
1. ABSTRACT
Designers of distributed embedded systems face
many challenges in determining the tradeoffs
when defining a system architecture or retar-
geting an existing design. Communication syn-
thesis, the automatic generation of the
necessary software and hardware for system
components to exchange data, is required to
more effectively explore the design space and
automate very error-prone tasks. This paper
examines the problem of mapping a high-level
specification to an arbitrary architecture that
uses specific, common bus protocols for inter-
processor communication. The communication
model presented allows for easy retargeting to
different bus topologies, protocols, and illus-
trates that global considerations are required to
achieve a correct implementation. An algo-
rithm is presented that partitions multihop
communication timing constraints to effectively
utilize the bus bandwidth along a message path.
The communication synthesis tool is integrated
with a system co-simulator to provide perfor-
mance data for a given mapping.

1.1 Keywords
communication synthesis, interprocessor communication,
multihop communication, bus protocols, hardware/software
co-synthesis, distributed heterogeneous embedded systems

2. INTRODUCTION
With the decreasing cost of microprocessors, designers of
embedded systems routinely consider a distributed system as
the solution for their application. These systems are
characterized by having heterogeneous processors connected
by heterogeneous busses. For instance, an HP LaserJet

design has three different processors and two different
busses connecting the processors as well as many point to
point connections [12]. The designers selected the most
appropriate interprocessor communication based upon the
requirements of the functions mapped to each processor.

Designers of distributed systems are faced with many
choices in connecting the various processors together.
Upender and Koopman [20] list many standard bus protocols
commonly used in embedded systems. It is increasingly
attractive for designers to use a known protocol instead of
creating an arbitrary or proprietary one. Microprocessors
targeted toward the embedded market incorporate support
for the most popular protocols directly on chip.
Semiconductor companies manufacture dedicated
communication chips, chip sets, and hardware macros
(cores) which directly implement particular bus protocols.
These products abstract away many of the physical low-level
protocol details. However, to effectively use these protocol
chips or cores, many application-specific details must be
considered in deriving the remaining protocol parameters.

When designing a distributed embedded system, it is
necessary to consider many different points in the design
space to achieve the appropriate cost/performance ratio.
Each new design point forces the system designer to re-
derive all of the application-specific protocol parameters and
customize the communication subsystem to reflect the
current architecture. Designers require tools to map the same
high-level specification onto different architectures so that
the various tradeoffs can be quickly and easily measured.
Fully automating the design space exploration (target
architecture and partitioning) is not feasible and fails to
exploit the talents of system architects. However, automating
the construction of the tedious and error-prone portions of
the communication subsystem frees the designer to consider
a larger number of potential solutions. Communication
synthesis allows designers to investigate the tradeoffs
between different allocations, partitionings, bus topologies,
and bus protocols by managing the low-level protocol and
real-time kernel details necessary to realize a complete
implementation.

Consider the following design scenario. The system architect
for a robot control system needs to evaluate the two different
architectures shown in Figure 1. The first architecture
consists of five processors connected by a Controller Area
Network (CAN)[23] bus. The second architecture has two

*This work supported by NSF PYI MIP-885872 and DARPA DAAH04-94-G-0272

Communication Synthesis for Distributed
Embedded Systems *

Ross B. Ortega
Dept. of Computing and Software Systems

University of Washington
Bothell, WA 98021-4900 USA

ortega@u.washington.edu

 Gaetano Borriello
Dept. of Computer Science & Engineering

University of Washington
Seattle, WA 98195-2350

gaetano@cs.washington.edu

separate CAN busses connected by an Inter-Integrated
Circuit (I2C) bus[15]. Without a communication synthesis
tool, the designer must develop a unique communication
infrastructure for both architectures. All of the low-level
details such as the bus protocol parameters and formats for
each interprocessor communication, the device-drivers,
message routing information, and the timing constraints for
all communications must be captured in executable code
before the designer can begin evaluating a given
architecture. If a mistake is made in any of the details, then
changing one parameter may require a rederivation of all the
communication parameters in order to meet the system’s
timing and performance constraints. Once this daunting task
has finally been completed for one architecture, the designer
must completely redo most of this work before evaluating
the second architecture. This task is so time-consuming that
system architects typically consider a very limited number
of design alternatives and frequently only one.

