
Most work to date on power reduction has focused at the com-
ponent level, not at the system level. In this paper, we propose a
framework for describing the power behavior of system-level
designs. The model consists of a set of resources, an environ-
mental workload specification, and apower management policy,
which serves as the heart of the system model. We map this
model to a simulation-based framework to obtain an estimate
of the system’s power dissipation. Accompanying this, we pro-
pose an algorithm to optimize power management policies.
The optimization algorithm can be used in a tight loop with the
estimation engine to derive new power-management policy
algorithms for a given system-level description. We tested our
approach by applying it to a real-life low-power portable
design, achieving a power estimation accuracy of ~10%, and a
23% reduction in power after policy optimization.

1 Introduction

Power reduction is taking on increasing importance in electrical
designs, in large part because of its contribution to the overall cost
of the system. As clock speeds increase, so does power dissipation
and accompanying thermal heat dissipation problems. For portable
systems, the problems are even more critical. Thermal dissipation
is made more difficult by the confined spaces of a portable device.
Additionally, the portable usage paradigm depends on long battery
life and low weight. Excessive power consumption results in com-
promises to one or both of these parameters.

Our work focuses on power reduction at a very high level of
abstraction—the system level. Specifically, we look at optimizing
system-leveldynamic power management policiesas a way to
reduce power. In dynamic power management we exploit the
knowledge that complex systems are almost never fully utilized.
Because most systems are designed to perform multiple functions,
much of the system’s hardware is not required at a given point in
time. Many systems are designed for peak performance under a
maximal workload, which is the only situation where all hardware
resources are fully utilized. By dynamically shutting down unused
resources during periods of underutilization, idleness can be
exploited to save system power [19, 20].

Any power management policy that we derive must consider
resource transition penalties, system partitioning, and environmen-
tal assumptions. The simplest dynamic power management pol-
icy—shutting off unused resources as soon as they become idle—

is not always the best, for a number of reasons. Shutting off certain
types of resources incurs a performance cost. Many resources,
such as disk drives, take time to transition from a fully operational
state to the lowest power state and vice versa. In the disk drive
example, because of the transition time required to spin a disk
down and back up, if the disk drive in a notebook computer were
turned off as soon as it became idle, the overall system perfor-
mance would be compromised because disk drive usage patterns
are very bursty [1, 8]. In general, an idle resource should be shut
down only if the performance penalty is acceptable and the inac-
tive time will be long enough to amortize the additional power
costs incurred in the transition from active to sleep and back again.

Our work addresses both estimation and optimization of system-
level power management policies. We propose a simulation-based
framework to synthetically describe power managed systems and
estimate their power dissipation. Accompanying this, we propose
algorithms to optimize power management policies. The optimiza-
tion algorithms can be used in a tight loop with the estimation
engine to derive new power-management policy algorithms for a
given system-level partition.

Our approach is general, allowing a large class of systems to be
described. Because the model supports high-level abstract system
descriptions, estimation and optimization can be performed very
early in the design process when design decisions have the biggest
impact on power. The system description can be refined as design
progresses, providing increasingly accurate and detailed informa-
tion on how design choices impact power dissipation.

We tested our approach by applying it to a real-life example, a low-
power portable device designed in our group. The analysis of a
complete case study serves as an important benchmark for our
methodology. The availability of a fully-functional portable system
enabled accurate validation of the prediction accuracy of the esti-
mates, and gave valuable feedback on our approach.

2 Background

Extensive research has been conducted on power estimation and
optimization in the last few years [2, 3, 4]. Some groups have
focused on specific application domains such as wireless commu-
nication devices, portable multimedia equipment, computers, and
instrumentation, and have developed prototypes of low-power
devices using a mix of design techniques applied to various levels
of abstraction, from the circuit level up to the architectural level.
Several efficient and accurate circuit-level and gate-level simula-
tion tools have been developed to estimate power consumption. A
few register-transfer-level (RTL) power estimation engines have
been proposed as well [9, 10, 11, 12, 13]. All power estimation
approaches are limited by the low abstraction level used to repre-
sent the target circuits. Accurate power estimates can be obtained
at great performance cost, late in the design cycle, only after a
detailed design is available. Multi-chip heterogeneous systems are
well beyond the limits of these power estimation tools.

