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Abstract

One way of minimizing the time required to perform simulation-

based power estimation is that of reducing the length of the in-

put trace to be fed to the simulator. Obviously, the use of a

reduced stream may introduce some errors in the estimation re-

sults. The generation (or synthesis) of the short input sequence

to be used for power simulation must then be done in such a

way that the resulting error is minimized.

This paper introduces a new stream synthesis method whose pe-

culiar feature is that of using spectral analysis techniques based

on the discrete Fourier transform to determine a reduced se-

quence of vectors that enables to shorten the overall power sim-

ulation time at a very limited accuracy decrease.

The e�ectiveness of the proposed synthesis procedure is demon-

strated by the results we have obtained on the Iscas'85 combina-

tional benchmarks for a variety of input streams characterized

by di�erent statistical and correlation properties.

1 Introduction
Transistor-level simulation of typical input streams is by far

the most accurate way of estimating the power dissipated by

a CMOS digital circuit. The problem with this approach is

that the traces to be simulated are usually extremely long; in

addition, accurate low-level simulators are slow. Consequently,

the time required to complete the estimation process can of-

ten become unacceptably long. In view of this, a wealth of

research results have appeared recently on the development of

techniques that enable a reduction of the total simulation time

for both combinational and sequential circuits. Statistical sam-

pling methods [1, 2, 3, 4, 5, 6] and multi-level schemes [7, 8] are

just two examples of successful solutions.

One class of techniques that has lately received considerable

attention is based on the idea of using probabilistic calcula-

tions to reduce the length of the original input stream without

changing substantially some of its relevant statistical proper-

ties (e.g., signal and transition probabilities or spatio-temporal

correlations among bits and across consecutive time frames)

[9, 10, 11, 12, 13, 14, 15]. This with the goal of determining

a new stream that can be simulated in a much shorter time at

the price of a very limited average power estimation error.

Depending on the characteristics of the newly generated (short)

set of binary input vectors, we distinguish between compaction

and synthesis methods. (Notice that this is neither a standard

classi�cation nor a standard terminology, and it is introduced in

this paper only for the sake of clarity.) Compaction procedures

generate streams whose component patterns are all included in

the original sequence (even though they may be sorted in a

di�erent way). Synthesis techniques, on the other hand, do not

satisfy this constraint, that is, the streams they produce can

contain patterns that do not appear in the original sequence.

In this paper, we propose a novel approach to stream synthe-

sis that is based on the analysis of the spectral properties of

the given input trace. Starting from the original stream, we

�rst build an integer-valued function (called the input switch-

ing function hereafter) that expresses the number of switchings

occurring between pairs of consecutive patterns as a function

of time, and then we compute a discrete Fourier transform of

such function. From the representation of the input switching

function in the frequency domain we select some spectral coef-

�cients, and then we go back to the time domain by computing

the inverse transform of this restricted set of coe�cients. The

information provided by the new function in the time domain is

exploited, together with the spatio-temporal and switching cor-

relation information regarding the original stream, to synthesize

a new stream, much shorter than the original one, whose simu-

lation yields very accurate average power estimates.

The idea behind the proposed method is that of identifying the

\components" of the original stream which are most relevant in

characterizing the estimated value of the average power, isolat-

ing them, and mixing the information they provide with signal

and transition probability measures, as well as spatio-temporal

and transition correlation measures captured from the original

input sequence. The stream synthesis procedure then exploits

the results of the analysis phase to generate a reduced stream

whose spectral characteristics, as well as statistical properties,

are as close as possible to those of the original input trace.

We have performed an extensive experimentation on the com-

plete set of the Iscas'85 [16] combinational benchmarks by ap-

plying our synthesis routine to a number of input traces of dif-

ferent nature. The data we have collected indicate how the addi-

tion of the spectral analysis step to a common correlation-based

stream synthesis procedure considerably increases the robust-

ness and the degree of automation of the procedure itself; in

other words, it greatly helps in enhancing the tool's capabilities

of properly and accurately handling streams with sensibly dif-

ferent statistical properties without requiring a modi�cation or

a customization of the selected correlation measures. It must

be observed, however, that the peak performance (in terms of

accuracy in the estimation of the average power consumption)

obtained by some existing stream compaction/synthesis routines

on input traces with speci�c statistical characteristics (less than

1% in some cases) are not always achievable using our method.

