
An Empirical Comparison of Algorithmic, Instruction, and Architectural Power

Prediction Models for High Peformance Embedded DSP Processors

Catherine H. Gebotys and Robert J. GebotysÃ

Department of Electrical and Computer Engineering,

University of Waterloo, Wilfrid Laurier UniversityÃ,Waterloo,Ont,Canada.

cgebotys@optimal.vlsi.uwaterloo.ca

Abstract

This paper presents a comparison of statistically-

derived power prediction models at the algorithmic, in-
struction, and architectural levels for embedded high

performance DSP processors. The approach is general
enough to be applied to any embedded DSP proces-

sor. Results from 168 power measurements of DSP code

show that power can be predicted at instruction and
architecture levels with less than 2% error. This re-

sult is important for developing a general methodology

for power characterization of embedded DSP software

since low power is critical to complex DSP applications

in many cost sensitive markets.

1 Introduction

As embedded applications rapidly grow more complex,

some designers are using fully programmable DSP proces-

sors or cores for a lower risk, �exible solution. These

systems demand small code size, low power, and high

performance. Previous research has mainly concentrated

on techniques to improve performance which in turn

improve power. However for �xed throughput (or per-

formance) required by many DSP applications, it is not

clear how to optimize for power and very few suggested

techniques have veri�ed savings in power. Although

architectural design and high level application transfor-

mations for low power are becoming a well understood

area of research, little has been done for low-power

software compilation. Previous methods of estimating

power at a high level using gate-level or architecture-

level simulations were either inaccurate or too time con-

suming. For embedded markets power measurement

and optimization for code is very important, however

gate level processor representations are not always avail-

able for this purpose. Physical current measurements

are accurate and can be obtained extremely fast. Fast,

accurate power prediction models for DSP software are

needed. The energy dissipation of a processor running

a program[1] is the product P ¤ T = I ¤ V dd ¤ T =

I ¤N ¤ ¿ ¤ V dd , where P is the power dissipated, I is

the average current, V dd the supply voltage, and T is

equal to N ¤ ¿; where N is the number of clock cycles

and ¿ is the clock period. This paper illustrates a gen-

eral methodology for software power prediction using

the TI TMS320C5x processor[3], current measurements

on 168 DSP programs, and a statistical linear regres-

sion algorithm. The methodology however is general

and can be applied to any processor.

The �gure below shows the methodology for power pre-

diction of embedded systems DSP design. The power

prediction model is generated only once for a DSP proces-

sor, from single instruction tests and DSP benchmark

code. The single instruction tests involve repeating one

instruction several times in a loop. This code is run on

the DSP processor hardware using pseudorandom type

of input data and the current is measured (see Current

Measurement box). The average current (Ii) for each

type of instruction (i) is recorded. Several DSP bench-

mark programs are also run with two samples of voice

data and two samples of pseudorandom data and cur-

rent measurements are recorded. Algorithmic, instruc-

tion and architectural level variables are extracted, such

as the average bit switching in the instruction register,

address busses, etc (available from the code directly)

and a special variable, xp, where xp =
(
P

IiNi)P
Ni

where

Ni = number of instructions of type i in program (sim-

ilar to [1] except no overheads are used). The power
predictor model generation is based upon a linear re-
gression model with these variables as predictors (using
SPSS[4]). The output is a model (or equation y =...etc)
which predicts current. The embedded systems designer
then generates code for an application and uses it with
the power-prediction model to predict current. Code is
regenerated (using rescheduling, optimized code gener-



ation[5,6], or rewriting the application) in an attempt
to obtain code that meets the performance constraint
and minimizes the predicted power dissipation.

