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ABSTRACT ulation and emulation of multi-core programmable systems-on-
. . . chip. The developed approach enables the user to migrate the func-
Due to the exponential growth of both design complexity and o4 execution of the design back and forth between the simulator

the number of gates per pin, functional debugging has emerged as a4 emulator. Long test sequences are run in emulation. Upon er-
critical step in the development of a system-on-chip. We introduce o detection, the computation is migrated to the simulation tool
a novel debugging approach for programmable systems-on-chip.t; fy|| design visibility and controllability. To explain how execu-
The new method leverages the advantages of the two complemensiq, is transferred from one domain to another, we use the notion
tary functional execution approaches, emulation and S|mulat|0_n. of acomplete cutA complete cut is a set of variables which fully
We have developed a set of tools, transparent to both the designyetermines the design state at an arbitrary time instance [Kir98].
and debugging process, which enables the user to run long testne rynning design (simulation or emulation) periodically outputs
sequences in emulation, and upon error detection, roll-back to anis cts. The cuts are saved by a monitoring workstation. When a
arbitrary instance in execution time, and switch over to simulation- {ansition to the alternate domain is desired, any one of the previ-
based debugging for full design visibility and controllability. The ously saved cuts can be used to initialize, and then continue exe-
efficacy of the approach is dependent on the method for transfer-. ,iion with preserved functional and timing accuracy.
ring the computation from one execution domain to another. To en-
able effective transfer of the computation state, we have identified
a set of optimization tasks, established their computation complex-
ity, and developed an efficient suite of optimization algorithms.

The debugging paradigm introduces a number of optimization
problems and a need for efficient implementation mechanisms. We
propose a suite of algorithms which effectively identifies the mini-
mal computation state and post-process the core design and system
integration to enable 1/O of variables of the identified computation
1. INTRODUCTION state. We have conducted a set of experiments on standard multi-

With the increasing complexity of modern designs, functional ver- core benchmarks to quantify the overhead induced to enable the
ification emerges as a time and cost dominant step in the developgeveloped debugging methodology.

ment process. For example, verification of the UltraSPARC-I took

twice as long as its design [Yan95]. Traditional approaches, such Programmeble core 1P block] LEEE

as system emulation and simulation, are becoming increasingly INXO) © DAL DOLDA2 ‘“°g'§"$2‘ab'e
inefficient to address debugging needs. Emulation is fast, but pro- OUT D(N)

vides limited design controllability and observability. Simulation i signal to start
has the required controllability and observability, but is six to ten ouTY(N) O outpet
orders of magnitude slower than emulation [Man97]. For simula- l 4 l

tion, state-of-the-art RT-level simulators are capable of performing — -

error trace and timing analysis (Interra’s Picasso [Int98]) and back- aredbus l T
tracking (Synopsys’ Cyclone [Syn98]). For programmable proces- cheduling
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sor simulation, instruction-set simulators provide full system vis- Logic

ibility at various degrees of accuracy. The debugging circuitry in C .| DebugBufe

the emulator, usually implemented using a JTAG boundary scan

methodology [Mau86], enables controllability and observability

of particular internal states. The emulation testbeds have evolved —

into logic (functional) porting of the processor model into arrays ‘

of rapid prototyping modules (e.g. arrays of gates, FPGAs [Apt98, RegSar e

Qui98, 1ko98]). Such emulation engines aim to provide both high

execution speed and relatively high observability and controllabil- Figure 1: The targeted system: core architecture, embedded soft-

ity of all registers [Mar98]. These systems suffer from high cost ware, and core integration.

and/or reduced controllability and observability (less than 10000

signals). 2. HARDWARE AND COMPUTATION MODEL
Recently, a technique which leverages the advantages of theThe architecture template used to evaluate the developed debug-

two complementary functional execution approaches, emulationging method is depicted in Figure 1. The architecture is typical

and simulation, has been presented [Kir97]. However, this tech- for most modern consumer electronics devices. It contains a set of

nique targets only statically scheduled single-core ASIC designs.application-specific (ASIC) and slave programmable cores (SPC)

Trends in the semiconductor industry show that programmable connected to a shared bus. The system is controlled by a single

systems-on-chip are becoming a dominant design paradigm. Wemaster programmable core (MPC). Each ASIC contains a datap-

have developed a generalized methodology for coordinated sim-ath and/or memory hierarchy.



