
A Low Power Video Processor
Uzi Zangi

Zoran Corporation
Advanced Technology Center, Haifa 31024, Israel

Tel +972-4-854-5759
uzi@zoran.com

Ran Ginosar
VLSI Systems Research Center

Technion—Israel Institute of Technology
Haifa 32000, Israel

ran@ee.technion.ac.il

1. Abstract
Multiple power saving methods were applied to a
video processor for color digital video and still
cameras. Architectural level methods failed to save
power: asynchronous design, dynamic voltage
scaling, bus switching minimization, pipeline stage
merging, reduction of switching times and clock
gating. However changing the algorithm to work
on pixel differences yielded 3-15% power
reduction in typical cases.

1. Introduction
Common designers of ASIC systems for low power
applications, such as battery operated consumer products,
are typically constrained to employ an existing cell library
and an existing fabrication process. Thus, many proposed
power reduction techniques that apply to the basic circuit or
the device levels are inapplicable. On the other side of the
spectrum, the designer is often constrained by system level
specifications that cannot be changed, thus also prohibiting
low power redesign at that level. What remains is for the
designer to use best judgement at the architectural levels
(RTL and behavioral), and at the algorithmic level.

We have investigated the efficacy of such commonly
proposed methods in the case of a video processor for still
and video portable cameras. The processor receives the
digitized signal from the color image sensor (CCD or
CMOS) and converts it to standard digital video, available
for display, compression, storage and transmission [1]-[5].
We have found that while most common architectural level
methods did not save any power, an algorithmic change
yielded 3-15% reduction in power. The algorithmic
approach exploited the same features that make video
amenable to compression.

The architecture of the baseline video processor is
described at an algorithmic level in Sect. 2. Some common
power saving methods were rejected at an early stage, as

explained in Sect. 3. Other methods, discussed in Sect. 4,
were tried but proven useless in this application, as shown
in Sect. 5. The winning method is described in Sect. 6, and
its simulation is discussed in Sect. 7. A more detailed report
of this research is provided in [11].

2. The Color Camera Video Processor
A digital camera video processor receives digitized outputs
of an image sensor having a complementary color mosaic
filter, and generates a standard video signal, typically in the
YCRCB color space [1]-[5]. The processor comprises four
datapath units and a controller (Fig. 1). The Input Unit
averages all black pixels and subtracts that offset from each
image pixel. Two delay lines generate a simultaneous
neighborhood of three pixels one above the other. The
Luminance Unit reads in the three pixels simultaneously. It
first generates luminance levels ‘y’ by adding two
successive pixels. Then, a spatial low pass filter is
implemented by adding up all nine or eight pixels of the
neighborhood. The result is used to derive a high pass filter
and for edge-enhancing y. This and all other units also
contain registers for pipeline balancing and logic for range
limiting, rounding, scaling, and handling boundary
conditions around the perimeter of the image.

Fig. 1: Block diagram of the video processor

The Chrominance Unit receives the same inputs and
generates color difference signals dR, dB. The Output Unit
converts ydRdB to rgb, applies white balance and gamma
correction, converts the result to YCRCB, and performs
“chroma suppression”. Full details are given in [11].

3. Power Saving Methods That Were Rejected
Two power reduction methods were investigated which we
decided to reject:

Asynchronous Design: Three factors are typically
expected to reduce power: The clock network is eliminated,
each module receives inputs only when it needs to
compute, and dynamic voltage scaling may be employed.
This method was shown to save up to 80% of total power
during periods of low activity, when the processor may be
slowed down [6],[7]. We employed ‘bundled data’
methodology with delay lines [8] and full handshake
interconnect [9], but found that the extra power required by
the delay lines and the handshake circuits far exceeded the
power saved by the elimination of the clock. This was due

INPUT
Y
CR

CB

SENSOR
COLOR

MOSAIC
INPUTS

LUMINANCE

CHROMINANCE

OUTPUT

to the very low frequency of the clock (13.5MHz, the video
input/output rate).

Bus Switching Reduction: This is possible by selecting
between sending a value or its complement [10]. Hamming
distance logic on the sender side determines which of the
value or its complement incurs less switching, compared to
the previous value that is dynamically stored on the bus.
Our analysis shows that, for the average conditions at this
video processor, the bus load must exceed 1pF before this
method shows any benefit [11]. Thus, it is inapplicable to
this small processor.