A variety of common DSP applications, such as the
fast fourier transform, least means squares, high pass
�lter, discrete cosine transform, etc were implemented.
The programs ranged from 60 to 150 instructions. Dif-
ferent schedules, optimized address generations[5] and
optimized codings[6] were used to study power e¤ects.
For the DSP benchmark programs, the code sequence
was a straight line basic block that was repeated several
times and then placed within a loop. Each repeat of the
program used a di¤erent part of the input data since it
is well known that power depends upon not only the
program but the signal statistics of the data[2]. For ex-
ample if a DSP program used 40 words of speech data as
input. The DSP program was repeated 100 times in a
loop, performing computations on 4000 words of a con-
tinuous speech sample. This study was repeated with
two di¤erent sets of pseudo-random generated data and
two di¤erent samples of voice data. All experiments
were repeatable. After the board was powered up, a
warm up period was allowed before any experiments
were run. A series of noop instructions were executed
before and after each DSP program to calibrate any
variation in power measurements due to temperature
variation, etc. In all cases standard deviations were
lower than 0.03mA (using Fluke867B GMM[8]).
Parallel instructions of the TMS320C5x had higher av-
erage current readings than the average of the two cur-
rents for the equivalent sequential instructions (for ex-

ample, 14% higher for MACs, IMAC >
IMultiply+Iacc

2
).

Also pairs of instructions had higher currents than the

average of the currents for each single instruction (often

23% higher). The type of addressing also had up to 11

% variation of current for single instructions. An exam-

ple of some variables obtained directly from analysis of

the DSP code are shown in the table below. For exam-

ple IR refers to the average switching of data stored in

the instruction register (available from the DSP code),

whereas DABUS refers to the average switching of the

data address bus. These variables were recorded for the

statistical analysis.
Variable(x�s) De�nition

IR avg switching in instruction

register

xp instruction-based current

variable

DABUS avg switching in data addr bus

PABUS avg switching in program addr

bus

MUL avg # of multiplies

SUB avg # of subtracts

LOAD avg # of loads

M avg # of memory accesses

2 Experimental Results

Some interesting observations occured from measuring

current on these 168 DSP programs. For example the
I did not always increase when more compact code was
used, causing the percent improvements in energy to ex-
ceed the percent improvements in performance in some
cases. Secondly unlike previous research[1], it was ob-
served that the fastest code did not always produce
the most energy e¢cient solution. For example in a
FFT program, a minimum energy solution of I ¤N =

62:55¤123 = 7694 did not utilize the fastest code (whose
energy, I ¤N = 65:15 ¤ 122 = 7949, was 3% higher). It
was also observed that as much as 4% di¤erence in en-
ergy can occur (due to scheduling and code generation)
for equivalent type of input data and equivalent perfor-
mance (N).
Results of the power prediction methodology are shown
in the table below, where accuracy is reported for statis-
tically derived linear models based on 168 DSP bench-
mark programs. For each Algo, Instr and Arch model,
only algorithmic variables (derived only from C pro-
gram alone), instruction variables (derived only from
assembly code alone, see �gure), and architecture vari-
ables (switching of internal DSP architecture obtained
from custom instruction-level simulator) respectively were
input to the linear regression model. The x variables au-
tomatically chosen due to their signi�cance by the sta-
tistical procedure are listed in order of their importance
in predicting current in the table (for example Instr1:
LOAD;PABUS; SUB; IR;DABUS). The value of R2

for the models are given (for example R2 = 0:89 means
that 89% of the variation in current, y, is accounted for
by that model, x�s). Additionally the maximum error
in current prediction is given (mA) along with the max-
imum percent error (% , calculated from the maximum
error in current divided by the predicted value of current
for that case). The equation for model Instr1 is ŷ =
35:99+(29:74)LOAD+(5:88)PABUS+(14:27)SUB+
(1:23)IR + (1:43)DABUS. The instruction and archi-



tectural level models (Instr, Arch) are statistically ex-
cellent and signi�cant. A good model at the algorithmic
level could not be found. The overall �t of model Instr1
can be seen below in the graph of predicted current, ŷ,
versus the actual measured current, I, both in mA�s.
The middle line graphs ŷ = y; a perfect prediction line,
with lines on each side 1mA apart. The last row in the
table, Arch, is an architectural level model which uses
variables measuring the average switching in internal
registers a, t and the average switching in data mem-
ory (dataMemory). Although this detail is typically
not available for embedded system designers, it is pre-
sented to illustrate how well the Instr1 model compares
in R

2 value. To further independently test out the va-
lidity or accuracy of the instruction and architectural
models, variables from 84 other DSP programs (that

were not used to derive the statistical model) were used

in each equation to predict current. Results of this data

were compared with actual current measurements. The

predicted power or current value had a error less than

the maximum error of the actual measured current for

each model.