We target the following heterogeneous model of computation. signal the virtual tristate gate that controls the actual I/O of vari-
The backbone of the model is the semi-infinite stream (SIS) ran- ables onto the shared bus is enabled and the cut I/O starts. The
dom access machine (RAM) model. The standard RAM model instrumented code running on the SPC has to be able to assure that
[Aho83] is relaxed by removing a requirement for algorithm ter- exactly one cut I/O from each SPCt SPC) is completed. Once
mination. The SISRAM model provides high flexibility with well its cutis dispensed, the SPC sends a signal back to the MPC which
tested and widely used semantics and syntax (C and Java). Thacknowledges one successful cut I/O. Finally, the MPC initiates its

second component of the heterogeneous model is synchronous datawn cut I/0, which represents the end of the system cut I/O.

flow (SDF) [Lee87] which is used for specifying a potentially empty
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set of statically scheduled islands of computations. This model faj

MPC ingtruction that
initiates the cut-set 1/0
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cilitates optimization-intensive implementation on both ASIC and
programmable platforms.

Part of the computation
at which the core
transfersits cut

3. GLOBAL DESIGN-FOR-DEBUGGING FLOW

During the design of an application-specific core, debug function-
ality is added as a post-processing step. This functionality includes

Computation
iteration with its
primary input
and output

a set of register-to-output interconnections and a feature which en
ables the system integrator to select a specific cut. Since the syste
architecture is in general not known at the time the application-
specific core is designed, this subset of interconnects should en
able 1/0O of variables for a large number of candidate cuts. When

awin u1 uoeindwod

PC computation with
primary inputs and
outputs (bold arrows
symbolize CUT output
before the MPC has
acknowledged it)

numerous options exist for selecting a cut, the system integrato
will more effectively coordinate the cut I/O.

Figure 2: View at the process of outputting the cut variables of all

The ASIC developer provides the system integrator with in- COres in the system.

formation about the set of cuts. For each cut, the variables and

control steps at which each variable can be dispensed through the4. THE NEW APPROACH: DEBUGGING AUTOMATION
virtual pins of the ASIC is given. The system integrator faces three 4 1. programmable Core Cut-Selection

design problems. Firstly, for each ASIC a single cut has to be se-The I/0 of cut variables on programmable engines is performed
lected. Second, the selected cuts, jointly with the primary input by executing debug instructions embedded into the original code
and output, have to be scheduled for I/O over the available set ofpy a compilation post-processing tool. The embedded instructions
I/0 pins. We integrated these two phases into a tight optimization jmpact the system performance and impose storage overhead. The
loop which searches for a feasible solution. In the third step, if N0 number of embedded instructions is directly proportional to the
feasible schedule is found, the system-on-chip cut I/O is spread incardinality of the selected cut. The added instructions may also
time by scheduling particular ASIC cuts sequentially. impose a timing overhead. These two problems are not identical,
Each PC has, in general, two components in its cut: instruction-since different code segments can be executed with different dy-
accessible states (e.g. general-purpose registers), and states nonamic frequencies in the SISRAM computational model. Since in
accessible to machine code (e.g. branch prediction hardware). Thesection 5 the timing overhead is shown to be minimal on a variety

part of the cut accessible to instructions is I/O using code instru- of applications, we focus our attention on the first problem.

mentation. The portion of the core’s state that is not accessible
by instructions must be either reset (e.g. cache flush) or I/0. The

PROBLEM: PC CUT SELECTION.
INSTANCE: Given a computation represented as directed graph and

debug instructions are instrumented into the object code in a wayan integerA/. QUESTION: Is there a subset of edges, corresponding to
similar to Purify [Has92]. An example of instrumented code is the node output®;,i = 1..N such that when deleted, leaves no directed

given in Figure 1. Instruction®UT(D[N]); andif Debug D[N]
= IN; are sufficient to enable full controllability and visibility.

During the system software development, four subtasks are
undertaken. In the first phase the minimal-size cut for each stati-
cally scheduled “computational island” is identified. In the second
step, the programs are instrumented for cut 1/O. In the last two
phases, we identify cut variables outside the SDF islands and in-
strument the non-SDF code running on the MPC and SPCs with
instructions which control the system cut 1/O.

