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Abstract size both gates and wires. Several results on simultaneous
This paper considers simultaneous gate and wire sizing for geigate and wire sizing have been reported [2, 7, 8, 16, 18, 20].
eral VLSI circuits under the EImore delay model. We present a faf8] studied simultaneous driver and wire sizing and [2] con-
and exact algorithm which can minimize total area subject to maxgidered simultaneous wire and buffer sizing, but both works
imum delay bound. The algorithm can be easily modified to givenly apply to circuits that are of tree topology. For simulta-
exact algorithms for optimizing several other objectives (e.g. mirdeous gate and wire sizing for general circuits, [18] uses a
imizing maximum delay or minimizing total area subject to arrivalleast-square optimization technique, [16] employs a sequen-
time specifications at all inputs and outputs). No previous algorithrial quadratic programming approach, and [7] uses a greedy
for simultaneous gate and wire sizing can guarantee exact solutiosZing technique in conjunction with dynamic programming.
for general circuits. Our algorithm is an iterative one with a guar- But none of these algorithms can guarantee to give exact so-
antee on convergence to global optimal solutions. It is based on L&dtions for objectives such as minimizing total area subject to
grangian relaxation and “one-gate/wire-at-a-time” local optimiza- maximum delay bound or minimizing maximum delay.

tions, and is extremely economical and fast. For example, we can | this paper, we consider simultaneous gate and wire siz-
Op_t'm'zeda cu2rc3u':;évnh 27,648 gatefBi‘A”gé"/'é%%g” abi“: ?6 MINUteR\q for general VLSI circuits under the Elmore delay model.

using under memory on an workstation. \ve present a fast and exact algorithm which can minimize
1 Introduction total area subject to maximum delay bound. The algorithm

Since the invention of integrated circuits almost 40 year§n be easily modified to give exact algorithms for optimiz-
ago, gate sizing has always been an effective technique i) Several other objectives (e.g. minimizing maximum delay
achieve desirable circuit performance. As technology corff Minimizing total area subject to arr.|val t|_me speuﬁpauons
tinues to scale down, total number of gates and interconne@s@ll inputs and outputs). Our algorithm is an iterative one
within a die grows over millions. In such increasingly dens'ith & guarantee on convergence to global optimal solutions.
integrated circuits, a significant portion of the total circuit delt 1S based on Lagrangian relaxation and “one-gate/wire-at-
lay comes from the interconnects. Therefore, developing efft-time” local optimizations, and is extremely economical and
cient algorithms which can handle large scale gate and intd@St- For example, we can optimize a circuit with 27,648 gates
connect optimization problems are of great importance. ~ @nd wires in about 36 minutes using under 23 MB memory on

In the past, gate delay was the dominant factor in determi! 1BM RS/6000 workstation.

ing circuit performance. Thus, gate and transistor sizing have The problem in this paper is formulated as a geometric pro-
been extensively studied in the literature [6, 12, 15, 20]. Agram [10]. Note that the transistor sizing problem is similar to
interconnect delay plays an increasingly important role in d&ur problem and was also formulated as a geometric program
termining circuit performance, wire sizing has been an actieng time ago [12]. However, it would be very slow to solve it
research topic in the past few years [2, 4, 7, 9, 17, 19]. by some general-purpose geometric programming solver. So
Since gate sizes affect wire-sizing solutions and wire sizéfistead of solving it exactly, [12] proposed TILOS, which is
affect gate-sizing solutions, it is beneficial to simultaneouslased on an efficient sensitivity-based heuristic. Years later,

*This work was partially supported by the Texas Advanced Research PrLZ-O] transforms t.he geomet”.c program Into a convex program
gram under Grant No. 003658288 and by a grant from the Intel Corporatio@:nd they solve it by a sophlstlcated general—purpose convex
tCurrent address of Chung-Ping Chen is: Intel Corporation, 2111 N.gorogramming solver based on interior point method. This is
25th Ave, Hillsboro, OR 97124-5961. the best known previous algorithm that can guarantee exact
transistor sizing solutions. However, as we explore the special

structure of the geometric program, our tailored algorithm is
much faster than algorithms using general-purpose solvers as
in [20]. For example, the largest test circuit in [20] has 832
transistors and the reported runtime and memory are 9 hours
(on a Sun SPARCstation 1) and 11 MB, respectively. For a
problem of similar size (864), our approach only needs 7 sec-




onds of runtime (on a RS/6000 workstation) and 1.15 MB oif node: and nodej are connected to an input and the output
memory. of some component respectively, then- j. Forn + 1 <