Nevertheless, the data show an average estimation error ranging

from 0.54% to 13.93%, depending on the considered input trace.

It should be noted that the capability of characterizing the orig-

inal input trace by means of spectral analysis constitutes the

distinctive feature of the stream synthesis approach of this pa-

per; to the best of our knowledge, in fact, no similar solution to

the problem of compacting/synthesizing a sequence of vectors

to be used for fast, yet accurate, average power estimation has

been published in the literature. On the other hand, similarly to

most of the existing solutions, our procedure has the desirable

property of being circuit independent: It does not require the

availabilityof the functional/structural descriptionof the circuit

to which the synthesized stream will be applied for simulation.



2 Background and Notation
In this section we recall some notions concerning Fourier trans-

forms of discrete-time (or sampled) functions (Discrete Fourier

Transforms) [17]. In the following, we assume the reader to be

familiar with the de�nition and the fundamental properties of

the Fourier transforms of continuous-time functions.

Let x(t) be a periodic function of period P , and let T denote the

sampling interval (i.e., the time intervalbetween two consecutive

samples) of x(t); x can then be de�ned as a sequence of N = P
T

sampled values:

x(n) = fx0; : : : ; xN�1g

The periodicity assumption on function x(t) is not mandatory;

in fact, if x(t) is only de�ned over a given time interval Tx, we

can assume that x(t) is indeed periodic of period Tx.

The usual Fourier integral that gives the transform X(f) of

function x(t):

X(f) =

Z P

0

x(t)e�j2�ftdt

becomes, in the discrete-time domain:

X(k) =
1

N

N�1X
n=0

x(n)e�j2�kn=N (1)

where the transform X(k) is a discrete function of a variable

k which takes values in the range f0; : : : ; N � 1g, and the dis-

crete frequency points k
NT

replace the continuous frequency f .

Equation 1 is called the Discrete Fourier Transform (DFT) of

function x(n).

The Fourier spectrum of x(n) is thus de�ned by the series of

complex coe�cients X(k); k = 0; : : : ;N � 1, and function x(n)

is said to have a line spectrum.

The analysis of the right-hand side summation in Equation 1

shows that it is periodical, in n, of period N . It can be easily

shown that:

X(k+mN) =
1

N

N�1X
n=0

x(n)e�j2�(k+mN)n=N = X(k)

This in view of the fact that, for integer values of m:

e�j2�(k+mN)n=N = e�j2�kn=N � e�j2�mn = e�j2�kn=N

Another useful property that stems from the time-domain sam-

pling theorem is the folding property: A coe�cient X(N � k) is

the complex conjugate of coe�cient X(k). In formula: X(N �
k) = X�(k). This holds only for the spectrum of real (i.e., non

complex) functions. In practice, the folding property tells us

that only one half of the spectral coe�cients need to be com-

puted. The folding point k = N=2 is the discrete counterpart of

the Nyquist frequency.

One �nal de�nition that will be used later in the paper is that

of inverse DFT; when it is applied to the spectral coe�cients,

it reconstructs the corresponding sampled function. Similarly

to the case of the inverse Fourier transform, the samples of the

function are obtained as:

x(n) =

N�1X
k=0

X(k)ej2�kn=N

where n = 0; : : : ;N � 1.

3 Stream Synthesis Methodology
In this section, we describe in detail a technique to synthesize

short input traces to be used for power simulation in replace-

ment of a given long stream of vectors. The method features

the use of both spectral and correlation information collected on

the given sequence to properly form a synthesized stream which

guarantees a large speed-up in the simulation time at the price

of a very low average power estimation error. We �rst provide

a quick overview of our approach; then, we discuss in depth the

most interesting steps of the stream generation process.

3.1 Overview

The high-level block diagram of the basic operations required

by our stream synthesis methodology is depicted in Figure 1.
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Figure 1: Block Diagram of the Stream Synthesis Methodology.

