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ABSTRACT

Due to the exponential growth of both design complexity and
the number of gates per pin, functional debugging has emerged as a
critical step in the development of a system-on-chip. We introduce
a novel debugging approach for programmable systems-on-chip.
The new method leverages the advantages of the two complemen-
tary functional execution approaches, emulation and simulation.
We have developed a set of tools, transparent to both the design
and debugging process, which enables the user to run long test
sequences in emulation, and upon error detection, roll-back to an
arbitrary instance in execution time, and switch over to simulation-
based debugging for full design visibility and controllability. The
efficacy of the approach is dependent on the method for transfer-
ring the computation from one execution domain to another. To en-
able effective transfer of the computation state, we have identified
a set of optimization tasks, established their computation complex-
ity, and developed an efficient suite of optimization algorithms.

1. INTRODUCTION

With the increasing complexity of modern designs, functional ver-
ification emerges as a time and cost dominant step in the develop-
ment process. For example, verification of the UltraSPARC-I took
twice as long as its design [Yan95]. Traditional approaches, such
as system emulation and simulation, are becoming increasingly
inefficient to address debugging needs. Emulation is fast, but pro-
vides limited design controllability and observability. Simulation
has the required controllability and observability, but is six to ten
orders of magnitude slower than emulation [Man97]. For simula-
tion, state-of-the-art RT-level simulators are capable of performing
error trace and timing analysis (Interra’s Picasso [Int98]) and back-
tracking (Synopsys’ Cyclone [Syn98]). For programmable proces-
sor simulation, instruction-set simulators provide full system vis-
ibility at various degrees of accuracy. The debugging circuitry in
the emulator, usually implemented using a JTAG boundary scan
methodology [Mau86], enables controllability and observability
of particular internal states. The emulation testbeds have evolved
into logic (functional) porting of the processor model into arrays
of rapid prototyping modules (e.g. arrays of gates, FPGAs [Apt98,
Qui98, Iko98]). Such emulation engines aim to provide both high
execution speed and relatively high observability and controllabil-
ity of all registers [Mar98]. These systems suffer from high cost
and/or reduced controllability and observability (less than 10000
signals).

Recently, a technique which leverages the advantages of the
two complementary functional execution approaches, emulation
and simulation, has been presented [Kir97]. However, this tech-
nique targets only statically scheduled single-core ASIC designs.
Trends in the semiconductor industry show that programmable
systems-on-chip are becoming a dominant design paradigm. We
have developed a generalized methodology for coordinated sim-

ulation and emulation of multi-core programmable systems-on-
chip. The developed approach enables the user to migrate the func-
tional execution of the design back and forth between the simulator
and emulator. Long test sequences are run in emulation. Upon er-
ror detection, the computation is migrated to the simulation tool
for full design visibility and controllability. To explain how execu-
tion is transferred from one domain to another, we use the notion
of a complete cut. A complete cut is a set of variables which fully
determines the design state at an arbitrary time instance [Kir98].
The running design (simulation or emulation) periodically outputs
its cuts. The cuts are saved by a monitoring workstation. When a
transition to the alternate domain is desired, any one of the previ-
ously saved cuts can be used to initialize, and then continue exe-
cution with preserved functional and timing accuracy.

The debugging paradigm introduces a number of optimization
problems and a need for efficient implementation mechanisms. We
propose a suite of algorithms which effectively identifies the mini-
mal computation state and post-process the core design and system
integration to enable I/O of variables of the identified computation
state. We have conducted a set of experiments on standard multi-
core benchmarks to quantify the overhead induced to enable the
developed debugging methodology.
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Figure 1: The targeted system: core architecture, embedded soft-
ware, and core integration.

2. HARDWARE AND COMPUTATION MODEL

The architecture template used to evaluate the developed debug-
ging method is depicted in Figure 1. The architecture is typical
for most modern consumer electronics devices. It contains a set of
application-specific (ASIC) and slave programmable cores (SPC)
connected to a shared bus. The system is controlled by a single
master programmable core (MPC). Each ASIC contains a datap-
ath and/or memory hierarchy.



We target the following heterogeneous model of computation.
The backbone of the model is the semi-infinite stream (SIS) ran-
dom access machine (RAM) model. The standard RAM model
[Aho83] is relaxed by removing a requirement for algorithm ter-
mination. The SISRAM model provides high flexibility with well
tested and widely used semantics and syntax (C and Java). The
second component of the heterogeneous model is synchronous data
flow (SDF) [Lee87] which is used for specifying a potentially empty
set of statically scheduled islands of computations. This model fa-
cilitates optimization-intensive implementation on both ASIC and
programmable platforms.