The rest of this paper is organized as follows. In Section 2,< n + s, the node with index is the one connecting to the
we will introduce some notations and terminology that we willi — n)th input driver. The node with index is the output
use in this paper. In Section 3, we will present our algorithrpoint of the input component. It is not difficult to see that if
for the problem of minimizing total area subject to maximunwe view the circuit as a directed acyclic graph, the node index
delay bound. In Section 4, we will show how to modify ourassignment is a reverse topological ordering of the graph. We
algorithm to minimize maximum delay, to handle arrival timealso label the components by indexgs. ., m such that the
specifications at all inputs and outputs, to consider power conutput of the component with indexs connected to node
sumption and to use a more accurate gate model. In SectiBre Figure 2 for an illustration of the circuit in Figure 1 with
5, experimental results of our algorithms are presented.  factitious components, node indexes and component indexes.

2 Preliminaries

In this section, we will define some notations and terminol(-:or'r?g,’,;’rt1ent
ogy that we will use in this paper.

For a general VLSI circuit, we can ignore all latches and
optimize its combinational subcircuits. Therefore, we will fo-
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cus on combinational circuits below.
Given a combinational circuit witk input drivers,t out-
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put loads, and gates or wire segments, the gate sizes or the :---13
segment widths are allowed to be varied in order to optimize _
some objective. Fot < i < s, let RP be the driver resis- N
tance of theith input driver. Forl < i <, letC/ be the load  Figure 2: The circuit in Figure 1 with factitious components, node
capacitance of thih output load. See Figure 1 for an illustra- indexes and component indexes.

tion of a circuit. Note that it is reasonable to assume that the

13

gates are of bounded fanin. Hence- O(n) andt = O(n).
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Figure 1:A combinational circuit.

A gate, a wire segment, or an input driver is callecban-

For0 < ¢ < m — 1, letinput(:) be the set of indexes of
components directly connected to the input(s) of component
i. Forl < ¢ < m, let output(i) be the set of indexes of
components directly connected to the output of compohent
For example, for the circuit in Figure 2pput(0) = {1, 2},
input(2) = {4,5}, andoutput(2) = {0}. Note thatj €
input(z) if and only ifi € output(j).

Let G, W andD be respectively the set of component in-
dexes of gates, wire segments and input drivers in the cir-
cuit. For the circuit in Figure 26 = {2,6,7}, W =
{1,3,4,5,8,9,10}andD = {11, 12}.

If i € G, then letz; be the gate size;; be the output re-
sistance of the gate amglbe the input capacitance of a pin of
the gate. (To simplify the notations, we assume without loss

ponent In order to unify the notations that we will introduce Of generality that the input capacitances of all input pins of
later, imagine that two factitious components are added to tifegate are the same.) L&tandc; be respectively the unit
circuit as shown in Figure 2. The first one is called an outpifiz€ output resistance and the input capacitance per unit size
component which consists of all theutput loads. The sec- of gatei. Thenr; =7;/z; ande; = ¢;z;. If i € W, then letz;

ond one is called an input component which connects to dle the segment widthr; be the segment resistance ande

the s input drivers. Let anodebe a connection point between the segment capacitance. kgte; andf; be respectively the

two components or the output point of the output componerighit width wire resistance, the wire area capacitance per unit
Note that the output of each component should connect tovddth and the wire fringing capacitance of segménihen

distinct node. So it is easy to see that thererare s + 2
components and + s + 2 nodes.
Letm = n+s+1. We label the nodes by index@s .., m