The entry point of the 
ow is a binary stream of N patterns,

S = (x0; : : : ; xN�1), and the output is the synthesized stream

S� = (y0; : : : ; yM�1), withM << N . From stream S, the input

switching function is �rst computed. This is an integer-valued

function that represents the number of bit toggles between each

pair of consecutive input patterns as a function of time. Time

is discretized in correspondence of each pair of input patterns.

In other words, the time point t is associated to the pair of

consecutive patterns xt and xt+1. We will refer to the input

switching function as x(n) to emphasize its discrete nature.

Once x(n) is determined, its DFT is calculated to get another

sampled functionX(k) in the discrete frequencydomain k (X(k)

is called the spectrum of x(n), and the samples of X(k) are

the spectral coe�cients of x(n)). Next, a subset of spectral

coe�cients (i.e., a subset of the samples of X(k)) is selected,

so as to get a new sampled function, Xr(k), in the frequency

domain. Function Xr(k), called partial spectrum of x(n) in the

sequel, is then transformed back to the time domain using the

inverse DFT to get a new sampled function xr(n). If the choice

of the subset of the spectral coe�cients is carried out properly,

xr(n) becomes an accurate approximation of x(n) with a very

limited number of samples.



The last step of the procedure consists of the actual synthesis

of the reduced trace S�. In a pre-processing phase, stream S is

analyzed and the pairwise spatio-temporal and switching corre-

lations are calculated. Then, the patterns in the new stream are

generated in such a way that the input switching function of S�

is xr(n), and the correlations of S� closely match those of S.

In the next sections we provide details on how the selection of

the spectral coe�cients and the synthesis of the reduced stream

are carried out. On the other hand, we do not discuss the input

switching function calculation phase, since it is quite straight-

forward. Also, we do not illustrate how the calculation of the

pairwise correlationmeasures is done, since the subject has been

extensively illustrated elsewhere (e.g., [18, 19, 9, 20]); we only

report, in Section 3.3, some de�nitions that will help the com-

prehension of the stream generation procedure. Finally, we do

not discuss how the DFT and its inverse are calculated, since

standard numerical algorithms that e�ciently perform these op-

erations do exist [21]. However, it should be observed that,

from the theoretical stand-point, the application of the DFT to

a function is meaningful only if that function is periodic with

a period P . In the case of x(n), we can assume that this con-

straint is satis�ed by thinking at x(n) as a periodic function of

period P = N �T , where T is the sampling rate. In other words,

instead of regarding x(n) as a function de�ned over a limited

time interval (namely,N clock cycles), we consider it as period-

ically repeating itself outside the interval [0; P ]. Without loss of

generality, in the following we assume T = 1, so that P � N .

3.2 Selection of the Spectral Coe�cients

We are given the representation X(k) of x(n) in the frequency

domain. The samples of X(k), usually called the spectral coef-

�cients of x(n), can be interpreted as the coe�cients of a lin-

ear combination of sinusoids that approximates function x(n).

More speci�cally, X(0) represents the DC-value, that is, the

mean value of x(n) over the period P of x(n). The sinusoid for

a given coe�cient k > 0 has a period of N
k
, and it is modulated

according to the coe�cientX(k). Obviously, the multiplesm �k
of a given point k have a shorter period N

m�k
.

For our purposes, it is key to remember that the function in

the time domain obtained by summing a fundamental sinusoid

(i.e., the sinusoid at frequency k) to its harmonics (i.e., the

sinusoids at frequencies m � k) is still periodic with period 1
k
.

frequency. We then have that, by selecting some value kc as the

fundamental frequency, and by suppressing all the remaining

frequencies but the multiples (i.e., the harmonics) of kc, we

obtain a sampled function Xr(k) in the frequency domain (i.e.,

the partial spectrum of x(n)) whose counterpart xr(n) in the

time domain is a periodic function with period P = N
kc
.

The interpretation that can be given of the result above is that

xr(n) constitutes the functionwith period smaller than P (i.e., a

sub-multiple) that best approximates functionx(n) with respect

to the quantity of information it carries. Then, it is possible to

use one period of xr(n) to represent one period of x(n).