Figure 2 illustrates the technical details of the process of cut
1/0. The code instrumentation which runs on the MPC starts the
cut 1/0O. As shown in Figure 2, the MPC first sends a sigatdrf
ASIC) to the ASICs which start their cut /0. This process is stat-
ically scheduled. Cuts of cores ASICCt1) and ASIC3 Cut2)
are interleaved and the cut of core ASIG2u3) is I/0 sequen-
tially. Due to static scheduling, the MPC knows when the ASIC
cut 1/0O is complete. If buffering is used to resolve the problem
of unscheduled cut variables, the MPC is responsible for explicit
1/0 of these variables.The MPC, using a round-robin policy, initi-
ates étart SPC(i)) the cut 1/0O of each SPC. Upon receipt of this

cycles in the graph, and thd¥ < M?

RepeatLOOPS times
CUT = null
While S # empty
ForeachS; € S
GraphCompaction(S;)
For eachnodeV; ;
ComputeSnew = Sce(S; — Vi ;)
OF(Snew) =
(14 ) Y15 (|Snew; | - Edges(Snew;
i i ges(Snew;)),
wherec is random numbes € {0, 54‘2}

Select nodéd/; ; with minimal O F (Snew(S;, V;,5))
DeleteV; ; from S; andS = Snew(S;, Vi ;)
ForeachS; € SIf |S;| = 1 deleteS; from S
CUT =CUTUV;;

If |CUT| < |bestcut]| then bestcut = CUT

ProcedureGraphCompaction(S;)
For eachvertexV; € S;
If Vi has one input edgE’; ; with a source in verteX’;
For eachedgeE; i
Create edgé; ;. and deleteF; ;.

DeleteE; ; andV;

Figure 3: Pseudo-code for PC CUT SELECTION search.



This problem is NP-hard since there is one-to-one mapping be-SCCs. Then, for each regist&;, an objective function evalu-
tween its special case, when all operations in the computation areates the set of SCCSnew; € Snew which are result of dele-
executed exactly the same number of times, and the FEEDBACK(tion of all variables held by registeR;. The objective function
ARC SET problem [Gar79]. For this problem, we have devel- used to quantify the register selection 8F R(R, SR, cdfg) =
oped a heuristic summarized in Figure 3. Initially, the computa- SCM(R,cdfg)-ZVCMStePC LiveVars®(C,SR)
tion CDFG is partitioned into a set of strongly connected compo- D LifeTime2 (V) » whereScar returns

. : L VYVER
nents (SCCs) using a breadth-search algorithm [Cor90]. All trivial the sum of squares of cardinalities of the Sekw; of SCCs cre-
SCCs, which contain exactly one vertex, are deleted from the re-ateq when all variables held b are deleted from the CDFG.
sulting set because they do not form cycles. Then, for each SCCp e ars returns for control ste?, the sum of squares of num-
several processing steps are performed. Firstly, to reduce the soper of variables alive af' and held by the currently selected subset
lution search space, a graph compaction step is performed. Eachyf registersSR. The register with the highest objective function
pathP : A ~» B which contains only vertice}” € P,V # A is selected, added to the currently selected subset of regisiers
with exactly one input variable is replaced with a new edyes and all its variables are deleted from the original CDFG. The pro-

which connects the sourcé and destinationB. Secondly, for  cess of register selection is recursively repeated while the set of
each nodd’ in the graph an objective is established. The objec- nontrivial SCCs is not empty.

tive evaluates the cardinalities of the newly created SCCs in the

remaining graph whefr is deleted. The node that has the small- RepeatLOOPS times
est objective is deleted from the graph and added to the resulting \?\;ﬁ!}iﬂ% S;Zt of fegistefSR= null
. . . P ile empty
cut. The described process is repeated until the set of nontrivial ForeachregisterR; > SR
SCCs in the graph is empty. ComputeSnew = Scc(cdfg — Ej,;|Ei; € Ri)
Select the registeR;, which results in minimum
i OFR(Ry, SR, cdf g) and delete all variables held l#y;, from S;
4.2. ASIC CUt Select|0n . SR =SRU R} andS = Snew(Si, Ei,j ‘El] € Rk)
The debugging strategy comprises two modular phases, conducted ForeachS; € SIf |S;| = 1 deleteS; from S

by two parties in the system development process: the core provider If OF(SR) > OF(BESTSR) then BESTSR = SR
and system integrator. The core developer selects a minimal num- _ ) ) )
ber of register-to-output interconnects such that large number of Figure 4: Pseudo-code for the debugging register subset search.