Now consider the same scenario with a communication
synthesis tool. Taking a high-level specification consisting
of communicating processes, the designer assigns each
process to a processor and maps the communication path for
each message (see Figure 2). Communication synthesis
generates a customized real-time operating system for each

processor taking into account the particular bus protocols,
routing requirements, and timing constraints for all of the
communication in the system

Even very simple systems can benefit from communication
synthesis as shown in Figure 3. The high-level behavioral
specification calls for the process producer to communicate
with the process consumer. A designer evaluating the given
architecture maps producer and consumer to processors Pa
and Pb, respectively. Given the mapping, communication
synthesis allocates a communication chip and interfaces it to
Pa, uses the built-in CAN controller of Pb, modifies and
optimizes the device-drivers and the real-time kernels to
match this configuration, and derives the protocol
parameters to allow communication over the CAN bus.

The above example illustrates the synthesis of
communication for two processes in isolation from the rest
of the system. However, to correctly and effectively
synthesize the communication for a bus protocol, global
system analysis is required. All of the traffic on the various
system busses must be considered so that timing constraints
are respected. Bursty communication patterns may require
local queues so that important events are not lost. If there is
not a direct connection between communicating processes,
e.g. cp1 and cp2 in Figure 2, then intermediate “hop”
processes are required to relay the data from one bus to
another. Protocol details such as basing bus arbitration on
message or processor priorities along with the messages'
timing constraints impact the allocation of these priorities.
All of these details must be considered when creating a
communication infrastructure.

Recently there has been much attention focused on the
problem of communication synthesis for distributed real-
time embedded systems[13]. Many of these efforts either do
not consider the global properties of the communication
links or map to non-standard protocols. Vahid and Tauro[21]
and Ernst and Benner [6] both proposed using a
communication library with a standard API (Application
Program Interface). However, protocols based on message
priorities require a unique allocation of all the priorities on
the bus in addition to providing an API. Rowson et al.
proposed a new methodology, Interface-Based Design,
where the designer successively refines the communication
from abstract tokens down to the final implementation. This

Figure 1. Two potential architectures for a robot control sys-
tem. (a) has five processors on a shared CAN bus. (b) has an

I2C bus between two CAN busses.

CAN

Pa

CAN

Pd
I2C

I2C

Pc

CAN

Pb
I2C

CAN

Pe

CAN

Pa

CAN

Pd

CAN

Pc

CAN

Pb

CAN

Pe

(a)

(b)

Figure 2. The system architect maps the behavioral specifica-
tion of communicating processes to an architecture. Notice

that the communication from cp1 to cp2 is mapped across two
busses. Not all mappings shown.

CAN

Pa

CAN

Pd
I2C

I2C

Pc

CAN

Pb
I2C

CAN

Pe

Communicating
Processes

Architecture

cp1

cp2 cp3 cp4

cp5 cp6

Figure 3. An example of communication synthesis. The de-
signer maps process producer to processor Pa, consumer to Pb
and message M1 to the CAN bus. Communication synthesis
generates a customized real-time operating system and glue

logic to transmit and deliver the message.

scheduler

CAN device
driver

port B
protocol

consumer
initiali-
zationon-

chip
CAN

Comm.
Chip

message
router

glue
logic

CAN
Comm.
Chip

scheduler

CAN device
driver

port A
protocol

producer

initiali-
zation

Processor Pa Processor Pb

consumerproducer

portA portB
M1

can(M1)

paper can be viewed as automating this approach. Daveau et
al. [5] take a behavioral description and automatically select
a protocol from a library to implement the communication.
They use non-standard protocols such as bidirectional
handshake and dual fifo. Gajski et al. [7] consider all of the
events on the bus, but they implement a non-standard bus
protocol and do not address real-time kernel synthesis. Yen
and Wolf[22] address the problem of heterogeneous
processors connected via arbitrary bus topologies. However,
they assume an abstract protocol based on processor
priorities. CoWare[2] supports heterogeneous processors,
but focuses on shared memory communication and non-
standard protocols. Gasteier and Glesner[8] attempt to
synthesize busses that do not require arbitration. This
approach is more suitable for data-flow oriented systems
with predictable communication patterns than for control-
dominated systems. There has also been work done in the
area of scheduling messages in a multiprocessor
environment to meet real-time and quality of service
constraints [10]. Message scheduling globally analyzes the
communication requirements of the system to create an
effective scheduler. However it is assumed that there is a
simple API providing access to the bus. As discussed above,
not all protocols can be implemented without a synthesis
step prior to using the API. Another alternative is to use a
real-time operating system (RTOS). Although an RTOS
provides a flexible communication infrastructure, the
designer must still derive and manage most of the details
necessary to realize a given mapping. For instance, an
RTOS permits interprocessor communication, yet no
explicit support is given for multihop communication where
a message must travel on multiple busses. The designer
must keep track of the timing constraints and routing of
each multihop message.