4. Power Saving Methods That Were Tried
But Did Not Work
Three standard power reduction methods were attempted,
but turned out to provide no savings:

Pipeline Stage Merging: Thanks to low clock frequency,
more logic could be integrated in each stage, in order to
save power by reducing the number of registers. Successive
stages were merged wherever possible, removing 100 bits
out of 521 registers (19% reduction). It resulted in
reduction of capacitance and load, but also lead to spurious
transitions due to hazards in the longer reconverging
combinational paths. As shown below, it yielded a negative
net effect on power.

Clock Gating: This method was applied to the circuit after
pipeline stage merging, but fell short of saving any power
(as discussed below).

Switching Time Acceleration: Faster switching time of a
gate shortens the duration of the short circuit current ISC of
other gates driven by it. This speedup can be achieved by
increasing the driver, but this in turn consumes more
dynamic power at the driver. This tradeoff is not always
positive, and should be examined in each case. Having used
the Synopsys RTL synthesizer to generate our circuits, we
specified to the synthesizer the maximum allowed
switching delay as either 1, 2, or 3ns to examine this effect.
The result, detailed in [11], shows no power saving.

5. Simulation Results (I)
The methodology is schematically shown in Fig. 2. The
algorithm was implemented in C++, to verify functional
correctness and accuracy of the various Verilog RTL
models, executing on a diverse set of images. The RTL was
synthesized with the Synopsys tool, using a 0.35µm
Compass library. The netlist was placed and routed on
Cadence Opus, and the extracted physical netlist, including
interconnect parasitics, was simulated (with the same image
input data) on Epic PowerMill to obtain current (and
power) estimates.

Three different designs are examined in Tab. 1: A baseline
A (as described in Sect. 2 above), a circuit B after merging
pipeline stages, and a circuit C with both merged stages and
clock gating.

C++
Simulator

Algorithm Image

Image

Compare

Verilog
Simulator

RTL

Synopsys Netlist P&R
Cadence Opus

Spice
Netlist

Epic
Powermill

power

Image

0.35 Lib
Compass

Fig. 2: Design and simulation methodology

As can be seen in Tab. 1, merging pipeline stages reduced
the registers by 19% from 512 to 412, and register current
indeed declined by 20%. The current consumed by the
combinational logic, on the other hand, was 20% higher in
the ‘improved’ circuit relative to the baseline. This effect is
caused by spurious transitions in the longer pipeline stages,
dissipating more dynamic and short circuit power. Hazard-
free logic may be required to overcome this problem.

With clock gating, register current has been slightly
reduced thanks to clock gating at idle times, but the logic
current increased more than the savings. Since register
activity in the video processor is very high (~90%), the
savings achieved by clock gating is very low, and it does
not justify the overhead. This method is probably efficient
for chips with higher clock frequency and lower register
activity.

All these techniques involve a tradeoff that must be
carefully evaluated, and none has been effective in our
case. The DSP nature of the processor, where each cycle
the data flow through all parts of the processor, precludes
clock gating and pipeline merging.

Circuit A B C

Num. Gates 13163 12501 13182

Num. Registers 521 421 421

Logic current (mA) 6.8 8.25 8.76

Registers current 3.8 3.03 3.0

Total current 10.7 11.3 11.8

Tab. 1: Merging pipeline stages and clock gating did
not save power in the video processor.

6. The Winner: Algorithmic Transformation
We constructed a different video-processing algorithm that
yielded almost the same result at a lower switching activity.
We have taken advantage of the facts that video pixels are
often spatially correlated, and that most of the processing
algorithm is linear.

Thus, we resorted to computing the difference of every two
successive pixels, and converting the linear section of the
algorithm to work on those differences. The differences are
mostly zero or 1-2 bit numbers, and the logic exploits it.

This observation is obviously false near edges in the image.
Due to rounding errors, the difference algorithm performs
poorly after any sharp image gradients. We have retained
the original circuitry and have employed it each time an
edge has been encountered. Once the gradient has subsided
and relatively stationary pixel levels have been re-
established, the difference algorithm is turned back on and
the original algorithm is shut off.