System-level Power Estimation And Optimization
Luca Benini Robin Hodgson Polly Siegel

Hewlett-Packard Laboratories

benini@hpl.hp.com hodgson@hpl.hp.com polly_siegel@hp.com

Industrial designs are large, complex, heterogeneous systems,
often including multiple chips as well as electro-mechanical, opti-
cal, and magnetic components. These systems can be effectively
represented and analyzed only at a high level of abstraction.
Abstraction is required both to manage complexity and to cope
with uncertainty. During the initial design of a complex system,
many details of the implementation are not defined or are subject
to change. Clearly, when raising the abstraction level of the repre-
sentation, some accuracy is lost.

A few approaches to system-level power estimation have been
investigated [5, 6, 7]. Interestingly, these approaches are all based
on a constant additive model. In the constant additive model, a
constant power dissipation value is associated with each compo-
nent in the design. The total power dissipation is computed by sim-
ply summing the power dissipation of all components.

The main limitation of the constant additive approach is that it
leaves a large fraction of the estimation process to the designer. In
many cases workload estimation is not a straightforward task, and
requires deep insight into the system structure and interaction
among components. Our modeling methodology tries to overcome
this limitation by using a more complex high-level system model
where workload computations can be automated by specifying the
interaction among components.

3 Power Modeling

In this section we focus on developing an abstract model of the
system that allows fast estimation of system-level power for use
during the component selection and system partitioning phase of
the design process. After explaining the model, we describe the
estimation “tool” that we developed to implement the model and
results derived from applying the model and tools to a real design.

3.1 System-level power model

By abstracting away all but the power behavior of the system, we
can create a model that satisfies our previously mentioned objec-
tives. The model must include information about the system’s
power behavior, the power behavior of its functional blocks and its
block interactions, along with information about the environment,
which drives the behavior of the system, as seen in Figure 1.

Each resource is described by a simple state machine, containing
only information relevant to its power behavior. At any given point
in time, each resource is in a specific power state, which consumes
a discrete amount of power. To get the total system power usage at
a given point in time just requires summing up the current power
values for all resources within the system. From there, average or
peak power dissipation can easily be determined by looking at the
power usage over time for a given set of environmental conditions.

Because we will be using the model not only to do estimation, but
also to optimize the power behavior of the system, we add an entity
called thepower manager,which translates environmental stimuli
into requests to system resources to change their power states. The
power manager represents an abstract view of the control policies
implemented by the system. In actual practice, the power manager
may represent a distributed thread of operation within a system’s
CPU. Or, it may be implemented in a distributed fashion within the
bodies of the components themselves. But it is very convenient for
both estimation and optimization to abstract away everything but
the power state change information into a single abstract entity like
the power manager.

In the simple model shown in Figure 1, the structural information
consists only of the set of resources instantiated in the design.
Information regarding communication between resources is not
provided. This high-level model has astar structure, where all
communication is to and from the power manager. We will stay
with this simple model, to illustrate its basic elements.

3.1.1 Resource power state machine

Each resource in the system need only contain enough information
to describe its power behavior. In most cases, a resource’s power
behavior can be represented by a simple state machine, itspower
state machine. At any given point in time, a resource will be in one
of its power states, as controlled by inputs from the power man-
ager. In the simplest model, each state in a resource’s power state
machine has a value associated with it representing the power con-
sumption in that state, where the power consumption may be a
designer estimate, a derived value, or a manufacturer’s specifica-
tion in the case where a specific component has been selected.

Figure 2 shows a simple power state machine for a backlit LCD
display. The display has three power states: OFF, DISPLAY, and
BACKLIT. In the DISPLAY state, only the LCD display is on,
consuming 50 mW of power. In the BACKLIT state, an LED back-
light is turned on in addition to the LCD display, causing the
device to consume 150 mW of power. The display consumes no
power when it’s off. The display will remain in a given power state
until it receives a command from the power manager, possibly in
response to environmental conditions. For example, if the display
is in the BACKLIT state and it receives a BacklightOff command,
then its power state machine will transition to the DISPLAY state,
which consumes 50 mW of power.

This basic model must be augmented to overcome limitations in
practical situations. First, the model must be able to express perfor-
mance costs when switching power states. Secondly, there are cer-
tain resource types for which the simple model produces very
complex state machines. We address these issues next.

