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1. ABSTRACT
This paper presents a new register-transfer level (RT-
level) power estimation technique based on technology
decomposition. Given the Boolean description of a
circuit function, the power consumption of two typical
circuit implementations, namely the minimum area
implementation and the minimum delay implementa-
tion, are estimated, respectively. This provides a
capability of obtaining a full power-delay-area trade-off
curve at the RT level. Our method makes it possible to
capture the structural and/or functional information of
a circuit without going through actual gate-level
implementation. Experimental results show that the
accuracy is very reasonable.

1.1 Keywords
RT-level, power estimation, entropy, technology
decomposition

2. INTRODUCTION
Power reduction has become one of the primary goals in the
design of modern digital systems due to the increasing
demand for low power circuits in portable applications.
Increasing package and cooling cost is another driving
factor. To achieve low power design, the designer has to
explore the design space to make the appropriate power-
area-delay trade-off decision. Accurate power estimation at
different abstraction levels is thus urgently needed to carry
out the correct design space exploration.

Recently several RT level power estimation methodologies
were proposed based on entropy and information theoretic
approaches [1, 2]. However, these approaches are suffering
from two main discrepancies. First, entropy of the function

of the circuit is used to estimate the circuit switching
activity as well as to model the area cost of a circuit [2-4].
Unfortunately, the accuracy of entropy-based power
estimation is very limited since the capacitance model using
entropy does not work well over a wide range of circuits.
Secondly, these methods only give a single power estimate
for a given functional description of the circuit. They use
very little information about the function and complexity of
the circuit at the behavioral level and also do not account
for the effect of different potential circuit implementations
for different requirements. In this paper, we are targeting to
provide a capability to generate the power-area-delay trade-
off curve at the RT level. In particular, we propose a
method to estimate the power consumption for the minimum
area implementation (MAI) and the minimum delay
implementation (MDI) given a functional description of a
circuit. These are the two extreme points of the power-area-
delay trade-off curve whose power estimation serves as a
first step to generate the full trade-off curve.

The remainder of the paper is organized as follows. In
Section 3, we describe the power estimation technique for
the MAI based on technology decomposition. We discuss
the modeling of node distribution, capacitance distribution
as well as entropy distribution for power estimation. Section
4 is devoted to the power estimation for the MDI, including
the method of estimating the delay and the total capacitance
for the MDI. Experimental results and discussions are
provided in Section 5 and, finally, conclusion is given in
Section 6.

3. POWER ESTIMATION FOR THE
MINIMUM AREA IMPLEMENTATION
3.1 Power Model
For a combinational CMOS logic circuit, the average
dynamic power dissipation is given by
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where fclk is the clock frequency, Vdd is the supply voltage,
Cload(g) is the load capacitance of gate g , and sw(g) is the
average number of transitions at gate g per clock cycle.
Here we are ignoring the power consumption due to short-
circuit and leakage currents which are negligible for the
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well-designed circuits [5]. Assuming the primary inputs of
the circuit are temporally independent, one can reasonably
replace sw(g) of (1) with ½ h(g), where h(g) is the output
node entropy of gate g [1, 2]. Thus
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Obviously, the exact values of Cload(g) and h(g) are not
available until the gate-level circuit implementation is
known. If the circuit is levelized and, we know the average
capacitance per node at each level, then we can
approximate the power consumption as
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where  Ci , ni  and Hi are the sum of node capacitances, the
number of nodes and the sum of node entropies at level i,
respectively, and K is the largest level number. A logic
circuit is levelized such that the output node of each gate is
assigned a specific level number which represents its
distance from the primary inputs. All primary inputs are
said to be at level zero. The output node of a gate whose
inputs are all primary inputs is said to be at level one. The
output node of a gate whose inputs are either outputs of
level one gates or primary inputs is said to be at level two,
and so on. The largest level number is also called the circuit
depth. As we can see from (3), the key factors for power
estimation are the capacitance distribution, node
distribution and entropy distribution with respect to the
circuit levels. Instead of trying to predict these factors just
from a given Boolean function, the scheme here is to
“capture” the information about its implementation as much
as possible from the technology decomposition of the
Boolean function. Although the effects of logic
minimization and technology mapping on the final
implementation can not be fully captured, the decomposed
network can at least give some idea on the structural and/or
functional information such as the distribution of internal
nodes, number of logic levels, literal count and the level
distribution of the primary outputs. With this information,
we can predict the models for the node, capacitance and
entropy distribution for the MAI of a Boolean function.