3. GLOBAL DESIGN-FOR-DEBUGGING FLOW

During the design of an application-specific core, debug function-
ality is added as a post-processing step. This functionality includes
a set of register-to-output interconnections and a feature which en-
ables the system integrator to select a specific cut. Since the system
architecture is in general not known at the time the application-
specific core is designed, this subset of interconnects should en-
able I/O of variables for a large number of candidate cuts. When
numerous options exist for selecting a cut, the system integrator
will more effectively coordinate the cut I/O.

The ASIC developer provides the system integrator with in-
formation about the set of cuts. For each cut, the variables and
control steps at which each variable can be dispensed through the
virtual pins of the ASIC is given. The system integrator faces three
design problems. Firstly, for each ASIC a single cut has to be se-
lected. Second, the selected cuts, jointly with the primary input
and output, have to be scheduled for I/O over the available set of
I/O pins. We integrated these two phases into a tight optimization
loop which searches for a feasible solution. In the third step, if no
feasible schedule is found, the system-on-chip cut I/O is spread in
time by scheduling particular ASIC cuts sequentially.

Each PC has, in general, two components in its cut: instruction-
accessible states (e.g. general-purpose registers), and states non-
accessible to machine code (e.g. branch prediction hardware). The
part of the cut accessible to instructions is I/O using code instru-
mentation. The portion of the core’s state that is not accessible
by instructions must be either reset (e.g. cache flush) or I/O. The
debug instructions are instrumented into the object code in a way
similar to Purify [Has92]. An example of instrumented code is
given in Figure 1. InstructionsOUT(D[N]); and if Debug D[N]
:= IN; are sufficient to enable full controllability and visibility.

During the system software development, four subtasks are
undertaken. In the first phase the minimal-size cut for each stati-
cally scheduled “computational island” is identified. In the second
step, the programs are instrumented for cut I/O. In the last two
phases, we identify cut variables outside the SDF islands and in-
strument the non-SDF code running on the MPC and SPCs with
instructions which control the system cut I/O.

Figure 2 illustrates the technical details of the process of cut
I/O. The code instrumentation which runs on the MPC starts the
cut I/O. As shown in Figure 2, the MPC first sends a signal (start
ASIC) to the ASICs which start their cut I/O. This process is stat-
ically scheduled. Cuts of cores ASIC1 (Cut1) and ASIC3 (Cut2)
are interleaved and the cut of core ASIC4 (Cut3) is I/O sequen-
tially. Due to static scheduling, the MPC knows when the ASIC
cut I/O is complete. If buffering is used to resolve the problem
of unscheduled cut variables, the MPC is responsible for explicit
I/O of these variables.The MPC, using a round-robin policy, initi-
ates (start SPC(i)) the cut I/O of each SPC. Upon receipt of this

signal the virtual tristate gate that controls the actual I/O of vari-
ables onto the shared bus is enabled and the cut I/O starts. The
instrumented code running on the SPC has to be able to assure that
exactly one cut I/O from each SPC (Cut SPC) is completed. Once
its cut is dispensed, the SPC sends a signal back to the MPC which
acknowledges one successful cut I/O. Finally, the MPC initiates its
own cut I/O, which represents the end of the system cut I/O.
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Figure 2: View at the process of outputting the cut variables of all
cores in the system.

4. THE NEW APPROACH: DEBUGGING AUTOMATION
4.1. Programmable Core Cut-Selection
The I/O of cut variables on programmable engines is performed
by executing debug instructions embedded into the original code
by a compilation post-processing tool. The embedded instructions
impact the system performance and impose storage overhead. The
number of embedded instructions is directly proportional to the
cardinality of the selected cut. The added instructions may also
impose a timing overhead. These two problems are not identical,
since different code segments can be executed with different dy-
namic frequencies in the SISRAM computational model. Since in
Section 5 the timing overhead is shown to be minimal on a variety
of applications, we focus our attention on the first problem.

PROBLEM: PC CUT SELECTION.
INSTANCE: Given a computation represented as directed graph and

an integerM . QUESTION: Is there a subset of edges, corresponding to
the node outputsOi; i = 1::N such that when deleted, leaves no directed
cycles in the graph, and thatN < M?