as follows. The node with indeX is the output point of the

output component. Fdr < ¢ < ¢, the node with index is the
one connecting to thah output load. Fot + 1 < i < n, the

r; = Ti/x; ande; = ¢z + fi. Fori € GUW, let L; andU;

be respectively the lower bound and upper bound of the value
For the purpose of delay calculation, we model compo-

nents as RC circuits. A gate is modeled as a switch-level RC

circuit as shown in Figure 3. (For simplicity, we ignore the

node with index is a connection point among the gates andhtrinsic gate delay in the model. It is easy to see that all our
wire segments. The indexes are assigned in such a way thesults will still hold even if intrinsic delay is considered.) A



wire segment is modeled asratype RC circuit as shown in load). Then for anyp € P, the Elmore delay along pathis

Figure 4. > iep Di-
_ S 3 Minimizing total area subject to maximum
Component! e o delay bound
:D —> In this section, we will solve the problem of minimiz-
sze x qu ing the total component area with respect to component sizes
T 77777777777 z1,...,T, Subject to the constraint that the maximum delay

Figure 3: The model of componerit which is a gate, by a switch- from any input driver to any output load is at most some con-

level RC circuit. Although the gate shown here is a 2-input ANDStam‘_40 (ie. Ao is a bound on the arrival t_ime at r_‘°‘_’¢ .
gate, the model can be easily generalized for any gate with any nuf¥¥e Will formulate the problem as a constrained optimization
ber of input pins. problem and then solve it using Lagrangian relaxation. La-

grangian relaxation is a general technique for solving con-
strained optimization problems. We outline the basic idea
of Lagrangian relaxation below. More details can be found

‘|:|‘ . | 1 in[1, 13, 14].
L L We call the constrained optimization problem to be solved

width x 3 3 the primal problem®P). In Lagrangian relaxation, “trou-

) blesome” constraints iPP are “relaxed” and incorporated
Figure 4:The model of componerit which is a wire segment, by a into the objective function after multiplying them by con-
m-type RC circuit. stants called Lagrange multipliers, one multiplier for each

_ ) constraint. For each fixed vectarof the Lagrange multipli-

_ Elmore delay model [11] is used for delay calculation. Bagrs introduced, we have a new optimization problem (which
sically, the Elmore delay along a signal path is the sum of théhoyd be easier to solve because it is free of troublesome con-
delays associated with the resistors in the path, where the dgrajnts) called the Lagrangian relaxation subproblem associ-
lay associated with a resistor is equal to its resistance timggd with A (LRS/A). It can be shown that there exists a
its downstream capacitance. For our case, each compongagtor\ such that the optimal solution dfRS/A is also the
(except the 2 factitious components) contains a resistor. Vptimal solution of the original probleP. The problem of
label the resistors by indexes. .., n + s such that resistar  finding such a vectoh is called the Lagrangian dual problem
is the one inside componeit For convenience, for € D, (LDP). So if we can solve botd RS/ andLDP, then the

letr; = R, (i.e. the driver resistance of tifeé — n)th input  optimal solution of PP will be given by LRS /A where is
driver). So fori € GUWUD, the resistance of resistdisr;.  the optimal solution o D7P.

Fori € GUWUD, letC; be the downstream capacitance of  |n Section 3.1, we will show how to formulate the gate and
resistori. Figure 5 shows the circuit in Figure 2 after replacyyire sizing problem as a constrained optimization problem
ing the components by the RC models. The resistance of eagfth a polynomial number of constraints. This formulation is
resistor is marked in the figure. Also, the regions correspongyr primal problem®P?). In Section 3.2, we will show how
ing to the downstream capacitances of resistand resistor pp is relaxed to obtain th€RS /. We will use the Kuhn-
12 are shaded. Tucker conditions (see [1] for a reference) to greatly simplify
LRS/A. We call the simplified versiodRS /. In Section
3.3, we will show how to solv&€RS/u (i.e. LRS/A) for
any fixed vectop. In Section 3.4, we will show how to solve
the LDP by the classical method of subgradient optimization.
Due to space limitation, all the proofs in this section have been
omitted. They can be found in [5].
3.1 Problem formulation
~ . The total component area can be writterd3$ ; o;z; for