3.2 Node Distribution
Let Kd and Km be the largest level numbers in the
decomposed network (DN) and the mapped network (MN)
for area optimization of a given Boolean function,
respectively. In the technology dependent phase of logic
synthesis, technology mapping is usually performed after a
decomposition step. The mapping itself consists of network
covering step which transforms the whole Boolean network
into an acceptable design by selecting which subsets of the
network nodes shall be collapsed and mapped to a single
cell of the target library. Thus, in general, we have Kd ≥ Km,
i.e., Km = Kd ⁄ α , where α ≥ 1 . Intuitively, the collapsed
nodes in the DN are those which are close to one another in
terms of their level numbers. Therefore, we can expect the

node distributions of the DN and that of the MN are very
similar. In other words, if we assume the DN and MN have
the same total number of nodes, when we compress the
node distribution curve (number of nodes against level
number) of the DN in the level number’s axis from Kd to Km

while maintaining the area under the curve (i.e. the total
number of nodes), the shape of the resulting curve will be
very similar to that of the MN. Thus the number of nodes at
level i ( 0 ≤ i ≤ Km ) in the MN, denoted by ni , could be
estimated as the algebraic average of the number of nodes
from level (i-1)⋅Kd /Km to level i⋅Kd /Km in the DN. Also,
it is empirically observed that the ratio of total number of
nodes in the MN to that in the DN is proportional to β(Km

/Kd), where β < 1. This is because some of internal nodes
are collapsed in the mapping process. Let  J1 = (i-1)⋅Kd

/Km and  J2 = i⋅Kd /Km . The number of nodes at level i in
the MN, ni , can be written in terms of the number of nodes
at level j ( 0 ≤ j ≤ Kd ) in the DN, denoted by mj , as follows
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where  β  can be interpreted as the ratio of the total number
of nodes in the MN and that in the DN when Km ≈ Kd .

From our experiments with the MCNC’91 benchmark
circuits, the value of α ranges from 1.1 to 1.5, and the value
of β ranges from 0.5 to 1.0. Actually, α affects only the
estimate of Km , and β determines the estimated number of
internal nodes in the MN. However, the power estimation is
shown to be quite insensitive to both α and β (see [6] for
the detailed discussion). In the following, we use α = 1.3
and β = 0.7 unless otherwise stated. To demonstrate the
accuracy of predicting node distribution using (4), we plot
the node distributions of two example circuits (apex7 and
C2670) obtained from (4) and compare them with the actual
node distributions in the MN of the circuits which are
obtained from logic synthesis using area as the optimization
objective. The node distribution curves are shown in Figure
1. It shows that there is a good agreement between the two
node distribution curves.

3.3 Capacitance Distribution
Prediction of the area cost and hence the total capacitance
of a Boolean  network is an  important  step  towards power
estimation at RT-level. Because a given Boolean function
can be implemented in different ways targeting different
optimization goals, it is a difficult task to come up with
accurate area estimation effectively at RT-level. Previous
approaches on the area complexity are entropy-based [2,3].
These approaches break down when the number of inputs is
large. Here we use the literal count in the decomposed
network,  DN ,  as  a  measure of the total capacitance of the
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       Figure 2   CMAI  /L Distribution for 52 Benchmarks

area-minimized mapped  network.  The reason is that the
literal count corresponds closely to the number of transistor
pair needed to implement the function as a static CMOS
gate, and is a good area, hence, total capacitance estimator.
Therefore, it is reasonable to assume that the total
capacitance in MAI, denoted by CMAI, is proportional to the
literal count of the DN, denoted by L, i.e.

                                 )5(LkC tMAI =

where  kt  is a proportionality constant that accounts for the
gate library used and the effect of logic optimization. We
tested the capacitance estimation using (5) on 52 MCNC’91
benchmark circuits with minimum area implementation
using an industrial library. The results are shown in Figure
2 where CMAI is in units of fF and kt ≈ 30 on average. It is
shown that the approximation is reasonably accurate in
modeling the total capacitance.