RepeatLOOPS times
CUT = null
While S 6= empty

For eachSi 2 S
GraphCompaction(Si)
For eachnodeVi;j

ComputeSnew = Scc(Si � Vi;j)
OF (Snew) =

(1 + �)
P

jSnewj

i=1
(jSnewij � Edges(Snewi)),

where� is random number� 2 f0; 1

jSj2
g

Select nodeVi;j with minimalOF (Snew(Si; Vi;j ))
DeleteVi;j fromSi andS = Snew(Si; Vi;j )
For eachSi 2 S If jSij = 1 deleteSi fromS
CUT = CUT [ Vi;j

If jCUT j < jbestcutj then bestcut = CUT

ProcedureGraphCompaction(Si)
For eachvertexVi 2 Si

If Vi has one input edgeEj;i with a source in vertexVj
For eachedgeEi;k

Create edgeEj;k and deleteEi;k
DeleteEj;i andVi

Figure 3: Pseudo-code for PC CUT SELECTION search.



This problem is NP-hard since there is one-to-one mapping be-
tween its special case, when all operations in the computation are
executed exactly the same number of times, and the FEEDBACK
ARC SET problem [Gar79]. For this problem, we have devel-
oped a heuristic summarized in Figure 3. Initially, the computa-
tion CDFG is partitioned into a set of strongly connected compo-
nents (SCCs) using a breadth-search algorithm [Cor90]. All trivial
SCCs, which contain exactly one vertex, are deleted from the re-
sulting set because they do not form cycles. Then, for each SCC
several processing steps are performed. Firstly, to reduce the so-
lution search space, a graph compaction step is performed. Each
pathP : A ; B which contains only verticesV 2 P; V 6= A

with exactly one input variable is replaced with a new edgeEA;B

which connects the sourceA and destinationB. Secondly, for
each nodeV in the graph an objective is established. The objec-
tive evaluates the cardinalities of the newly created SCCs in the
remaining graph whenV is deleted. The node that has the small-
est objective is deleted from the graph and added to the resulting
cut. The described process is repeated until the set of nontrivial
SCCs in the graph is empty.

4.2. ASIC Cut Selection
The debugging strategy comprises two modular phases, conducted
by two parties in the system development process: the core provider
and system integrator. The core developer selects a minimal num-
ber of register-to-output interconnects such that large number of
complete cuts are available to the system integrator. An additional
constraint is set on the timing occurrence of these cuts. Since
the core developer does not know in advance the multi-core sys-
tem configuration, its search for a set of register-to-output inter-
connects is targeted for large number of non-overlapping small
cuts. Such subset of registers enables the system integrator to
have flexibility in finding a solution to the cut scheduling prob-
lem. The definition of a debugging register subset forces selection
of registers which define a large cardinality set of cuts with small
cardinality, long life-times of containing cut variables, and non-
overlapping life-times of variables in the set of cuts. The core de-
veloper faces an optimization problem to find a subset of registers
with the smallest possible constantsMax andK.

PROBLEM: DEBUGGING REGISTER SELECTION.
INSTANCE: Given a scheduled CDFG, and integersMinOF and

MinCard. QUESTION: Is there a subset of registersRi; i = 1::Rm

that determines a set ofm distinct CDFG cutsCi; i = 1::m, and has
OF (Ci; i = 1::m) < Min andRm < MinCard?

Heuristic definition 1. A “debugging register subset” is a
subset of registersRi; i = 1::Rm which defines a set ofm distinct
cutsCi; i = 1::m that satisfies the following two statements:

Rm < Max andOF (Ci; i = 1::m) =P
m

i=1

P
8V 2Ci

LifeTime2(V )

(

P
m

i=1
jCij)�(

P
8CtrlStepC

LiveV ars2(C))
< K,

where functionLiveV ars(C) returns the number of variables
alive at control stepC,K is a given real number, andm;Max;Rm

are given integers.
A special case of this problem, with no register sharing among

CDFG computation variables and no additional heuristic require-
ments, is NP-hard since it is equivalent to the FEEDBACK ARC
SET problem [Gar79]. We have developed a heuristic to search for
a debugging register subset in a scheduled and assigned CDFG.
The algorithm is formally explained using the pseudo-code in Fig-
ure 4. The algorithm first partitions the CDFG into a setS of