complete cuts are available to the system integrator. An addltlonal4.3. Multi-ASIC Cut Selection and Scheduling

fﬁ:ig?éné;eslg;;n dtct]ees tgrginlgngv(\:/cilrjwrt: dn\f:ng; mzsﬁwclgibrs;ny?_We_ introduce an al_gorithmi_c solution which enables I/O of cut
tem configuration, its search for a set of register-to-output inter- variables from multiple statically scheduled ASICs. _We use the
connects is targe,ted for large number of non-overlapping small co_mrnon_mulh_ple ¢ M) of _aII as _the sy§tem debggglng period.
Within this period the algorithm tries to find a feasible schedule of
Rariables of all ASIC cuts such that the range of control steps is

rave;f)('g'“ft.y.tm fln(fjm% absolu_tlon to_ t?e cuLscthfedullng per?.' minimal between the moments when the first and last variable in
em. The definition of a debugging register subset forces selection,, '\ o~ subsystem cut is output,

of registers which define a large cardinality set of cuts with small PROBLEM: CUT SELECTION AND SCHEDULING.

cardinality, long life-times of containing cut variables, and non- INSTANCE: Given a set of corestSIC, a set of cuts’UT gy,
overlapping life-times of variables in the set of cuts. The core de- for each coreCore € ASIC, a set of variables for each cuté c
veloper faces an optimization problem to find a subset of registersCUTCOTe' a set of control steps’S, for which each variabley € V is

with the smallest possible constadt&ax and K. ; : : : :
PROBLEM: DEBUGGING REGISTER SELECTION. alive, a set ofC'S control steps at which chip ports are idle, and integer

INSTANCE: Given a scheduled CDFG, and integel$inOF and MazRange. QUESTION: Is there a selectiorf of a cutCUT(f/,me for
MinCard. QUESTION: Is there a subset of registe®;,i = 1..Rn, each core, such that for each variable € CUT(f/,me exists a distinct
that determines a set of distinct CDFG cutsC;,i = 1..m, and has control stepC'Sy € CS at which the chip port is idle, no two variables
OF(Ci,i = 1.m) < Min and Ry < MinCard? v € CUTL,  ,,w e CUT/, ., are scheduled for transfef's;] #

Heuristic definition 1. A “debugging register subset” is a
subset of register®;, i = 1..R,, which defines a set af distinct
cutsCj, s = 1..m that satisfies the following two statements:

CSﬁ, through the chip port at the same idle control step, and that the
mam(C’SI{ — CS!:) < MazRange ?
The NP-complete problem of scheduling a subset of variables
. in a CDFG [Kir97] is a special case of this problem. We developed
R,, < MazandOF(C;,i=1..m) = . .. .. X .
> LifeTime2(v) a most-constrz_ame(_j Ieast-const'ralnlng heuristic described using the
_Li=1 £VVEC; <K, pseudo-code in Figure 5. Initially, for each ASIC, the available
Qis1 19Dy gpmisrape LiveVars2(©) cuts are sorted in decreasing order with respect to the average life-
time of contained variables. The selection and scheduling search
where functiorLiveV ars(C') returns the number of variables  loop selects one cut for each ASIC from its list of available cuts.
alive at control stef”’, K is a given real number, anek, Max, R,, Cuts that contain variables with longer average life-times are given
are given integers. priority. Next, withinC'M consecutive control steps, the subset of
A special case of this problem, with no register sharing among M consecutive control steps in which the variables of the selected
CDFG computation variables and no additional heuristic require- cuts can be scheduled. The search is initiated by determining the
ments, is NP-hard since it is equivalent to the FEEDBACK ARC lower bound on the range of control steps = M., for which
SET problem [Gar79]. We have developed a heuristic to search forall cuts can be dispensed. This bound is equal to the sum of the
a debugging register subset in a scheduled and assigned CDFCcardinalities of all ASIC cuts. Then, withi@@ M/ consecutive con-
The algorithm is formally explained using the pseudo-code in Fig- trol steps, a set’ is found where each elemef € T represents
ure 4. The algorithm first partitions the CDFG into a $eof a subset ofV,, consecutive control steps which contains at least