In order to extract the level capacitance distribution (i.e. the
sum of node capacitances at each level) of the MN of the

MAI from that of the DN, we consider the level distribution
of the primary outputs of the DN. Intuitively, the larger the
level number of a specific primary output in the DN, the
more “complex” its logic function would be, and the more
“contribution” it would make to the level capacitance at the
related levels. Here, contribution means the number of
gates (hence, the amount of capacitance) required to
calculate the primary output. This is similar to the transitive
fanin of the primary outputs. Since the DN is a 2-input gate
decomposed network, the deeper the level of the primary
output, the larger the transitive fanin cone and the higher
the capacitance contribution would be. More specifically,
let li be the level number of the i-th primary output in the
DN. We assume its contribution to level j ( j = 0 , 1 , …, l i ),
denote by Aij , is given by

                              ( )62 j
icij lkA −⋅⋅=

where kc is a proportionality constant that depends on the
total capacitance, CMAI , as will be seen later. Thus, we
define the level capacitance at level j in the DN to be

                  ( )7,,1,0 d
i
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where the summation are taken over all primary outputs. In
analogy to the derivation of (4) for the node distribution,
the total capacitance at level k in the MN, denoted by Ck ,
can be written in terms of the total capacitance at level j in
the DN (i.e., CD

j) as follows
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where K1 = (k-1)⋅Kd /Km and  K2 = k⋅Kd /Km . It is clear
from (6)~(8) that Ck depends on kc , and the value of kc can
be determined simply by setting
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To verify the quality of the approximations made in our
capacitance distribution model, the estimated level
capacitance distribution against the actual distribution
obtained from mapped circuit after logic synthesis is shown
in Figure 3 for two example circuits. This comparison
indicates that while the agreement is not perfect, our model
is nevertheless very reasonable, especially considering that
the level capacitances are obtained only from the
distribution of primary outputs which is available after
technology decomposition.

3.4 Entropy Distribution
From (3), the entropy distribution is another factor required
for power estimation. In [2], it is shown that the entropy is
varied quadratically   with   the  circuit  level.   Considering
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Figure 3   Capacitance Distribution

that [2] assumed the total number of nodes is (PI+PO)⋅(Km

+1)/2, where PI and PO are the number of primary inputs
and the number of primary outputs, respectively, we modify
the entropy model of [2] as
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where Hi, Hin and Hout are the sums of node entropies at
level i, 0 (primary inputs) and Km (the largest level number
in the MN), respectively. The term Σnj in (10) represents the
total number of nodes, which is intended for obtaining the
same average node entropy in the modified entropy model
as in the model of [2]. Also, from equation (10), Hi can be
greater than ni (the number of nodes at level i). However,
this should not happen because ni is the possible maximum
of Hi from its definition. This suggests that the entropy
model should be further modified. We change it by first
computing Hi according to (10), then setting Hi = ni

whenever Hi > ni . For the computation of Hin and Hout , the
Monte Carlo  simulation method can be used [7].

4. POWER ESTIMATION FOR THE
MINIMUM DELAY IMPLEMENTATION
4.1 Delay Model
Previous works have been done to estimate the circuit delay
given a Boolean function [8,9]. [10] gives a comprehensive
survey on this issue. It has been shown in [8] that the delay
estimation depends on the number of logic levels and the
load capacitance. Although the load capacitance is not
available at the RT level, we can use the ratio of the literal
count of a Boolean function to circuit depth of the DN of
the function as a measure of the average load capacitance at
each level. The reason is that the literal count of the DN is
approximately proportional to the total capacitance for
MAI, as shown in (5). We now define the ratio, L/Kd, to be
the circuit width of the function, denoted by W. Intuitively,
the circuit width is a measure of the average capacitive
loading at each level of the technology-independent circuit.
This leads us to the following simple delay model for the
MAI of a circuit:
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where a1 and a2 are technology specific parameters. For
minimum delay implementation, it is natural to consider
that the circuit with smallest circuit depth would result in
minimum delay. However, this is not always true when the
effect of the capacitive loading on the circuit delay is taken
into consideration. If we focus only on the fanout
optimization problem which tries to drive a certain fanout
loading with a minimum delay, the delay can be modeled as
a logarithmic function of the load capacitance, as explained
in [9]. Based on these observations, we model the delay of
the MDI of a circuit using the following equation

                  
)12()log(

)log(

21

21

d
d

dMDI

K

L
bbK

WbbKd

+=

+=

where b1 and b2 are technology-dependent parameters that
are used to fit the abstract model to a specific
implementation technology.