Power
Manager

Resource

Resource

System

Environment

Requests

Requests

Requests

Resource

Figure 1: Simplest system-level power model

OFF

BACKLIT

DISPLAY

150mW

50mW

0W

BacklightOn

BacklightOn

DisplayOff

DisplayOff DisplayOn

BacklightOff

Figure 2: Sample resource power state machine for a display

3.1.1.1 Power state machines with transition penalties

With certain types of resources there may be transition times asso-
ciated with transitioning from one power state into the next. For
example, moving a CPU component from the SLEEP state to the
IDLE state may incur both a time and power penalty if it requires a
crystal clock oscillator to start up and stabilize. Likewise, shutting
off a disk drive may save significant system power, but major time
and power penalties are incurred when the drive is restarted. The
simplest way to model the performance price paid for power tran-
sitions is through specification of transition delays.

Figure 3 shows the power state machine for a disk drive [15]. Sev-
eral of the state transitions are annotated with transition penalties,
because of the time delays incurred in transitioning from one state
to another. Notice that in going from STNDBY to IDLE, a perfor-
mance penalty of 10 seconds is incurred, representing the amount
of time it takes to spin up the disk. Similarly, a performance pen-
alty is incurred when shutting the disk off. These penalties must be
taken into account when setting the power management policy.

3.1.1.2 Modeling utilization-dependent resources

The power used by certain types of resources, such as memories, is
highly dependent upon the level of activity. To accurately model
the power of a memory with a simple power state machine, would
require a very high level of detail to be specified in either the work-
load or power manager. In real operation, the memory will change
state frequently. Specifying the exact set of read and write accesses
would be impossible at this early stage of design, because to spec-
ify the memory traffic in detail would require that the design be
refined and the firmware written. Even if the requisite level of
detail was available, the simulation of a model which accurately
specified memory accesses would be too slow to use during opti-
mization.

Each power state of a utilization-dependent resource power state
machine has a corresponding activity level. When the power man-
ager sends a command to a resource to change states, it also speci-
fies an activity level. The power used in a given state is computed
by the functionPs=activity_level * peak_powers, where the peak
power is taken either from measurements or from a component
data sheet. The power manager can change the activity level of a
resource during operation, without changing the resource’s power
state. The new power figure is then computed.

This type of specification is typical for memory components,
because the interactions between a CPU and memory components
in a system can be specified in terms of their activity levels. When
the CPU is active, the memory components are also active to some
degree. The power manager can communicate with the memory
components, describing the level of activity that is appropriate for
the level of activity of the CPU, to arrive at a good approximation
of the power consumption.

As an example of this, Figure 4 illustrates the power state machine
for an SRAM [17]. When communicating with the SRAM, the
power manager specifies both the state change and the activity
level of the SRAM. So, when the SRAM is in state RW, if its activ-
ity level at a given point in time is 60%, then the power is 150mW.

3.1.2 Power Manager

The power manager serves as the heart of the system model, trans-
lating requests from the external environment and internal
resources into resource power state change requests. The power
manager is an abstract entity that may or may not correspond to a
component in the real system. In the real system, the power man-
ager might be implemented by a software thread within the sys-
tem’s CPU. In other cases, the power manager may be
implemented by a separate ASIC.

The power management policy implemented by the power man-
ager is the algorithm that decides which resource to send a com-
mand to and when to issue a command to a component. A policy
can be as simple as keeping everything on all the time, or turning
off a resource as soon as it becomes idle. However, more realistic
and efficient policies take into account the trade-off between power
and performance by adapting to actual workloads.

Notice that in our model all detailed functional information is
abstracted away. No notion of what a component must do is
expressed in the model, nor are the components’ detailed data
communication protocols. Details about how the power manager is
implemented are also not expressed in the model. The only func-
tionality actually expressed by the model is how the system reacts
to incoming requests and with what power consumption. In other
words, only the minimum amount of functionality necessary to
understand the power behavior is included in the model.

3.1.3 Environment

The final piece of the system power model is the environment,
which is represented by a system workload. The environment plays
a key part in any accurate representation of a real system’s behav-
ior. The environment model consists of a series of external requests
over time. Because the systems being modeled are reactive, typical
requests include button pushes and external communication
events. These requests must take place over a representative time
period for the overall model to have validity. For portable systems,
enough time should be modeled to give an accurate picture of the
system’s battery life.

Because the environmental assumptions play such an important
part in making proper design decisions, a lot of thought should go
into putting together this part of the model. Variants in environ-
mental conditions can be used to test the system’s sensitivity to
certain assumptions, which helps in producing a robust design.