ID Model Variables mA % R
2

Algo SUB;MUL 2.68 4.14 .18

Instr3 MUL;PABUS; IR;M 1.61 2.49 .78

Instr2 xp; IR;MUL;PABUS 1.58 2.44 .82

Instr1
LOAD;PABUS;

SUB; IR;DABUS
1.26 1.91 .89

Arch a; dataMemory; t 2.15 2.91 .91

3 Discussions and Conclusions

A linear model was chosen originally for parsimony,

however results indicate that it is applicable to power

prediction. This research has identi�ed that accurate

power models for software can be obtained from sta-

tistical methods using benchmark DSP programs. In

cases where designers have good samples of data that

their DSP processors will be using, one could use this

data for input to the DSP benchmark and single in-

struction tests for generation of more accurate power

prediction models. Results also indicate that predic-

tion can be performed accurately (see Instr1) without

detailed switching information from the processors in-
ternal registers and busses.
In contrast to previous research we have used statisti-
cal procedures that have veri�ed a very accurate power
model can be derived for DSP embedded software. Fur-
thermore an independent assessment of the model, us-
ing data that did not derive the model, yielded excellent
results. Although the results were presented using the
TI TMS320C5x DSP processor, the methodology is very
general and can be applied to any processor (assuming
appropriate variables can be extracted). It has many
similar characteristics to other DSP processors, such
as the Motorola M56K and TMS320C3x for which ad-
dress optimization and code generation techniques used
in this paper are also applicable.
In summary fast accurate power prediction models (Instr)
for DSP embedded software were developed. Unlike
previous research(with 10% error[1]), one model, Instr1,
with only a few variables(not xp), is very accurate(with
2% error); predicting current using statistical optimiza-
tion with worst case error to under 1.3mA with an R

2 of
0.89. High accuracy is necessary especially in embed-
ded systems design where throughput constraints are
employed and changes in current are typically much less
than 10%. This methodology is general (see �gure) and
can be applied to any processor. The model is derived
from random data characterization of DSP benchmark
programs which is very useful for many embedded DSP
systems where only access to the hardware and a func-
tional simulator is available, speci�cally detailed sim-
ulation models (from which register or bus switching
data can be obtained) are typically not possible. This
research is important for industry since a methodology
for developing power prediction for DSP code is critical
as new processors or cores grow in complexity and be-
come integrated into embedded DSP systems which will
continue to have stringent power, performance, and cost
constraints. More details can be found in [7]. Thanks
to Alexander Bond for his excellent work and support
in part from NSERC and ITRC.
References

[1] M.Lee, V.Tiwari, S.Malik, M.Fujita, �Power Analysis and

Minimization Techniques for Embedded DSP Software�, IEEE

Trans on VLSI Design, Vol.5,No.1, March 1997, p123-135.

[2] A.Chandrakasan,R.Broderson, Low Power Digital CMOS De-

sign, Kluwer,1995.

[3] TMS320C5x User�s Guide, Texas Instruments Inc., 1993.

[4] SPSS User�s Guide, Base 7.5 for Windows, SPSS Inc, 1997.

[5] C.Gebotys, �DSP Address Optimization Using A Minimum

Cost Circulation Technique�, ICCAD,p100-3,1997.

[6] C.Gebotys, �An E¢cient Model for DSP Code Generation:

Performance, Code Size, Estimated Energy�, ISSS,p41-7,1997.

[7] C.Gebotys,R.Gebotys, �Statistically Driven Power Prediction

Models for DSP Processors�,TechRept,ECE,Univ.Waterloo,1998.

[8] Fluke 867B GMM current meter manual, 1997.


	Main Page
	ISLPED98
	Front Matter
	Table of Contents
	Session Index
	Author Index