4.2 Estimating Capacitance
In order to estimate the total capacitance for the MDI of a
circuit,  consider the  fanout optimization problem shown in
Figure 4. Assuming that node A is driving a large fanout
load  f in Figure 4(a), the delay can be reduced by inserting
f ½  buffers as shown in Figure 4(b). The delay difference
between Figure 4(a) and 4(b) will be proportional to  (f −
2f1/2 − kb), where kb accounts for the intrinsic delay of the
buffer. In other words, the delay gain, denoted by δd, can
be expressed as  δd ∝ (f − 2f 1/2 − kb). On the other hand, the
increase in total load capacitance, denoted by δC, is
proportional to f ½.  Since  the  circuit  width  (L/Kd )  can be
used as an approximate measure of the capacitive loading,
as described in Section 4.1,  we obtain  the following results
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Figure 4   A Fanout Problem

by replacing  f  with L/Kd :
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where k1 and k2 are technology specific constants. Thus, the
total capacitance of the MDI can be estimated by
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where  dMAI , dMDI , CMAI and |δC/δd|  are given by (11),
(12), (5) and (14), respectively.

4.3 Power Approximation
We have observed that, for large circuits, the entropy (or,
exactly, the average entropy per node) distributions along
logic levels in the MAI and in MDI are very similar on
average, although their numbers of logic levels and total
capacitance values can be quite different. Furthermore, the
shapes of the capacitance distribution with respect to the
logic levels of the MAI and MDI of a circuit have also been
found to be quite similar, in most cases, from our
experiments. These empirical results suggest that the
difference of the power consumption of different
implementations for the same circuit depends mainly on the
difference of their total capacitance. Thus the average
power of the MDI, denoted by PMDI, can be simply
approximated by

                         )16(MAI
MAI

MDI
MDI P

C

C
P =

where PMAI  represents the average power of the MAI of
same circuit.

5. RESULTS AND DISCUSSIONS
The techniques described in this paper have been
implemented. We carried out experiments using the
MCNC’91 benchmark circuits. The input Boolean function
is first decomposed using 2-input NAND gates and
inverters,  and  power consumption of the MAI and MDI are

Table 1  Regression Results

Parameter a1 a2 b1 b2 k1 k2

Value .010 .610 .452 .195 3.60e-5 4.60e-4

Table 2  Delay (in ns) and Total Capacitance (in fF )
Estimation on Benchmarks

MAI MDI
Example actual

delay/cap.
estimated
delay/cap.

actual
delay/cap.

estimated
delay/cap.

9symml 17.1/ 17993 16.3/ 16950 13.2/ 24956 16.0/ 24012
C499 17.9/ 24838 19.9/ 24840 16.0/ 46204 17.7/ 50185
C1908 31.1/ 31473 30.5/ 28770 28.6/ 56285 30.0/ 51860
C2670 34.1/ 51166 36.5/ 47610 24.8/ 93258 31.4/ 98056
C3540 60.0/122783 70.3/115800 44.3/194649 46.6/234490
C6288 113/ 147000 117/ 149130 99.1/302208 102/ 304519
C7552 64.5/171307 85.4/163440 48.2/284461 41.6/305204
apex6 29.7/ 47992 29.9/ 46080 19.9/ 83652 21.8/ 95155
apex7 11.6/ 14687 13.0/ 13680 10.5/ 24677 12.7/ 20605

c8 12.1/ 7628 8.2/ 7710 7.6/ 13998 8.1/ 15086
example2 12.6/ 20304 13.2/ 19140 10.7/ 34127 10.2/ 39854

frg2 96.9/ 49762 83.1/ 49230 23.1/ 90455 24.8/101800
i3 4.7/ 18896 5.1/ 18780 3.8/ 34916 3.5/ 38155
i8 47.8/ 69899 33.2/ 68490 23.0/114930 19.5/130635

estimated using the methods described in Sections 3 and 4.
The actual minimum area and minimum delay
implementations are generated under the SIS environment
using script.rugged script for logic optimization. The power
consumption of the mapped circuits are then estimated
using a real delay gate-level power simulator, assuming a
5V supply voltage and 10MHz operating frequency.

Before obtaining the experimental results, we derived
technology-dependent parameters, such as a1 and a2 in (11),
b1 and b2 in (12) and, k1 and k2 in (14) for the target gate
library using linear regression technique on five benchmark
circuits. Table 1 shows the regression results. Based on
these parameters, we predicted the circuit delay using (11)
and (12), estimated the total capacitance using (5) and (15),
and compared them with the actual values obtained from
the mapped circuits. The results are shown in Table 2. On
average, our delay model produces the error of about 12.9%
and 11.3% for the MAI and MDI, respectively. The average
errors of our total capacitance estimation are 3.9% for the
MAIs and 10.3% for the MDIs of the tested circuits.