\Su I \Su I some constanta;,...,a,. So the problem of minimizing

TG, e g e total area subject to maximum delay bound can be formulated

Figure 5: The circuit in Figure 2 after replacing the gates and wirdli"eCtly as the mathematical program:
segments by the RC models. min. Z?Zl iz

S.t. ZiEp D; <Ay VpeP

Component i

Let D; = r;C; be the delay associated with resistoWe Li<z; <U; i€GUW
represent a signal path passing through resistors. , 75, by -7
the setp = {i1,...,ir}. Let’P be the set of all possible paths However, the number of possible signal paths from nade

from nodem to nodeo0 (i.e. from an input driver to an output node0 (and hence the number of constraints in the mathemat-



ical program above) can be exponentiakin So this direct By rearranging (1), we can write
formulation is impractical.

This difficulty can be handled by the classical technique of n+s
partitioning the constraints on path delay into constraints onLy(z,a) = Z Z Aik — Z Aji | a
delay across components. We associate a varighile each i=1 \ k€output(i) jeinput(i)
nodei. a; represents the arrival time at nodlé.e. the max- + terms independent of adl;’s

imum delay from noden to node:). Then it is not difficult
to see that the mathematical program below, which we calleg 51, /9a; = 0 for 1 < i < n + s imply the following

the primal problem®7P), is equivalent to the mathematical gptimality conditions on Lagrange Multiplieds
program above:

PP: min. Y0 oz oo dik= Y, Nifori<i<n+s (2
st. a; <4 J € input(0) ke output(i) Jj€input (i)
aj+D; <a; i€ GUWAV) € input(i) o
D; < a; 1€D Let 2y = {A > 0 : X satisfies (2)}. We observe
Li<z;<U; i€eGUW that by considering only thosk in €2, and substituting (2)

back to (1), we can greatly simplify the objective function
Note that the number of constraintsRP is linear inn. Also L, (x, a), and hence the probledRS /. This is summa-
note that for the probler®P, the objective function and the rized in the following lemma.
constraints can be rewritten in the form of posynomials [10].
Itis well known that under a variable transformation, the probbemma 1 For any A € ), the optimale of LRS/A is the
lem is convex. S@PP has a unique global minimum and nosame as the optimal of
other local minimum. We will see how to sol\RP in the

following. LRS/p: min. L,(x)

3.2 Lagrangian Relaxation st. L;<z;<U; i€GUW
Following the Lagrangian relaxation procedure, we in-

troduce a non-negative value called the Lagrange multiplid¥herep = (Ko, ... bnts)s i = Do icimpus(iy i fOr 0 <

for each constraint on arrival time. Fgre z'n_put(o) (ie. i<n+s, andL,(z) = Z?:l ;i + Z?;S piD;.

Jj =1,...,t), we introduce\;, for the constraint; < A.

Fori € GUW and forj € input(:), we introducel;; To solveLRS /A, we can solv&€RS / u to find the optimal

for the constraint; + D; < a,;. Fori € D, we introduce . Thenthe optimak can be found by considering one by one
Ams for the constraintD; < a;. Let A be a vector of all the the variable;’s in the order of decreasing For eachy;, we

Lagrange multipliers introduced. Let = (zi,...,z,) and setitto the smallest possible value that satisfies the constraints
a=(ay,...,ants). Let of PP.
n 3.3 SolvingLRS/u
Ly(z,a) = Z ;T In this subsection, for any fixed > 0, we will show how
i=1 to solveLRS /u optimally by a greedy algorithm based on it-
+ Z Xjo(a; — Ao) eratively re-sizing the gates and wire segments. Similar tech-

nigues have been successfully applied to some other wire or

jEinput(0) ..
buffer sizing problems before (e.g. [3, 9]).
+ 0> Y Nilaj+ Di—a) For1 < i < n, let upstream(i) be the set of re-
i€EGUW jeinput(i) sistor indexes (excluding) on the path(s) from compo-
+ Z)\mi(Di — a;) (1) nent: to the nearest upstream gate(s) or input driver(s).