SCCs. Then, for each registerRi, an objective function evalu-
ates the set of SCCsSnewj 2 Snew which are result of dele-
tion of all variables held by registerRi. The objective function
used to quantify the register selection is:OFR(R;SR; cdfg) =
Scar(R;cdfg)�

P
8CtrlStepC

LiveV ars
2(C;SR)

P
8V 2R

LifeTime2(V )
, whereScar returns

the sum of squares of cardinalities of the setSnewi of SCCs cre-
ated when all variables held byR are deleted from the CDFG.
LiveV ars returns for control stepC, the sum of squares of num-
ber of variables alive atC and held by the currently selected subset
of registersSR. The register with the highest objective function
is selected, added to the currently selected subset of registersSR,
and all its variables are deleted from the original CDFG. The pro-
cess of register selection is recursively repeated while the set of
nontrivial SCCs is not empty.

RepeatLOOPS times
Starting set of registersSR = null
While S 6= empty

ForeachregisterRi 3 SR
ComputeSnew = Scc(cdfg � Ei;j jEi;j 2 Ri)

Select the registerRk which results in minimum
OFR(Rk; SR; cdfg) and delete all variables held byRk from Si
SR = SR [ Rk andS = Snew(Si; Ei;j jEi;j 2 Rk)
For eachSi 2 S If jSij = 1 deleteSi fromS

If OF (SR) > OF (BESTSR) thenBESTSR = SR

Figure 4: Pseudo-code for the debugging register subset search.

4.3. Multi-ASIC Cut Selection and Scheduling
We introduce an algorithmic solution which enables I/O of cut
variables from multiple statically scheduled ASICs. We use the
common multiple (CM ) of all as the system debugging period.
Within this period the algorithm tries to find a feasible schedule of
variables of all ASIC cuts such that the range of control steps is
minimal between the moments when the first and last variable in
the ASIC subsystem cut is output.

PROBLEM: CUT SELECTION AND SCHEDULING.
INSTANCE: Given a set of coresASIC, a set of cutsCUTCore

for each coreCore 2 ASIC, a set of variablesV for each cutC 2

CUTCore, a set of control stepsCSv for which each variablev 2 V is
alive, a set ofCS control steps at which chip ports are idle, and integer
MaxRange. QUESTION: Is there a selectionf of a cutCUT f

Core
for

each core, such that for each variablev 2 CUT
f

Core
exists a distinct

control stepCSfv 2 CS at which the chip port is idle, no two variables
v 2 CUT

f

Core1; w 2 CUT
f

Core2 are scheduled for transferCSfv 6=

CS
f

w through the chip port at the same idle control step, and that the
max(CS

f

v �CS
f

w) < MaxRange ?
The NP-complete problem of scheduling a subset of variables

in a CDFG [Kir97] is a special case of this problem. We developed
a most-constrained least-constraining heuristic described using the
pseudo-code in Figure 5. Initially, for each ASIC, the available
cuts are sorted in decreasing order with respect to the average life-
time of contained variables. The selection and scheduling search
loop selects one cut for each ASIC from its list of available cuts.
Cuts that contain variables with longer average life-times are given
priority. Next, withinCM consecutive control steps, the subset of
M consecutive control steps in which the variables of the selected
cuts can be scheduled. The search is initiated by determining the
lower bound on the range of control stepsM = Mmin for which
all cuts can be dispensed. This bound is equal to the sum of the
cardinalities of all ASIC cuts. Then, withinCM consecutive con-
trol steps, a setT is found where each elementTp 2 T represents
a subset ofNp consecutive control steps which contains at least



Mmin idle control steps, and for each variable of all cuts there
must be at least one idle step in which it is alive. For each combi-
nation of cuts withinTp, a scheduling heuristic is performed. The
scheduling heuristic iteratively constructs the solution by selecting
N most-constrained cut variables and scheduling them exactly at
theN least-constraining control steps. If feasible scheduling is
found, the range of the solutionNp is compared to the best current
solution. Otherwise, the control step rangeM is increased and the
search procedure is repeated.

Cut Selection Preprocessing:
For eachASICi

Create a listLi of cutsCSi;j in decreasing order
of average life-time of contained variables.

Cut Selection:
RepeatLOOPS times

For eachASICi
Select one cutCSi;j 2 Li wherej is an index
selected among all other indexes with probability proportional
to the square of average life-time of variables inCSi;j

Range =
PjASICj

i=1
jCSi;j j.