Figure 3: Disk power state machine w/transition penalties

ACTIVE

R/W

IDLESPINUPSLEEPOFF STNDBY

.5W .7W 13W 4.5W

5.9W

5.7W

IDLE,

STNDBY, 6 sec

STNDBY, 6 sec

10sec

SPIN_UP

READ_WRITE

READ_WRITE

IDLE

ACTIVE

SLEEP
ACTIVE

OFF

SLEEP STNDBY

OFF

RW

IDLE

P=f(250 mW,activity)

P=f(5µW,activity)

ReadWrite

Off

Idle

Idle

ReadWrite

Off

Figure 4: SRAM power state machine with activity levels

Consider a system that processes LAN packets. For that system,
the environment is the LAN connection. The environment gener-
ates a workload, which is the stream of incoming packets. The
availability of realistic workload models is a requirement for
obtaining accurate estimates of the power consumed by the system
and for optimizing the power management policy. For this system,
the workload can be modeled by collecting actual traces of packet
arrival times on a real LAN, and by using these traces to drive the
model. Alternatively, a stochastic model can be used to produce a
stream with given characteristics (such as expected inter-arrival
times).

3.2 System-level power estimation

The power model described in the previous subsection maps nicely
into an event-driven simulation paradigm. We can implement this
model using an existing hardware description language, such as
VHDL or Verilog, and use an existing event-driven behavioral sim-
ulator to run the model and evaluate the system power under a
given set of environmental conditions. One advantage of using a
standard HDL and commercial simulator to implement the power
model is that the power and functional models for a resource can
be developed concurrently, and power estimates can be refined as
the design is refined.

There are practical issues that arise when mapping the model to a
behavioral simulation. Most practical systems have CPUs driven
by firmware. Software running on a CPU can be modeled with a
state machine as well, with the only caveat being that interrupts
must be modeled. Details of the methodology can be found in [18].

Realistic estimates of battery life depend not only on the average
power draw from the battery, but also on the discharge rate over
time [14]. Our model can account for these effects because it is
event-driven and can provide the battery model with current draw
over the workload’s time period. The model can give feedback to
the designer on optimizing the current draw of the design to obtain
the longest battery life from a given battery chemistry.

3.3 A Case Study: PaperClip

We applied our modeling methodology to a real design to validate
its accuracy, performance and usability. PaperClip is a hand-held
battery-powered electronic clipboard that was developed at HP
Labs for electronically entering handwritten information using an
inking pen on ordinary paper. The PaperClip user attaches a pad of
forms or note paper to the clipboard and enters data on the paper
using the attached inking pen. Inside the clipboard is a digitizer
which captures the ink electronically while the user is writing. The
electronic ink is stored in the clipboard for later transmission to a
PC for off-line processing. Its basic system operation can be
described as an interconnection of eight basic operational states, as
seen in Figure 5.

PaperClip was designed to go into a low-power sleep mode
(DEEP-SLEEP) when idle. Touching the stylus to the front of the
device (the platen) and beginning to write wakes up the processor
(transitioning to the DIGITIZE state) and begins writing ink data
into a FLASH ROM. When the stylus is lifted from the platen,
PaperClip transitions into the DIGITIZE GAP state and waits for a
predetermined period of time until either digitizing resumes or the
time-out expires. Once the time-out expires, the system transitions
back into QUIESCENT, and then into DEEP SLEEP after another
predetermined time period.

Because the lightly-shaded states in the diagram were rarely used
in actual system operation, we ignored them during implementa-
tion of the power model. The INITIALIZE state was ignored since
it is only executed once during an entire simulation (on power up).
The data transfer states were ignored since they represent a small
fraction of actual system usage. The resulting model was con-
structed using the five remaining states.

3.3.1 System-level resources

In mapping the real PaperClip hardware into a simulation model,
we abstracted away features of the hardware which were uninter-
esting from a power point of view, such as operations that would
only be executed once during the time period of interest. For each
component, a VHDL module was created. All miscellaneous logic
and pull-up and pull-down resistors were combined into a single
pseudo-component with an aggregated power figure which was
provided by the designer.

For most PaperClip components, the behavioral model consisted
solely of its power state machine description. Only the CPU model
contained additional information about functionality. The func-
tional process of the CPU describes the modes of operation of the
PaperClip, and controls the operation of all other components, as
well as the interaction with the external workload. In other words,
the functional model of the CPU describes the software running on
it and how the software directs the system activity.