For example, for the circuit in Figure Sypstream(l) =
,6} and upstream(6) = {8,9,11,12}. Let R, =
w;r; (i.e. R; is a weighted upstream resis-

i€D

3
Then the Lagrangian relaxation subproblem associated Wi%jeupstream 9

the Lagrange multipliera will be: tance of componeny). Fori € W, letC} = C; — ¢;z; /2, and
LRS/A: min. Ly(z,a) fori € GUD, letC; = C;. Note that forl < i < n, C}is
st Li<z;<U; i€GUW independent of;.

If we re-size componerit(i.e. changing:;) while keeping
Let (z*,a*) be the optimal solution oPP. By Kuhn- the sizes of all the other components fixed, we say that it is a
Tucker conditions, if the optimal solution @RS/ is also local re-sizing of componerit An optimal local re-sizing of
the optimal solution oPP, thenX must satisfy the conditions component is a local re-sizing that minimizé, (x), and is
9L, (z*,a*)=0for1 < i < n + s. Therefore, we can given by the following lemma.

consider only thosa satisfying these conditions.




Lemma?2 Letz = (Z4,...,%,) be a component-sizing so- Theorem 1 For any fixed vectorp > 0, algorithm
lution. An optimal local re-sizing of componenis given by SOLVELRY pu always converges to the optimal component-
changing the size of componeérib sizing solution of the probledRS /.

Algorithm SOLVELRS/u runs inO(rn) time usingO(n)
storage, where is the number of sizable components and
is the number of iterations. We observe thad constant (i.e.
the run time of SOLVELRS/ v is linear) in practice.

3.4 Solving theLDP

LRS/u can be solved by a greedy algorithm based on itera- Define the functio@(A) = the optimal value of the prob-
tively re-sizing the components. In each iteration, the comem LRS/A. In this subsection, we will consider the La-
ponents are examined one at a time; each time a compgrangian dual problem:

nent is re-sized optimally using Lemma 2 while keeping the -

sizes of the other components fixed. We call the algorithm LDP: Max_lmlze Q)

SOLVE.LRS/u and it is described below. Note that in order Subjectto A € €2
to use Lemma 2 to re-size componeyive need to compute  As said in Section 3.1PP can be transformed into a con-

R; andC first. Our algorithm SOLVELRS/ u compute€j’s  vex problem. So Theorem 6.2.4 of [1] implies thathfis

and R;'s incrementally by traversing the circuit in a reversehe optimal solution ofDP, then the optimal solution of
topological order (step 2) and in a topological order (step 3RS/ will also optimizePP.

respectively. So it is not difficult to see that each iteration of By Theorem 6.3.1 of [1]Q(\) is a concave function over

the algorithm takes onl@(n) time. A > 0. However,LRS /A is not differentiable in general. So
methods like steepest descent, which depends on the gradient

z; = min (Ui,max (Li,

(3

Bi(@)/A:(@)))

WhereAi(:c) =GR; + andBi(:c) = ,ufZC’l’

ALGORITHM SOLVELRS/u:
Output: « = (z1,...,z,) which minimizesL,,(x)
l.fori:=1tondoz; := L;
2. [* Finding C} for 1 < i < n by traversing
the circuit in a reverse topological order */
fori:=1totdo

C,._{CiL ifieg
PTG+ 2 fiew
for i :=t+1tondo

o= 0 ifieg

T fi)2 ifiew

forall ks.t.i € input(k) do
C{Z:{ C{"‘Ekxk Ifkeg
¢ Ci+Crxy + fu/2+C), fkeW
3. /*Finding R; andz; for 1 < ¢ < n by traversing
the circuit in a topological order */
for ¢ := n downto 1 do
R; =0
forall j € input(s) do

Ri + pjrj/z; ifjeg
R; .= R¢+,uj?j/a:j+Rj if j ew
R, + MjRﬁn if j€D

z; = min (Ui, max (Li, \//,Lﬁ,C'l'/(/c\lRl + ai)))
4. Repeat step 2 and 3 until no improvement.

directions, are not applicable. The subgradient optimization
method is usually used instead. The subgradient optimization
method can be viewed as a generalization of the steepest de-
scent method in which the gradient direction is substituted by
a subgradient-based direction (see [1] for a reference).