Repeat
Find the setT of Range idle consecutive control steps in
the CM of periods of all ASICs which contain the cuts of allCSi;j .
For eachTp 2 T

For eachsubset ofjASICj cuts of each ASIC encompassed withTp
ScheduleCSi;j in Tp .
If schedule found and in shorter time than the best schedule
then best schedule = current schedule.

until Range + + > BestRangeorRange == jLCMj.
Cut Scheduling: [ScheduleCSi;j in Tp]
Repeatuntil all variables scheduled

For eachcontrol stepCi and variableV alive atCi
compute its constraintCi:constraint as sum of 1

V:lifetime

For eachvariableVi
compute its constraintVi:constraint as sum of
constraints of control steps at whichVi is alive.

Select theN most-constrained tasks and exactly schedule them at
control steps with the smallest sum of their constraints.

Figure 5: Pseudo-code for the cut selection and scheduling.

5. EXPERIMENTAL RESULTS
We have conducted a set of experiments to evaluate the effec-
tiveness of our system debugging paradigm. Table 1 shows ex-
perimental results for the ASIC design-for-debugging technique.
All designs were synthesized using the HYPER system [Rab91].
Columns 2 - 6 of Table 1 present the iteration period in control
steps, the number of variables in the computation, and total area.
Column eight presents the number of variables in the smallest cut,
broken down into I/O and non-I/O cut variables. Finally, the last
column shows the area overhead (OH).

Vari- Area Cut Area OH
ASIC T ables (mm2) size (mm2)

Cascade 14 51 3.88 2 + 4 0
CF IIR 19 53 5.69 2 + 8 0

Dir. Form II 10 53 12.68 2 + 1 0
Parallel 10 57 4.67 2 + 4 0
Modem 20 50 2.79 2 + 1 0.01

Lin3 10 86 15.40 5 + 0 0
Ellip 15 50 5.46 5 + 0 0

Volterra 15 40 1.88 2 + 1 0.06

Table 1: Debug information for the ASIC implementation.
Table 2 presents the experimental results which demonstrate

the efficiency of our multi-ASIC cut-selection and scheduling tech-
nique. Column 2 - 4 present the resulting system period, the num-
ber of variables in the system cut, and the range of control steps in
which the cut transfer is accomplished. By comparing these two
columns, it is clear that the available system I/O-idle control steps
are efficiently utilized to I/O interleaved cuts.

Table 3 presents results that evaluate the feasibility and over-
head of programmable core design-for-debugging. Applications
were taken from the MediaBench benchmark suite [Lee97]. Columns
2 - 4 quantify the total number of variables in the program, the
cardinality of the program cut, and the ratio of cut size to total
variables. The last column determines the upper bound on the
overhead on the program execution performance. Note that this
overhead is negligible during emulation since system emulation is
orders of magnitude faster than system simulation.

Application-specific System Cut Steps
core mix period size to I/O

the cut
Lin3 (T=10), Lin3 (T=15), Cont. Fraction 22 21 22

Cascade, Dir. Form II, Parallel (T=10), Mat, Ellip 31 24 27
Cont. Fraction, Mat, Dir. Form II, Modem 21 20 20

Parallel (T=10), Modem, Dir. Form II, Cascade 19 18 18
Parallel (T=9), Ellip, Lin3 (T=10), Volterra 21 19 20

Parallel(T=9), Lin3(T=10), Lin3(T=15), Volterra 25 20 23

Table 2: Efficiency of the cut selection and scheduling.

Application Variables Cut size % of Vars for cut I/O
ADPCM.enc 22 6 27%
ADPCM.dec 13 5 38%

D/A Converter 213 3 1.4%
G721.enc.dec 28 2 7%

PGP 970 33 3.4%
GSM.enc.dec 140 12 8.6%

JPEG.enc 513 17 3%
MPEG2.dec 432 24 5.5%

Table 3: Cut selection for programmable machines.

6. CONCLUSION
We have presented the first debugging approach for programmable
systems-on-chip that coordinates emulation and simulation. We
have developed design-for-debugging algorithms for code instru-
menting with cut I/O instructions and an optimization methodol-
ogy for efficient cut scheduling of a set of ASICs on a shared
bus. The effectiveness of the approach is demonstrated on a set
of programmable and ASIC multi-core designs where full system
observability and controllability have been enabled with low hard-
ware and performance overhead.
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