In the context of stream synthesis, x(n) represents the input

switching function of trace S; therefore, function xr(n) we ob-

tain from Xr(k) through the inverse DFT provides us with the

input switching function that best approximates that of S. In

addition, since the period P of x(n) is actually the length of

the original trace, one period of xr(n) directly corresponds to

a shorter stream. Consequently, the choice of the fundamen-

tal frequency kc uniquely determines the compaction ratio (i.e.,

N=M), provided that the partial spectrumXr(k) is derived from

X(k) by removing all the coe�cients that are not multiples of

kc (the DC-coe�cient X(0) is obviously kept in Xr(k)).

From the discussion above it results clear that the selection of

the fundamental frequency kc allows a 
exible trade-o� between

accuracy in the estimated average power and compaction ratio.

By picking a smaller value of kc, we include in the partial spec-

trum a large number of frequencies, and therefore we guarantee

a �ner approximation of the original sampled function, at the

price of a smaller compaction ratio. Conversely, by choosing a

higher value of kc we include in Xr(k) fewer frequencies, thus

privileging the generation of a shorter stream, at the cost of an

increased estimation error. The limit, unrealistic case is obvi-

ously that of a desired compaction factor ofN ; in this case, only

the DC-coe�cient is considered.

In principle, after the desired value of the compaction ratio has

been �xed, the choice of the fundamental frequency can be done

arbitrarily, without any constraint. The theory of the Fourier

transform, however, provides us with a criterion on how the

value of kc should be picked to maximize the e�ectiveness of

the stream synthesis procedure. In fact, to guarantee the exact

periodicity of xr(n), it is required that the largest frequencyN

is also a multiple of kc, that is, Xr(k) should contain the coef-

�cient at frequency k = N
kc
. If this is not the case, the inverse

transform of Xr(k) yields a function xrapprox(n) in the time do-

main which is quasi-periodic. The use of the latter instead of

xr(n) within the stream synthesis procedure introduces an er-

ror that decreases as the similarity between the two functions

increases.

Example 1

Let us consider the plot of x(n), derived from a stream of 128

input patterns, depicted on the left-hand side of Figure 2. The

corresponding spectrum, X(k), is reported on the right-hand

side of the same �gure, and it has a symmetric behavior around

the folding point k = N=2 = 64.

If we select a fundamental frequency kc = 16, we obtain the

partial spectrum Xr(k) shown on the left part of Figure 3. The

application of the inverse transform yields the function xr(n)

represented on the right part of Figure 3, which is periodic with

period P = 128
16

= 8.

On the other hand, if the value kc = 25 (which is not a sub-

multiple of the period P = 128 of x(n)) is picked as the fun-

damental frequency, the plots for Xr(k) and xrapprox(n) are

those reported in Figure 4. The di�erence in periodicity be-

tween xr(n) and xrapprox(n) is apparent.

3.3 Stream Synthesis

The synthesis phase consists of the generation of the reduced

stream S� starting from the samples of function xr(n). The

main constraint to be met during the synthesis step is that the

reduced stream must yield an input switching function which is

exactly xr(n). Furthermore, the transition probabilities and the

correlations of S� must tightly resemble to those of the original

stream S.

Before going into the details of the synthesis procedure, we in-

formally recall the de�nition of the two correlation measures

(i.e., spatio-temporal and switching correlation)we have used as

additional constraints during the generation of the binary pat-

terns of S�. For the derivation of the mathematical expressions

of these measures, as well as for the description of a procedure

to calculate them starting from a long stream of binary vectors,

the interested reader can refer, for example, to [9, 20].

The spatio-temporal correlation between bits p and q of pattern

i, indicated in the sequel as �p;q, is the likelihood of correctly

predicting the value of bit p of pattern i given the value of bit

p of pattern i� 1 and of bit q of pattern i.
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Figure 2: Input Switching Function x(n) (Left) and its Spectrum X(k) (Right).
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Figure 3: Partial Spectrum Xr(k) (Left) and its Inverse DFT xr(n) (Right) for kc = 16.
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Figure 4: Partial Spectrum Xr(k) (Left) and its Inverse DFT xrapprox(n) (Right) for kc = 25.