Basically, starting from an arbitrary poit, the method
iteratively moves from the current point to a new point fol-
lowing the subgradient direction. At stdp we first solve
LRS /A (by solving the simpleLRS /). Then for each re-
laxed constraint, we define the subgradientto be the right hand
side minus the left hand side of the constraint, evaluated at the
current solution. The subgradient direction is the vector of all
the subgradients. We move to a new point by multiplying a
step sizep; to the subgradient direction and adding itXo
After each time we moved, we projeatback to the nearest
point in 2, so that we can solvERS/p instead ofLRS /A
for the next iteration. The procedure is repeated until it con-
verges.

It is well known (see Theorem 8.9.2 of [1]) that if the
step size sequengey, } satisfies the conditiodan o pr, =
0 and Y7, pr = oo, then the subgradient optimization
method will always converge to the optimal solution.

The description is summarized in the algorithm
SOLVE_LDP below.

Theorem 2 The algorithm SOLVE.DP always converges to
the optimal solution o£DP.

Note thatZ,, (x) is a posynomial [10] ire. Itis well known
that under a variable transformation, a posynomial is equi
alent to a convex function. Sé€,(x) has a unique global
minimum and no other local minimum. We can prove th
following theorem which says that algorithm SOLMIRS/pr Theorem 3 For simultaneous gate and wire sizing, the prob-
always converges to the global minimum. lem of minimizing total area subject to maximum delay bound

can be solved optimally by SGWS-LR.

_ We conclude Section 3 by giving the algorithm SGWS-LR
\(Simultaneous Gate and Wire Sizing by Lagrangian Relax-
eation) below.



ALGORITHM SOLVE.LDP:
Output: A which maximizesLRS /A
1. k := 1 /* step counter */
A := arbitrary initial vector inf2
2. p= (MO» cee a,unJrs) Where,ui = Zjeinput(i) )‘ji
SolveLRS/A. (SolveLRS /p by SOLVELRS/ s,
and then calculatey, .. ., a,4s as in Section 3.2).
3. /* Move to a newA by adjusting multipliersy ;; */

ThenLRS /A can be simplified to

LRS/p: min. L,(x)

S.t. L, <z; <U; 1eGUW
wherep = (o, .-y thnts), i = Z].emput(i) Aj; for 0 <
1<n+s, andLu(.’L') = E?:ls wiD;.

It is easy to see thaf RS/u can be solved optimally by
the iterative local re-sizing algorithm in Section 3.3 and the

fori:=0ton +sdo

correspondindDP can be solved optimally by the subgradi-
forall j € input(i) do

ent optimization method as described in Section 3.4. There-

Aji + pr(a; — Ao) ifi=0 fore the problem of minimizing maximum delay can also be
Aji =4 Aji +pr(e; + Di —a;) ific GUW/|  solved optimally by our approach.
Aji + pr(Di — ai) if: €D In fact, the problem of minimizing maximum delay sub-

4. ProjectA onto the nearest point i,,. ject to area bound can also be optimally solved by our La-
5. k:=k+1 grangian relaxation approach. The constraint on area can be
6. Repeat step 2-5unfip_;"; a;z; — Q(X)) <errorbd.| relaxed and incorporated into the objective function as well.
The functionL) (z, a) will be of the same form as the one in
Section 3.2.
ALGORITHM SGWS-LR: L , 4.2 Arrival Time Specifications on Inputs and Out-
Output: the optimal gate and wire sizing solutian puts

1. Call SOLVELDP to find the optimal.
2. p=(uo,--.,tnt+s) Whereu;, = Zjeinput(i) Aji
3. Call SOLVELRS/p to find the optimate.

We show in this subsection that different arrival time speci-
fications on the input and output signals can be easily handled.
We demonstrate the idea by considering the problem of min-
imizing total area subject to different arrival time constraints
at inputs and outputs.