M,.:n idle control steps, and for each variable of all cuts there Table 3 presents results that evaluate the feasibility and over-
must be at least one idle step in which it is alive. For each combi- head of programmable core design-for-debugging. Applications
nation of cuts withirl},, a scheduling heuristic is performed. The were taken from the MediaBench benchmark suite [Lee97]. Columns
scheduling heuristic iteratively constructs the solution by selecting 2 - 4 quantify the total number of variables in the program, the

N most-constrained cut variables and scheduling them exactly atcardinality of the program cut, and the ratio of cut size to total
the N least-constraining control steps. If feasible scheduling is variables. The last column determines the upper bound on the
found, the range of the solutia, is compared to the best current  overhead on the program execution performance. Note that this
solution. Otherwise, the control step raniyeis increased and the  overhead is negligible during emulation since system emulation is

search procedure is repeated. orders of magnitude faster than system simulation.
Cut Selection Preprocessing: Application-_specific System [ Cut Steps
Foreach ASIC; core mix period size | tol/O
Create a listL; of cutsC'S; ; in decreasing order ] ] ] the cut
of average life-time of contained variables. Lin3 (T=10), Lin3 (T=15), Cont. Fraction 22 21 22
Cut Selection: Cascade, Dir. Form II, Parallel (T=10), Mat, Ellip 31 24 27
RepeatLOOPS times Cont. Fraction, Mat, Dir. Form I, Modem 21 20 20
ForeachASIC; Parallel (T=10), Modem, Dir. Form II, Cascad¢ 19 18 18
Selectone cuf’S; ; € L; wherej is an index Parallel (T=9), Ellip, Lin3 (T=10), Volterra 21 19 20
selected among all other indexes with probability proportional Parallel(T=9), Lin3(T=10), Lin3(T=15), \Volterra 25 20 23
to the square of average life-time of variablegy; ;
Range = Eiifw‘ |C'S; ;1. Table 2: Efficiency of the cut selection and scheduling.
Repeat
Find the sefl” of Range idle consecutive control steps in Application Variables | Cutsize [ % of Vars for cut I/O
'::he CM ﬁ}pego%s of all ASICs which contain the cuts of@lb; ;. ADPCM.enc 55 5 7%
or eacl 9
For eachgubset o] ASIC| cuts of each ASIC encompassed Wity &‘Eziwvgﬁgr 21133 g fio/;o
ScheduleC'S;,; in T G7zlencdec| 28 2 7%
If schedule found and in shorter time than the best schedule PCP - 970 33 34%
then best schedule = current schedule. GSMenc.dec 140 i 8.60/
untl Range + + > BestRangeor Range == |LCM|. JPEG e'nc 513 17 3'0/ °
Cut Scheduling: [ScheduleC'S; ; in T, ] . g
Repeatuntil all variables scheduled MPEG2.dec 432 24 5.5%
For eachcontrol stepC’; and variablel alive atC'; ) )
compute its constrain®; .constraint as sSum ofgrrregrms Table 3: Cut selection for programmable machines.
For eachvariableV;
compute its constrairit; .constraint as sum of 6. CONCLUSION
constraints of control steps at whigh is alive. . .
Select thelV most-constrained tasks and exactly schedule them at We have presented the first debugging approach for programmable
control steps with the smallest sum of their constraints. systems-on-chip that coordinates emulation and simulation. We

. . ) have developed design-for-debugging algorithms for code instru-
Figure 5: Pseudo-code for the cut selection and scheduling.  menting with cut I/O instructions and an optimization methodol-
5. EXPERIMENTAL RESULTS ogy for efficient cut scheduling of a set of ASICs on a shared

We have conducted a set of experiments to evaluate the efrec-bus' The effectiveness of the approach is demonstrated on a set

. . . of programmable and ASIC multi-core designs where full system
tiveness of our system debugging paradigm. Table 1 shows ex- - - )
perimental resultg for the As?g dgesri)gn-fogdebugging technique. observability and controllability have been enabled with low hard-

All designs were synthesized using the HYPER system [Rab91]. ware and performance overhead.
Columns 2 - 6 of Table 1 present the iteration period in control 7. REFERENCES
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