The switching correlation between bits p and q of pattern i,

indicated in the sequel as �p;q, is the likelihood of correctly

predicting a transition on bit p from pattern i� 1 to pattern i

given a transition on bit q from pattern i� 1 to pattern i.

Since both correlation measures are important in modeling the

power-determining characteristics of the original input trace,

they must be considered simultaneously during the synthesis

phase. We therefore de�ne the compound correlation !p;q be-

tween bits p and q of pattern i as the convex combination:

!p;q = c � �p;q + (1� c) � �p;q

where c is a real number between 0 and 1.

For e�ciency reasons, the calculation of the compound corre-

lations is performed concurrently with the construction of the

input switching function x(n), since both operations require to

explicitly examine all the pairs of consecutive patterns in the

original input trace. The results of the analysis are then stored

into a matrix. It should be noticed that the decision of measur-

ing correlations using a pairwise approximation is suggested by

the fact that computing exact, word-level correlations may be-

come computationally infeasible in the case of very long streams.

Given the de�nition of the compound pairwise correlation,!p;q ,

we are now ready to discuss the algorithm for synthesizing the

reduced input stream S�, whose high-level pseudo-code is re-

ported in Figure 5.

procedure Synthesize Stream (xr(n),M ,!Sp;q,t
S
p ,x0) f

1. y0 = x0;

2. S� + = y0;

i = 1;

3. while (jS�j < M) f
4. yi = yi�1;

5. yi = Generate Vector (yi,x
r(i),!Sp;q,t

S
p );

6. S� += yi;

7. (!S
�

p;q , t
S�

p ) = Update Stats (S�,yi);

8. i = i+ 1;

g
return S� ;

g

Figure 5: The Synthesize Stream Algorithm.



The input parameters of the procedure are the input switching

function xr(n) of the target stream S�, its length M , the cor-

relation matrix !Sp;q , the transition probability vector tSp , and

the �rst vector x0 of the original stream S. In the pseudo-code,

superscript S is used to distinguish the measures that refer to

S from those regarding the reduced stream S�. The latter are

iteratively updated by the algorithm any time a new pattern

is added to stream S�; this is required because the matching

between the characteristics of S� and S must be checked dy-

namically while the reduced stream is constructed.

The algorithm starts by choosing as the �rst pattern of the

reduced stream, y0, the �rst pattern of the original trace, x0
(Line 1). Such pattern is added to S� in Line 2. The procedure

then enters the while loop of Line 3, in which the patterns to

be added to the stream are iteratively selected until the desired

length M of S� is reached. At each iteration, the previously

generated vector yi�1 is �rst duplicated (Line 4), and then used

as the starting point for the generation of the new vector yi
through procedure Generate Vector (Line 5). Such procedure

constitutes the core of the synthesis algorithm; therefore, it will

be described in details a little later in this section. After the

newly generated pattern yi is added to the stream (Line 6), the

transitionprobabilityvector and the correlationmatrix of S� are

updated in Line 7. Finally, the loop counter i is incremented in

Line 8, and the vector generation process starts over.

For what concerns the generationof the new binary vectors (pro-

cedure Generate Vector in Figure 5), we have devised the fol-

lowing strategy:

1. All the bits of the vector are initiallymarked as \unused";

2. The unused bit p whose transition probability deviates

most from the value tSp (i.e., the bit p for which the dif-

ference jtSp � tS
�

p j is maximum) is selected, and its value

is complemented.

3. The unused bit q whose compound correlation with re-

spect to bit p deviates most from the value !p;q (i.e., the

bit q for which the di�erence j!p;q � !Sp;qj is maximum)

is selected, and its value is complemented.

4. Bits p and q are then marked as \used".

5. If the number of transitions between pattern yi�1 and

pattern yi matches the expected number of switchings

given by xr(i), the generation of yi terminates. Other-

wise, the process starts over from step 1.