This paper addresses the problem of synthesizing the
communication for an arbitrary bus topology specified by
the system architect. Instead of optimizing designers out of
the design process, this approach allows system architects to
easily map high-level designs to different implementation
architectures for evaluation. Designers can rapidly explore
many more points in the design space than current
techniques allow. The synthesis tool we have implemented
requires a behavioral description and a mapping of high-
level functions to the computational components of a
particular architecture. All of the remaining details of
system communication are automatically synthesized. The
effect is that an application-specific real-time operating
system is generated for each processor in the system. The
communication synthesis tool has been fully integrated with
a system co-simulator [9] to quickly provide designers with
performance information for a given mapping.

Throughout this paper we will use the example of the robot
control system shown in Figure 4. The robot has two
fundamental modes of operation. In joystick mode, the robot
is controlled by a joystick manipulated by the operator. In
auto-pilot mode the robot is automatically controlled by a
program running in the auto-pilot process. If at any time, in

either mode, the operator releases the dead man switch, the
robot immediately halts. A control arbiter process
determines the operational mode of the system. The logger
process records messages from the wheels process
indicating the current heading and velocity.

The next section presents a communication model
appropriate for specifying real-time embedded systems.
Section 4 discusses how we synthesize communication for a
system described with this communication model. Section 5
discusses the integration of the communication synthesis
tool with a co-simulator. Section 6 contains examples of
mapping the robot to different bus protocols and topologies.

3. COMMUNICATION MODEL
We have developed a communication model suitable for
reactive real-time embedded systems. The model is based on
a set of processes that communicate by exchanging non-
blocking messages. A non-blocking protocol is more
appropriate for distributed real-time systems than a blocking
protocol [11] partly because it decouples computation from
communication. When a process executes a message send, it
returns immediately after passing the message to the real-
time kernel. Messages from other processors are received
asynchronously via an interrupt indicating a message
arrival. The real-time kernel performs minimal processing
of the message and returns control to the previously
executing process. When the process is next invoked by the
real-time scheduler, the received message may be made
visible to the receiving process. Messages may have
multiple destinations, but can have only one source.

A behavioral description consists of a set of communicating
processes. A process has output ports for sending generated
messages and input ports for receiving messages. There is a
unique message port for each message type. In the robot
example, the wheels controller has two output ports,
WheelsHead and WheelsVel, and many input ports for the
messages generated by the joystick, auto-pilot, and control
arbiter. A process also contains state information that may
be used for intraprocess communication. In the case of the
wheels controller, the state variables include the current
heading and velocity.

 The designer may specify receiving attributes on an input
port that state how large a queue the system should allocate

AutoPilot
(generates AUTO events)

Joystick
(generates JOYSTICK and

Control
Wheels Arbiter

Logger

DEADMAN events)

Message

AutoGetHead

AutoGetVal

AutoHead data

AutoVel

AutoPilot data

Joystick data

DeadManHalt

DeadManGo

WheelsHead data

WheelsVel data

ArbiterAuto

Destination
Wheels

Wheels

Wheels

Wheels

Arbiter

Wheels, Arbiter

Wheels, Arbiter

Wheels, Arbiter

AutoPilot, Logger

AutoPilot, Logger

Wheels, AutoPilot

Constraint
25ms

25ms

25ms

25ms

20ms

100ms

5ms

10ms

50ms

50ms

75ms

Figure 4. Communication requirements in a robot control
system consisting of five communicating processes.

for a particular message. A queue size of one indicates an
overwrite policy. If a different instance of the same message
type arrives, then any previously received, but as yet
unconsumed, message is lost. Along with the queue size, the
designer may specify the behavior in case the queue
becomes full. The choices available are: drop the incoming
message, queue the incoming message and drop the
message at the queue's head, or send a queue full message to
the application with the message to be dropped. In the
robot, all command messages have an overwrite policy
without notification. Only the logger process has a queuing
policy with notification. This particular notification routine
simply records that data was lost.