3.3.2 Experimental Results

Overall system power was estimated by simulating the VHDL
model under a set of traces extracted from actual usage sessions. A
time-dependent power waveform was obtained. The simulation
results were compared against measurements from the PaperClip
hardware to evaluate the accuracy of the model.

To validate the model against the real hardware, a PaperClip was
instrumented, and current was measured for each component in
every power state. Because the power states were already defined
by the model, the first step was to determine an operational
sequence that would put the real hardware into each power state so
a measurement could be made.

Because the system spends most of its time in one of four power
states, we only measured power during those states. They were:

 • DEEP SLEEP: Everything is OFF.
 • QUIESCENT: Everything is OFF except for the small

informational LCD display.
 • DIGITIZE : This state represents the typical digitizing

conditions when most ink is good, mimicking actual usage.

QUIESCENT

DEEP-SLEEP
(LCD OFF)

USER-IO

DIGITIZE

DIGITIZE GAP

XFER-IR

XFER-RS232
INITIALIZE

Insert
Batteries

Pen-Down

Pen-Up

Button-Press

IR Transfer Request

IR Complete

RS232 Transfer Request

RS232 Complete

Pen Down

Button
Press

Pen Down

Pen Down

Button-Press

Delay-1

Delay-2

Delay-1

Figure 5: Operation states of PaperClip

a. Designer did not estimate

 • DIGITIZE GAP : This state represents the 10 second time
period after the stylus is lifted from the platen where Paper-
Clip stays awake awaiting the next digitized point. If no
further activity is detected with the 10 second period, the
PaperClip moves to QUIESCENT. DIGITIZE GAP exists
in the actual hardware to avoid losing points when the pen
is picked up to dot an ‘i’ or cross a ‘t’, because the proces-
sor loses a few points at the beginning of an initial stroke
due to processor latency.

Given these definitions for the power states, the PaperClip under
test was manually put into the appropriate state and measurements
were taken for each state as recorded in Table 1. Because power
consumed in DEEP SLEEP differs from power consumed in QUI-
ESCENT by only the LCD power usage, we omitted that state
from the table. In the table, the +5 Converter Output row represents
the sum of the power from all +5V components, and the power
from the system’s +12 volt converter. The stated efficiency of the
+12V converter was 80% and was taken from the component’s
data sheet. The differences between the power consumed by the
digitizer, which is the only active +12V component, and the power
absorbed at the input to the +12V converter represents the loss due
to inefficiency of the converter. Converter losses represented a sig-
nificant source of power consumption in the design.

The power consumption numbers used for each component were
initially taken from the components’ data sheets. However, after
initial measurements we found that the component datasheets were
often inaccurate. As a result, we measured individual component
power numbers and modified our simulation models to reflect the
actual power consumption figures.

The power models of the memories are workload dependent. Initial
measurements revealed that our memory workloads were inaccu-
rate, mainly because we did not have detailed information about
the firmware. We modified the model to reflect the accurate work-
loads taken from measured data. In a memory-intensive design,
careful attention should be paid to estimating memory workloads,
as they can be a big source of inaccuracy.

After back-annotating measured component numbers into the indi-
vidual component models, the model gave an error of approxi-
mately 10% for all significant states. This demonstrates that the
model is expressive enough to accurately model the power con-
sumption of a design at a high level of abstraction. The residual
error is due to the model’s abstraction level, as shown in the
“other” line in the table. This represents the power consumed by

the discrete components in the system, such as diodes and pull-up
resistors, which were not accounted for in our simulation model.

One benefit of modeling a system at this level accrues from being
able to compare the model against the actual hardware. This can
help a designer ferret out hardware implementation defects, when
power measurements don’t match the original simulation numbers.

Our power estimation approach has several advantages over a sim-
ple spreadsheet. First, the model can be used to demonstrate and
evaluate workload sensitivity (i.e., sensitivity to different usage
models). Second, the model can be used to perform a sensitivity
analysis on specific components.

Third, our modeling framework can be used to explore alternative
policies in a trial-and-error fashion. The system designer specifies
an algorithm and a performance metric, encoding the power man-
agement algorithm in the body of the power manager. The event
driven simulation measures both power and performance. The dis-
tinguishing feature of this approach is that it provides information
on the effectiveness of a power management policy very early in
the design process. If the results of the simulation are not satisfac-
tory, the designer can either decide to change the policy or to
change the design itself to make it more power manageable.