Notice that we have chosen to modify only at most one pair of

bits of yi per iteration (i.e., bits p and q) because this seems

to be more consistent with the type of correlation (i.e., pair-

wise) we use to drive the pattern generation process, Intuitively

this strategy, unlike other possible options, should provide an

easier way of re-constructing in stream S� the statistical and

correlation properties held by the original input trace S.

4 Experimental Results
In this section, we present experimental data regarding the use

of the stream synthesis technique described in Section 3. The

circuits on which the original and the reduced sequences of bi-

nary vector have been simulated are those included in the Is-

cas'85 combinational benchmark suite [16]. The switch-level

netlists for the examples have been obtained by mapping their

gate-level descriptions onto a 0:35� CMOS industrial library,

consisting of approximately 200 primitives. The average power

values have been estimated using Irsim [22], and experiments

have been run on a DEC AXP 1000/400 with 256 MB of RAM.

Since our objective is not only that of demonstrating the e�ec-

tiveness (in terms of the estimation errors originated by the use

of the synthesized stream instead of the original input sequence)

of the proposed method, but also that of proving its robustness,

we have applied it to a total of 10 distinct input traces, each

of which is characterized by di�erent statistical and correlation

properties.

We have considered the following types of streams (each pattern

is assumed to have K bits):

� Type A: Fully random patterns.

� Type B: Counter sequence restartingat a randomnumber

after a �xed number of patterns are generated [9].

� Type C: The transition probability of the most signi�cant

bit is set to 1
k+1

; moving towards the least signi�cant

bits, this value gracefully increases up to k
k+1

.

� Type D: The transition probability of the most signi�cant

bit is set to k
k+1

; moving towards the least signi�cant

bits, this value gracefully decreases down to 1
k+1

.

� Type E: The most signi�cantK=2 bits of the patterns re-

alize a counter sequence, the remaining bits are random.

� Type F: The most signi�cantK=2 bits of the patterns are

random, the remaining bits realize a counter sequence.

� Type G: Waveform with stair-case behavior [8].

� Type H: The transition probability of the bits follows a

normal distribution centered on bit K=2.

� Type I: The transition probability of the most signi�cant

K=2 bits is high (0.7), that of the remaining bits is low

(0.3).

� Type J: The transition probability of the most signi�cant

K=2 bits is low (0.3), that of the remaining bits is high

(0.7).

We have considered original input streams consisting of 32;768

patterns. The choice of the number of vectors is dictated by the

fact that most DFT algorithms require, for computational e�-

ciency, a number of sampled points that is a power of two. This

fact, however, does not constitutes a limitation of our method.

A compaction ratio of 32X has been constantly used for all the

experiments, thus constraining the synthesized streams to be

made of a total of 1024 binary vectors.

Tables 1 and 2 collect the results we have obtained. For each

type of input stream, we report the values of the average power,

inmW , obtained by simulatingboth the original (columnOrig.)

and the reduced trace (column Red.). The percentage of esti-

mation error is also reported (column Err.).

The experimental data are very satisfactory, since the average

estimation error ranges from 0.54% to 13.93%, depending on

the type of input stream used. The only case in which the

average error has gone beyond 7% corresponds to the streams

of Type G. To some extent, this situation was expected, since

the statistical and correlation properties of such traces exhibit

sensible variations over time; in addition, also the average power

consumption is heavily time-dependent; consequently, reducing

the number of patterns that must be simulated may have a

sizable impact on the overall quality of the estimation. Instead

of decreasing the length of the stream, a better way for quickly,

yet accurately, tracking the power dissipatedby sequencesof this

type consists of using multi-level simulation techniques such as

those described in [8].



