 30, respectively. For each of the subset sizes,
20 samples were run. Columns 3 and 4 show the average
square of the correlation between the measured and

predicted values, , and the average square root of the
mean squared prediction error, . Column 5 shows the
average of the average absolute percent error. 

Table 4: Models from Subsets of Data

The average predictions of the models based upon 5
memories are very poor. But, the predictions improve
significantly with 10 memories in the data-set. The
predictions drop slightly for the sample size of 15. This was

Component
Variables in Model

(Abbr. are defined in Table 1)

Avg. % of 
Read 

Energy
(  St. 
Dev.) 

Max
%

Precharge Cols, Rows 42 10% 74.4%

Senseamps BW, Rows, Cols, R.Addr 35 15% 55.1%

ATD Sw, Rows, Cols, BW, Addr, R.Addr 12 10% 58.2%

Buffers Cols, OE, CE, Addr, BW, C.Sw 5 2% 16.3%

Row Decoder Cols, Sw, BW, Rows, Addr 4 2% 11.9%

Column 
Decoder

BW, C.Sw, R.Sw, Cols, Rows, 
R.Addr, CE, C.Addr 

0.8 2% 13.8%

Chip Enable 
Muxes

R.Sw, C.Sw, CE, Addr, BW, Cols 0.8 0.8% 7.8%

Memory Cell BW, Sw, Addr, R.Addr, CE, Cols 0.6 0.5% 5.3%

Entire Model Cols, BW, Rows, Sw, R.Addr, CE, 
Addr, OE, R.Sw, C.Sw, C.Addr

------ ---

 ±

""±
""±
""±
""±
""±
""±

""±

""±
Subset 

Size
# of 

Samples

Avg.  r2

( St. 
Dev.)

Avg. 
( St. Dev.)

Avg 
Avg 

|%Err|

5 20 .53 .31 6.60e-10 1.88e-09 310%

10 20 .97 .02 3.22e-11 1.57e-11 15.3%

15 20 .94 .16 4.60e-11 6.47e-11 17.1%

15 19 .98 .01 3.17e-11 9.14e-12 10.1%

20 20 .98 .02 3.14e-11 1.04e-11 10.4%

Pre 1.4 0.28Cols 0.06Rows 0.005Rows Cols   pJ⋅+ + +=

Sense 1.6 0.12BW 0.002Rows 0.003Rows BW 0.05Cols
            0.001Cols BW 0.47RAddr– 0.14RAddr BW   pJ⋅+⋅–

+⋅+ + +=

r
2

MSPR

 ± MSPR
 ±
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""± ""±
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""± ""±



due to the fact that one of the samples was really poor with

an  of .25. If the outlier is removed from the samples, the
predictions improve over the 10 memory sample size. The
predictions of the 20 size samples improves even further.
With just 10 memories in the data-set fairly accurate models
of read energy can be developed. However, some care must
be taken to ensure that the parameters of the memories are
well distributed. In the outlier sample, there were no
memories with a small number of rows and large bit width.
Therefore, the developed models were unable to predict
accurately in this region of the memory space. 

5.  LOW POWER CONFIGURATIONS
Since the models of memory energy, area, and delay are in
terms of high-level parameters, a synthesis system can use
them to evaluate different memory configurations. Tools
such as [13] can make use of such memory models during
scheduling and allocation. The basic modeled memories can
be combined to form low power memory configurations to
be built by a synthesis system.

Some low power memory configurations are shown in
Figure 1. The first configuration is a wide configuration in
which multiple words are read from the memory at once and
selected between by a multiplexor [10]. This configuration
can be thought of like a fast-page mode except the page size
is relatively small. The benefit of this configuration is the
reduced number of accesses to the memory if the words are
used right after each other. The next configuration is a
segmented configuration in which the memory is broken up
into smaller components [2]. Only one component is active
at a time and is selected by a decoder. The benefit of this
configuration is each access is to a smaller less capacitance
memory. There can also be a mix of the two in which there
are segmented wider memories. These configurations can be
explored by a synthesis system considering energy/area/
delay trade-offs. 

To optimize these configurations for a specific application a
synthesis system would also need information about the
memory access pattern for the application. For instance,
when deciding whether or not to apply a wide configuration,
the synthesis tool would need to know how many of the
multiple accessed words would be used right after each
other. The results in the next couple of figures are not for a
specific application but are presented to illustrate potential

energy savings from these configurations for different sized
memories. The assumption is made that each of the
memories is accessed in binary order. 

To evaluate these configurations models of additional
multiplexor and decoder logic are needed. These models
were created using our memory modeling methodology.
However, these were simpler to develop since there are not
many different modes of operation to consider. 

Figure 2 shows the read energy results of applying a wider
configuration to three different sized memories. When
applying a wider configuration, the underlying number of
storage bits of the memory remains constant. The graph
starts with memories with a bit width of eight. Memories
two times as wide internally have bit widths of sixteen and
are reading out two words at once. Memories four times as
wide internally have bit widths of thirty-two and are reading
out four words at once. The assumption is a memory twice
as wide is accessed 1/2 as often and a memory four times as
wide is accessed 1/4 as often. This is a valid assumption
when the memories are accessed in order.

Initially the energy drops as the memories are widened.
However, the energy starts increasing again as the memories
get too wide. This is because the energy from the
multiplexors is significant enough to offset the savings from
the very wide memories. The figure also shows the optimal
widening factor for each of the different sized memories, the
percentage improvement from the highest energy to lowest
energy configurations, and the area and delay penalties for
this energy improvement. Area is not affected much by the
wide configurations, but there is a significant impact to the
delay. The 32K storage bit memory had an 84%
improvement in energy due to widening with a 2% area
penalty and 42% delay penalty. The optimal widening factor
varies throughout the design space. 

Figure 3 shows the read energy results of applying a
segmented configuration to three memories with different
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bit widths. When applying the segmented configuration, the
number and size of the segments vary while the bit width
remains constant. The graphs start with 64K storage bits in
each of the memories. When segmenting by two, each of the
two memories contains 32K storage bits. When segmenting
by four each of the four memories has 16K storage bits. 

The energy continues to drop as they are further segmented.
This improvement comes with a significant area penalty but
does not impact the delay as much. The 16 bit width
memory had an energy improvement of 88% due to
segmenting. 

A synthesis system can use these models as well as the
memory access pattern to determine the optimal widening
and segmenting factors for a specific memory. There are
powerful memory architectural trade-offs in terms of
energy, area, and delay which can be made using these
models.

6.  CONCLUSIONS
We have presented our modeling methodology for memory
energy, area, and delay. Our methodology provides an easy
and accurate way to develop memory models without
detailed knowledge of the underlying circuitry. The models
developed using our technique had average percentage
errors within 8%. Using a weighted stepwise linear
regression technique to determine the form of the models
reduced the standard error over an order of magnitude from
a simplified model approach. We showed that the size
parameters were the most important to consider while
developing the models and that it is only necessary to
simulate 10 different sized memories to obtain models with
average errors within 15%.

Memory architectural decisions are capable of profoundly
moving the power/area/delay characteristics of the design.
Through such decisions we showed reductions of memory
read energy of up to 88%. These complex decisions can be
explored automatically within a synthesis system.
Therefore, accurate and easy to develop memory models in
terms of high-level parameters are necessary to explore a

rich set of energy, area, and delay trade-offs. 
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