Similar to [10] various message attributes must be specified
to enable global analysis. These attributes include the
maximum size of any message generated on an outport, the
maximum frequency at which the messages may be
generated, and a required response-time constraint. The
maximum size and frequency are necessary to calculate the
bandwidth requirements of each message.

Even though the communication model is fundamentally
one of non-blocking communication, the designer can
designate any output port to have blocking semantics. The
communication synthesis tool automatically generates
acknowledge messages and ports and modifies the scheduler
to implement blocking behavior.

When a process is granted the processor, the real-time
scheduler calls one of the process’s handlers. A handler is a
subroutine invoked to perform a service on behalf of a
message. The typical handler consumes the triggering
message, modifies state variables, generates outgoing
messages and terminates. A handler may only run for a
bounded amount of time and executes with run to
completion semantics [16]. That is, once a handler begins
executing it has the illusion of running without preemption.
No other handlers from the same process may begin until
the currently running handler terminates. Therefore, even
though a handler may be preempted, the state of the process
remains constant while the handler is not executing. The
real-time kernel may preempt a handler for two reasons.
First, an incoming message may need to be retrieved or an
outgoing message may need to be sent. Second, the
scheduler may allow a handler in a different process to
execute. In this model, run to completion semantics
eliminates the need for user-level semaphores which are
difficult to use correctly and complicate timing analysis.

In addition to event-triggered handlers scheduled by
message arrival, a process may contain time-triggered
handlers specified with an invocation rate. For example, the
wheels controller has a control loop that runs every 100ms.

4. COMMUNICATION SYNTHESIS
Communication synthesis is the process of implementing
the communication links between the processes that
exchange messages. Figure 5 shows the inputs and outputs
of the communication synthesis tool. The designer provides

a behavioral specification using the communication model
presented in Section 3. This behavioral specification
consists of the processes, the connection of output ports to
input ports, and the various attributes associated with each
port. In addition to the behavioral specification, the designer
provides an architectural specification which includes a list
of processing elements, a bus topology with bus protocols, a
mapping of the behavior specification processes to the
processing elements, and a mapping of port connections to
particular busses. Taking the inputs shown in Figure 5, the
communication synthesis tool analyzes the communication
patterns and then customizes a real-time operating system
for each processor. Interprocessor communication is divided
into single-bus and multihop communication. In single-bus
communication the source and destination processors share
the same bus. Intraprocessor communication is a special
case of single-bus communication. In multihop
communication, a message travels on multiple busses to
reach its destination.

4.1 Distribution of Real-Time Constraints for
Multihop Messages

Multihop messages clearly demonstrate the need for global
analysis in communication synthesis. All of the bus traffic in
the system must be accounted for in order to effectively
partition a timing constraint among the various busses. The
designer specifies an initial real-time constraint that is a
deadline for the message to be delivered to its destination.
The communication synthesis tool must distribute this
deadline along the message’s path so that the protocol
parameters for all messages can be effectively determined.
Previous work in determining the worst-case delay for
transmitting a message such as [19] require restrictions
which are incompatible with our communication model. For
example, the assumption that a message’s timing constraint
must be less than the period of the sending process implies
that a message can only have a send queue depth of one. No
such restrictions exist in our model of non-blocking
communication.

 The overall approach for multihop communication
synthesis is divide and conquer. A multihop message is
divided into submessages for each hop that a message takes
to reach its destination. First, we require the designer to
explicitly enumerate every path a message must take from
the source to each destination. Next, a heuristic algorithm,
proportional effective bandwidth (PEB), calculates the
deadlines for the submessages such that the sum of
deadlines plus overhead on any path is less than or equal to
the original deadline