Fori € D, let A; be the arrival time specification of the
put signal at thé: — n)th input driver. Forj € input(0),
t A; be the arrival time requirement on the output signal at
e jth output load. Then the problem can be formulated as
llows:

4 Extensions

In this section, we will show how to extend our approacii1n
to handle problems with other objectives and with other con;
straints. For all the extensions, as we will see, only sligt}
modifications to our algorithms presented in Section 3 ar,
needed. Moreover, convergence to global optimal solutions

is still guaranteed. Actually, it is not difficult to see thatany PP : min. Y7 | oz;

combination of the problem in Section 3 and the extensions st a; < A; J € input(0)

here can be handled similarly. For example, we can optimally aj+D;<a; i€ GUWAVJ E input(s)
solve the problem of minimizing power subject to bounds on A;i+D;<a; 1€D

area and on maximum delay from any input to any output. Li<z; <U; 1€GUW

4.1 Minimizing Maximum Delay We can obtz.iin. exactly th_e same optimality conditions on La-
: o grange multipliers as (2) in Section 3.2. The probleRS /u
|nStead Of haV|ng a constant bOUFld fOI’ the arnval time is a|so in exact|y the same form as the one in Lemma l. So
at node0, we introduce one more variabig to represent the LRS /1 andLDP can be solved as before.
arrival time at node (i.e. maximum delay), and we wantto 4 3 power Consideration
minimize ag. As in Section 3.1, the problem can be formu-

X For eachi, the power consumption of components
lated as the mathematical program below:

proportional to its sizer;. Therefore, the total power con-
sumption can be written ag;;l Bix; for some constants

PP: min. ag Bi,..., By Itis of the same form as the total component area.
st a;<ag j € input(0) So it is easy to see that it can be handle in exactly the same
aj+D; <ai i€GUWAVjcinput(i)  wayascomponentarea.
D;i < a; i1eD 4.4 More Accurate Gate Model

For higher precision timing requirements, more accurate
gate models are desirable. Although in Section 2, we model
As in Section 32, we relax all the constraints on arrival time tg gate as a switch-level RC circuit with a resistance propor-
obtain the problen£RS /. By Kuhn-Tucker conditions, we tional to the gate size, better gate models can be easily inte-
can focus onthos&in Qx ={X > 0: 3, .....i) Ak =  grated into our algorithm. We now show an example of using
Y jcimputiy i forl <i<m+sAL =3, .40 Ao}  precharacterized function as the delay model for gates.



The following precharacterized delay functidn () and Runtime vs. Circuit Size
output slope functiof;() can capture the input slope effect Minutes
as well as the diffusion capacitance effect to the delay of gate T

i 35.00 - :
30.00 - :
Di(zi, ti, Ci) = 5i + Piti + Gz + 703/ xi, 25.00 - ]
Ti(wi,ti, Ci) = i + piti + qiwi + 703z, 20.00L i
wherez; is the gate sizet; is the input rise or fall time of 15.00 -
gatei, C; is t.he capac_itgnce load;, q;,7;, i, ; and7; are 10.00 - i
precharacterized coefficients.
It is not difficult to see that while keeping the size of other 5001 ]
components fixed, the input slopgis a linear function ofz; 0.00[, ‘ ‘ ok devices x 103
since gate contributes only the linear terfijz; to its parents’ 0.00 10.00  20.00  30.00

gzp;gl(l:g\?vg(-:e load. Hence the delay of gatan be rewritten Figure 6: The runtime requirement of our algorithm vs. circuit size.