The new combined original/difference algorithm has been
designed to create output that deviates by no more than a
single digital value from the original (a ‘single lsb’ error),
and simulations have verified this on all our test images.

7. Simulation Results (II)
Five images were simulated on the new circuit which
yielded different portions of pixel differences (Tab. 2).
Images A-C exhibit typical edge contents, and result in less
than 50% pixels which could be processed as differences,
and in up to 15% power saving. Image D has little edges,
and flat image E contains but one value. Both exhibit very
high ratio of pixel differences. However, they require less
power in the baseline processor, so that there is no saving
in both cases. Actually, there is some loss, due to the
additional overhead of the more complex architecture.
Ignoring these extreme cases, the new architecture is useful
for power saving on more typical images.

Power
Saving

[%]

Reduced
Current
[mA]

Pixel
Differences

[%]

Baseline
Current
[mA]

Image

15% 6.3 5 7.4 A

8% 5.4 9 5.9 B

7% 5.3 37 5.7 C

-3% 4.3 66 4.2 D

-12% 0.9 98 0.8 E

Tab. 2: Power savings with the pixel difference
algorithm

8. Conclusions
We have found that for a small (13,000 gates), low
frequency (13.5MHz), video DSP ASIC, a number of
commonly advocated power saving methods at the logic
and architectural levels were inapplicable. Algorithmic
change, on the other hand, yielded a 3-15% power
reduction. The study was based on PowerMill simulation of
actual image data of a 0.35µm standard cell design,
compiled with Synopsys from an RTL description and

physically laid using Cadence Opus P&R tools. The new
algorithm exploits inter-pixel correlation and operates on
pixel differences rather than on the original, resulting in
lower power small-number arithmetics.

Acknowledgement
This research has been funded in part by Intel Corporation.

References
[1] L.J. D'Luna and K.A. Parulski, “A systems approach to

custom VLSI for a digital color imaging system,”
IEEE JSSC, 26(5), pp. 727-737, May 1991.

[2] H. Ohtsubo et al., “A 0.8 µm CMOS digital signal
processor for a video camera,” IEEE Trans. Consumer
Electr., 39(3), pp. 407-412, Aug. 1993.

[3] J.C, Wang, D.S. Su, D.J. Hwung and J.C. Lee, “A
single chip CCD signal processor for digital still
cameras,” IEEE Trans. Consumer Elec., 40(3), pp.
476, Aug. 1994.

[4] W.H. Chan and C.T. Youe, “Video CCD based
portable digital still camera,” IEEE Trans. Consumer
Elec.,. 41(3), pp. 455, Aug. 1995.

[5] S.S. Wang, C.H. Wu and N.Y. Hu, “A real-time digital
signal processor for use with the interline transfer color
CCD imager,” IEEE Workshop on Charge-Couple
Devices and Advanced Image Sensors, 1995.

[6] L. S. Nielsen, C. Niessen, J. Sparso, and C. H. van
Berkel, “Low-power operation using self-timed
circuits and adaptive scaling of the supply voltage,”
IEEE Trans. VLSI, 2(4), pp. 391-397, Dec. 1994.

[7] K. van Berkel, R. Burgess, J. Kessels, A. Peeters, M.
Roncken, and F. Schalij, “Asynchronous circuits for
low power: a DCC error corrector,” IEEE Design &
Test, 11(2), pp. 22-32, Jun. 1994.

[8] S. Hauck, “Asynchronous design methodologies: An
overview,” Proc. IEEE, 83(1), pp. 69-93, Jan. 1995.

[9] T. H.-Y. Meng, R. W. Brodersen, and D. G.
Messerschmitt, “Asynchronous design for
programmable digital signal processors,” IEEE Trans.
Signal Processing, 39(4), pp. 939-952, Apr. 1991.

[10] M. Stan and W. Burleson, “Limited-weight codes for
low-power I/O,” Proc. Int. Workshop on Low Power
Design, pp. 209-214, Apr. 1994.

[11] U. Zangi and R. Ginosar, Low power video processor,
Technical Report CC244, Electrical Engineering
Department, Technion, Feb. 1998. (also in
http://www.ee.technion.ac.il/~ran)

	Main Page
	ISLPED98
	Front Matter
	Table of Contents
	Session Index
	Author Index