Finally, the model’s accuracy increases as more functional details
are specified in the design. The power model automatically keeps
in sync with the functional model, even as the functional model
becomes more complicated, because the power states and commu-
nication with the functional model don’t change as the design gets
refined. Thus, the power modeling process can be carried through
the entire design process, with little extra work from the designer.

4 Power Management Policy Optimization

In this section we deal with the problem of optimizing the power
management policy of a given system. We assume that component
selection is fixed; hence, our task becomes to optimize power by
turning off unused components and executing functional tasks with
the minimum acceptable performance.

Our approach relies on two fundamental assumptions. First, the
target system’s workload is dynamic. Hence, periods of high utili-
zation and tightly constrained performance are mixed with periods
of low or no utilization and loose performance constraints. Second,
the system components are power-manageable, and can operate in
more than one power state, trading off power dissipation, perfor-
mance and reactivity. The mode of operation of a power manage-

QUIESCENT (mW) DIGITIZE (mW) DIGITIZE GAP (mW)

estimated simulated measured estimated simulated measured estimateda simulated measured

LCD 8.5 5 5 8.5 5 5 — 5 5

CPU 0 5 4 75 61 58 — 35 31

Xilinx FPGA 82 2 3 82 16.5 17 — 11 10

SRAM 0 0 0 5 6.5 6 — 0 0

FLASH 0 0 0 2.7 40 40 — 0 0

Other 7.8 8.2 6 7.8 8.2 32 — 8.8 16

Digitizer 0 0 0 30 18 15.5 — 18 1.7

+12V converter in 0 0 0 35 21 18 — 21 2

+5 converter out 98.3 20.2 18.0 216 158.2 176 — 80.8 64

TABLE 1. PaperClip power measurements

able component can be controlled by externally-issued commands
from the power manager.

Because of space limitations, we only outline the approach used to
optimize the power management policy for PaperClip. Refer to
[18] for more details on the policy optimization algorithm.

PaperClip was designed for low-power operation, because battery
life was one of the most important performance parameters. Most
of the important hardware components are power-manageable and
provide at least one low-power shutdown state.

PaperClip’s power management policy can be described as fol-
lows: “If the system has been idle for Td, then transition into the
quiescent state (DIGITIZE GAP). If the system has been idle for
Ts, then transition to the sleep state.” Although the transition from
the “sleep” state to one of the “digitize” states is only a few milli-
seconds, even a short delay can cause the loss of the first few
points of a new pen stroke, imposing a performance constraint.
This simple algorithm defines a class of parameterized policies.
The space of all policies of this class is defined by varying the val-
ues of the two tuning parametersTd andTs.

To optimize PaperClip’s power-management policy, we applied a
simple, greedy optimization algorithm to find values ofTd andTs
that minimize power while satisfying performance constraints. The
initial values were set toTd = 10 seconds andTs = 1 minute, the
values that were used in the real design. The algorithm incremen-
tally modifies the values, runs the simulation to compute perfor-
mance and power metrics, and chooses the direction of change in
parameters values for which maximum power improvement was
obtained without violating performance constraints. The perfor-
mance degradation caused by power management is measured by
how many points within a pen stroke are lost due to the delay
incurred by transitioning the PaperClip from one of its lower
power inactive states to the fully active digitize state.

More formally, we can defined the performance as

where is the time spent in the digitize state for strokei and
 is the duration of the entire stroke. If the PaperClip is on

when the stroke begins, the ratio between the two times is 1. Thus
is upper-bounded by 1 and lower bounded by 0. This perfor-

mance metric measures how many points are lost for each stroke.

Note that the value of is strongly influenced by the power man-
agement policy, which decides when to turn off the PaperClip. If
the policy never turns off the system, the performance metric will
be 1. In contrast, an eager power-management policy (i.e., go into
the deepest sleep state as soon as the system becomes idle) would
most likely lead to values of smaller than one. Another inter-
esting point is that the impact of a policy on the cost metric is also
strongly dependent on the workload. If, for example, the writing
consists of many short strokes with short pauses in between, the
metric becomes much more sensitive to the value ofTd.