Circ. Type A Type B Type C Type D Type E
Orig. Red. Err. Orig. Red. Err. Orig. Red. Err. Orig. Red. Err. Orig. Red. Err.

c432 0.733 0.699 4.60 0.208 0.228 9.61 0.680 0.668 1.76 0.698 0.702 0.57 0.563 0.568 0.88

c499 1.632 1.643 0.67 0.346 0.368 6.35 1.482 1.488 0.40 1.630 1.638 0.49 1.308 1.333 1.91

c880 1.246 1.243 0.24 0.458 0.424 7.42 1.322 1.330 0.60 1.058 1.060 0.18 0.965 0.951 1.45

c1355 1.632 1.642 0.61 0.346 0.368 6.35 1.482 1.488 0.40 1.630 1.638 0.49 1.308 1.333 1.91

c1908 1.928 1.898 1.55 0.761 0.814 6.96 1.727 1.747 1.15 1.762 1.787 1.41 1.572 1.616 2.79

c2670 3.128 3.211 2.65 0.823 0.777 5.58 3.227 3.233 0.18 2.604 2.598 0.23 2.119 2.133 0.66

c3540 5.177 5.338 3.10 2.826 3.061 8.31 3.456 3.409 1.35 6.155 6.166 0.17 4.488 4.995 11.29
c5315 7.947 7.909 0.47 1.137 1.138 0.08 9.153 9.170 0.18 5.895 5.896 0.01 5.755 5.814 1.02

c6288 11.820 12.064 2.05 1.611 1.725 7.07 12.659 12.661 0.01 11.960 12.175 1.80 9.916 10.094 1.80

c7552 13.660 12.940 5.27 2.326 2.543 9.32 10.897 10.910 0.11 15.738 15.727 0.07 9.717 9.652 0.67

Avg. 2.12 6.70 0.61 0.54 2.43

Table 1: Power Estimation Results for the Iscas'85 Combinational Circuits (Part I).

Circ. Type F Type G Type H Type I Type J
Orig. Red. Err. Orig. Red. Err. Orig. Red. Err. Orig. Red. Err. Orig. Red. Err.

c432 0.549 0.552 0.54 0.612 0.688 12.40 0.697 0.700 0.43 0.676 0.696 2.95 0.718 0.736 2.50

c499 1.367 1.393 1.90 1.334 1.550 16.19 1.648 1.659 0.66 1.518 1.535 1.11 1.631 1.636 0.30

c880 0.847 0.790 6.73 1.199 1.332 11.10 1.136 1.124 1.05 1.394 1.364 2.15 1.080 1.130 4.63

c1355 1.367 1.393 1.90 1.334 1.550 16.19 1.648 1.659 0.66 1.518 1.535 1.11 1.631 1.636 0.30

c1908 1.629 1.646 1.04 1.634 1.858 13.70 1.793 1.839 2.56 1.587 1.548 2.45 1.897 1.889 0.42

c2670 2.124 2.143 0.89 2.567 2.919 13.71 2.325 2.334 0.38 3.182 3.215 1.03 2.990 3.045 1.83

c3540 3.632 3.702 1.92 4.564 5.215 14.26 4.397 4.371 0.59 3.919 3.812 2.73 5.805 5.789 0.27

c5315 5.762 5.892 2.25 7.844 8.594 9.56 7.921 7.885 0.45 9.451 9.445 0.60 6.182 6.050 2.13

c6288 9.941 10.384 4.45 11.270 12.095 7.32 12.607 12.570 0.23 12.810 12.970 1.24 12.010 12.030 0.16

c7552 9.575 9.684 1.13 10.580 7.940 24.90 8.275 8.292 0.20 11.750 11.690 0.51 14.563 14.561 0.01

Avg. 2.27 13.93 0.72 1.58 1.25

Table 2: Power Estimation Results for the Iscas'85 Combinational Circuits (Part II).

5 Conclusions
In this paper, we have proposed a novel technique to synthesize

short streams of patterns that can be used for power simula-

tion instead of the long input traces usually determined by the

designers through architectural, behavioral or system-level sim-

ulation. The method features the use of spectral information

(in addition to the usual correlation measures) collected on the

given sequence to properly form a reduced stream which guar-

antees a large speed-up in the simulation time at the price of a

very low average power estimation error.

The main advantage of the method is its robustness, that is,

its capability of generating \good" reduced streams for a large

variety of original input traces (i.e., streams characterized by

di�erent statistical and correlation properties), as demonstrated

by the large set of experimental results we have presented.
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