Storage vs. Circuit Size

Di(zi,t;,C;) =5 + @'z + 7iCy [z MB

Where”s‘i’ =5 +ﬁi(§j +f7jtj + (jjéﬂj), E]\il = E]\z +]/9\Z/C\Z;—]], and
componeny is the parent of componentltis not hard to see 20.00 - N
that after the substitutiod;(z) = ¢;R; + o; + @;'. Hence
our algorithm in Section 3 will still converge to the optimal 15.00 |- s
solution under this modification.
5 Experimental Results 10007 il

We implemented our algorithms in an RS/6000 worksta- 500 i
tion. We ran our algorithms on adders of different sizes rang- '
ing from 8 bits to 512 bits. Number of gates range from 120 to 0.001

| | | |
000 1000 2000  30.0

D

15,360. Number of wires range from 96 to 12,288 (note that

the number of wires here means the number of sizable wire

segments). The total number of sizable components rang&yure 7: The storage requirement of our algorithm vs. circuit size.

from 216 to 27,648. The lower bound and upper bound of

the size of each gate are 1 and 100 respectively. The lowpte that the optimal solution is always inbetween the upper

bound and upper bound of the width of each wire are 1 and®und and the lower bound. So these curves provide useful in-

um respectively. The stopping criteria of our algorithm is théormation about the distance between the optimal solution and

solution is within 1% of the optimal solution. the current solution, and help users to decide when to stop the
Table 1 shows the runtime and storage requirements of opfrogram.

algorithm. Even for a circuit with 27,648 sizable components, Figure 9 shows the area versus delay tradeoff curve of a

the runtime and storage requirements of our algorithm args-bit adder. In our experiment, we observe that to generate a

only about half an hour and 23 MB respectively. The maxnew point in the area and delay tradeoff curve, SOLMEP

imum delays for the solution of minimum gate and wire sizessonverges in only about 5 iterations. It is because Xhef

and for our solution are also listed. the previous point is a good approximation for that of the new
Figure 6 and Figure 7 show the runtime and storage rgyoint and hence the convergence of SOLMBP is fast. As

quirements of our algorithm respectively. Figure 6 shows thaf result, generating these tradeoff curves requires only a little

the runtime increases roughly three times when the circuit sizgt more runtime but provides precious information.

is doubled. Hence the empirical runtime of our program is

ab.outnlog 3'/10.‘%2 ~ nbb, Figure 7 shows that the storage re'Fieferences

quirementis linear to the circuit size. The storage requiremen

for each sizable Component is about 0.8 KB. [1] M. S. Bazaraa, H. D. Sherali, and C. M. ShettMonIinear
Figure 8 shows the convergence sequence of our algorithm Programming: Theory and AlgorithmsJohn Wiley & Sons,

SOLVE_LDP on a 128-bit adder. It shows that our algorithm .. second edition, 1993.

converges steadily to the optimal solution. The solid line and>] chung-Ping Chen, Yao-Wen Chang, and D. F. Wong. Fast

the dotted line represent respectively the upper bound and " performance-driven optimization for buffered clock trees based
lower bound of the optimal delay. The lower bound values  on Lagrangian relaxation. IRroc. IEEE ICCAD pages 405—

come from the optimal value af RS/ at current iteration. 408, 1996.
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(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

Circuit Name Circuit Size Maximum Delay (ns)|| Runtime | Memory

# Gates| # Wires | Total || Min. Size | Our Alg. || (min:sec) (MB)
adder (8 bits) 120 96 216 8.55 4.70 0:01 0.48
adder (16 bits) 240 192 432 17.23 8.12 0:02 0.76
adder (32 bits) 480 384 864 33.36 16.00 0:07 1.15
adder (64 bits) 960 768 | 1728 66.07 31.90 0:15 1.75
adder (128 bits) 1920 1536 | 3456 131.51 63.70 0:39 2.82
adder (256 bits) 3840 3072 | 6912 262.43| 127.32 3:05 5.37
adder (512 bits) 7680 6144 | 13824 524.08| 256.21 13:09 11.83
adder (1024 bits)| 15360 | 12288 | 27648 1047.53| 508.95 36:12 22.92

Table 1: The runtime and storage requirements of our algorithm on test circuits of different sizes.

The Convergence Sequence
Delay (ns)

Upper Bound
120.00 - Lower Bound
100.00+ B
80.00 B
B0.00 T
4000 i
20.00 .

0.00|,
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\
100.00

: # of iterations
50.00

Figure 8: The convergence sequence for a 128-bit adder.
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