We applied this simple optimization algorithm to the power man-
agement policy for several performance constraints and with the
workload sample used during estimation. We ran our algorithm on
the PaperClip design using a performance constraint of = 0.9,
with an initial solution ofTd = 10 sec,Ts = 60 sec, as implemented
in the actual PaperClip. The optimization took less than 5 minutes
(80 evaluations) to run, and yielded a solution that satisfied the per-
formance constraint while reducing power by 23%.

5 Conclusions

We have proposed a methodology and algorithms for system-level
power estimation and power management policy optimization.
Rather than building a new tool, we showed how the model can be
implemented in a behavioral simulation language, such as VHDL,
and how power estimation can be done using existing behavioral
simulation engines. We validated our modeling approach by apply-
ing it to an existing design and comparing it to power actually
measured, yielding results that were within ~10% of the power
measurements. These results were more accurate than original
designer estimates with a small penalty paid in added complexity.

We applied a greedy optimization algorithm to the design’s power
management policy to validate the modeling and estimation
approach as a basis for optimization. The algorithm quickly pro-
duced a policy which reduced power by 23%. Long term, the
promise lies in marrying this model and accompanying tools with a
system synthesis or automatic design-space exploration tool, to do
design-space exploration and component selection in the face of
performance, costand power constraints.

6 References

[1] R. Golding, P. Bosh et al, “Idleness is not sloth,”Proceedings of Winter
USENIX Technical Conference,pp. 201-212, Jan. 1995.
[2] W. Nebel and J. Mermet,Low power design in deep submicron elec-
tronics,Kluwer 1997.
[3] A. Chandrakasan and R. Brodersen,Low power digital CMOS design,
Kluwer 1995.
[4] J. Rabaey, M. Pedram,Low power design methodologies, Kluwer 1995.
[5] D. Lidsky and J. Rabaey, “Early power exploration - A World Wide
Web application,”DAC, 22-37, June 1996.
[6] D. Liu and C. Svensson, “Power consumption estimation in CMOS
VLSI chips,”JSSC, vol. 29, no. 6, 663-670, June 1994.
[7] R. San Martin and J. Knight, “Power-Profiler: optimizing ASICs power
consumption at the behavioral level,”Proceedings of the Design Automa-
tion Conference, 42-47, June 1995.
[8] L. Benini and G. De Micheli,Dynamic power management: design
techniques and CAD tools, Kluwer 1997.
[9] S. Gupta and F. Najm, “Power macromodeling for high level power
estimation,”DAC, 365-370, June 1997.
[10] C-T. Hsieh, C-S. Ding et al, “Statistical sampling and regression esti-
mation in power macromodeling,”ICCAD, 583-588, 1996.
[11] P. Landman and J. Rabaey, “Architectural power analysis, the Dual Bit
Type method,”TVLSI, vol. 3, no. 2, 173-187, 1995.
[12] A. Raghunathan, S. Dey and N. K. Jha, “Glitch analysis and reduction
in register transfer level power optimization,”DAC, 331-336, June 1996.
[13] L. Benini, A. Bogliolo, M. Favalli and G. De Micheli, “Regression
models for behavioral power estimation,”PATMOS, 179-187, Sept. 1996.
[14] T.L. Martin and D.P. Siewiorek, “A power metric for mobile systems,”
ISLPED, 37-42, Aug. 1996.
[15] Maxtor CrystalMax Manual, Part #1354C, 1/21/97.
[16] Intel Flash Memory Data Manual, Order Number 290151-005, 11/95.
[17] Sony datasheet: CXK58257AP/ASP/AM-xxL,LL SRAM, 1/93.
[18] L. Benini, R. Hodgson, and P. Siegel, “System-level power estimation
and optimization,” HP Labs Technical Report, HPL-98-30, 1998.
[19] M. Srivastava, A. Chandrakasa, and R. Broderson, “Predictive system
shutdown and other architectural techniques for energy efficient program-
mable computation,”TVLSI,” vol. 4, no. 1, 42-55, March 1996.
[20] C.-H. Hwang and A. Wu, “A predictive system shutdown method for
energy saving of event-driven computation,”Proceedings of the Interna-
tional Conference on Computer-Aided Design,28-32, 1997.

F
1

Nstrokes

Tactive
i

Tstroke
i

i 1=

Nstrokes

∑=

Tactive
i

Tstroke

F

F

F

F

	Main Page
	ISLPED98
	Front Matter
	Table of Contents
	Session Index
	Author Index