To assess the accuracy of power estimation, we tested (3)
and (16) on the benchmark circuits. The input signal
probabilities are assumed to be 0.5. The output entropies
are obtained by Monte Carlo simulation. The experimental
results are reported in Table 3. The power consumption
estimation for the MAIs based on the approach proposed in
[2] is also included for comparison. Note that the approach
in [2] does not include the estimation of the capacitance and
here we use the total capacitances as estimated in (5) for
power estimation. As shown in Table 3, for the MAIs, the
average percentage error of  our power estimation  is  7.5%,

    A     A

 B  B  B



Table 3   Power Comparison on MAIs and MDIs of
Benchmarks (in µw)

MAI MDI
Example sim.value our est.  est. of  [2] sim. value our est.

9symml 912.5 883.0 720.5 1315.9 1250.8
C499 1227.8 1370.8 1544.1 2230.0 2769.5
C1908 1383.6 1398.6 1724.6 2441.6 2521.1
C2670 2623.6 2630.2 1831.0 4722.6 5417.0
C3540 4905.7 5488.1 5979.3 7528.2 11113.1
C6288 8104.3 6833.6 9161.4 15666.6 13953.9
C7552 9118.7 8475.8 8871.8 14835.5 15827.6
apex6 2326.3 2458.0 2459.4 3840.9 5075.8
apex7 759.6 744.8 756.4 1237.8 1122.9

c8 404.7 426.4 461.4 700.0 834.4
example2 961.6 1058.0 768.0 1610.8 2203.0

frg2 2269.2 2613.9 2270.3 3895.2 5405.1
i3 922.1 1021.0 773.4 1769.5 2074.3
i8 3124.0 3226.2 3972.1 4998.5 6153.4

Avg.  err.                       7.5%          15.9%                             20.6%

         Table 4   Power Estimation on MAIs with Different
                                   Values of αα and ββ (in µw)

αα = 1.3 ββ = 0.7Example
ββ = 0.7 ββ = 0.5 ββ = 1.0 αα = 1.1 αα = 1.5

9symml 883.0 873.1 877.0 883.0 868.3
C499 1370.8 1383.5 1360.8 1364.9 1384.6
C1908 1398.6 1424.1 1381.1 1379.3 1411.1
C2670 2630.2 2748.4 2511.1 2511.8 2699.9
C3540 5488.1 5535.8 5426.9 5477.7 5596.2
C6288 6833.6 6866.7 6849.5 6805.1 6812.8
C7552 8475.8 8667.6 8314.6 8292.7 8665.6
apex6 2458.0 2567.6 2373.1 2379.1 2513.2
apex7 744.8 760.6 723.2 724.8 746.5

c8 426.4 435.6 405.1 409.9 428.6
example2 1058.0 1071.7 1018.3 1024.5 1067.4

frg2 2613.9 2665.5 2573.2 2572.6 2703.7
i3 1021.0 1068.2 975.5 1018.5 1059.8
i8 3226.2 3261.1 3198.2 3089.2 3330.4

while that of [2] produces 15.9% error on average. The
error in power estimation of the MDI is in general higher
than that of the MAI. An average 21% error is reported. It is
because the capacitance estimation model is not as accurate
as that for the MAI. The results show in cases where the
estimated capacitance distribution and the actual
capacitance distribution differ by a significant amount (e.g.
C3540), the power estimation will lead to large errors.

Finally, we also tested the impact of α and β introduced in
Section 3.2 on our power estimation by using different
values of α  ranging from 1.1 to 1.5 and different values of
β  ranging from 0.5 to 1.0. Table 4 reports the testing

results for the MAIs. It can be seen from this table that the
power estimation variations are less than 5% in most cases,
and less than 10% in the worst case for all tested circuits.
This indicates that our power estimation is quite insensitive
to both α and β.

6. CONCLUSION
We have described an entropy-based RT-level power
estimation technique using technology decomposition. We
focused on generating the power-area-delay trade-off curve
by estimating power consumption and delay values of two
different circuit implementations, the minimum area
implementation and minimum delay implementation. Our
approach takes into account the structural information such
as the node, capacitance and entropy distribution of a given
circuit and hence can achieve higher accuracy. From the
experimental results, we have shown that the proposed
technique is a significant improvement over previous
techniques.
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