 The main idea behind PEB is to first optimistically

behavioral
specification

architectural
description

behavior to
architecture
mapping

Communication
Synthesis

protocol-specific
port implementations

real-time kernel
customizations

simulation files

Figure 5. The inputs / outputs for communication synthesis

determine the time required to deliver a message to all of its
destinations and then proportionally distribute any
remaining time among the various hops taking into account
all other messages that may compete for busses along the
message’s path. Each deadline can be divided into two
components: the time required to transmit the message on
the bus (minXmitTime) and the time remaining before the
deadline expires (extraTime). For example, if a message has
a deadline of 5ms and it takes 1ms to transmit it over a
particular bus, then minXmitTime is 1ms and extraTime is
4ms. Note that minXmitTime is a function of the user-
message size, protocol formatting fields such as headers and
checksums and the raw bandwidth of the bus. After
minXmitTime has been calculated for each hop on all paths,
the optimistic worst-case path delay, optDelay, over all
paths is computed. This delay is optimistic because it does
not account for other bus traffic. It is the minimum time
necessary to transmit the message to all of its destinations.
A processor-specific delay, hopDelay, accounts for the time
a processor takes to read in a message on one bus and
transmit it on another bus. ExtraTime is defined as the
original deadline minus the optimistic worst-case delay.
More formally:

ExtraTime is proportionally distributed along each path
taking into account contention on the busses. An effective
bus bandwidth, effBw, is computed for each bus. A scaling
factor taking into account the longest latency path at each
hop allocates the extra time remaining, ETR, from the
source to its destinations. Formally:

Consider a robot architecture where every process is
mapped to its own processor. A portion of the topology is
shown in Figure 6 where the Joystick processor sends a
message with a deadline of 10ms to the Wheels and Arbiter
processors. To simplify this example we assume the
hopDelay and the protocol overhead is negligible. The
minimum transmit times for a joystick message of 10 bytes
are 0.8ms, 0.4ms, and 0.2ms for bus1, bus2, and bus3,
respectively. OptDelay of 1.2ms is determined by the slower
Joystick/Wheels (0.8ms+0.4ms) path. ExtraTime, 10ms -

1.2ms = 8.8ms, is proportionally distributed among the two
hops. First consider the case where all three busses are
lightly loaded so the effective bandwidth is essentially the
raw bandwidth of the busses:

Now consider the case where bus3 has a utilization of 75%
giving it an effective bandwidth of only 100Kb/sec.

 The heavy load on bus3 causes the message to be delivered
to the AutoPilot processor earlier than in the non-loaded
case. The effect on the deadline for bus b2 is that there is
more freedom to allow other messages to have a higher
priority since from this path’s point of view, the message has
arrived earlier than necessary. Clearly, the performance of a
bus on a different path can have a system-wide impact.

After the timing constraints have been partitioned for all
multihop messages in the system, hop processes are
automatically inserted where needed. The hop processes are
treated as user processes for the duration of communication
synthesis.

4.2 Single-Bus Interprocessor Communication
The system description that now consists of user and hop
processes mapped to processors that communicate via
single-hop messages with timing constraints. Single-bus
interprocessor communication synthesis customizes this
description to realize the selected bus protocols, introduces

ExtraTime Deadline OptDelay–=

OptDelay max paths∀ minXmitTimei hopDelayj+
path j

∑ 
 

 
 =

minXmitTimei

messageSizei protocolOverheadi+

bwi
---=

deadlinei minXmitTimei extraTimei+=

effBwi 1 utilizationi–()bwi=

extraTimei

1
effBwi

1
effBwi
---------------- max paths∀ 1

effBwx

x i 1+=

endOfPath

∑ 
 
 

 
 
 

+

--ETRi=

ETRi ExtraTime extraTimek
k 1=

i 1–

∑–=

Figure 6. Distributing deadlines. A message is sent from the
joystick processor over bus1 to the AutoPilot processor and

then to the Wheels and Arbiter processors.

Arbiter

bus2

bus1
bus3

Auto
Joystick

deadline = 10ms
Wheels

bw1 = 100Kb/sec

bw2 = 200Kb/sec

bw3 = 400Kb/sec

Pilot

extraTime1

1
100Kb/sec
------------------------- 

  8.8ms()

1
100Kb/sec
------------------------- max

1
200Kb/sec
------------------------- 1

400Kb/sec
-------------------------, 

 +

--=

extraTime1 5.87ms=

extraTime2 extraTime3 2.93ms= =

deadLine1 0.8ms 5.87ms+ 6.67ms==

deadLine2 deadLine3 3.33ms==

extraTime1

1
100Kb/sec
------------------------- 

  8.8ms()

1
100Kb/sec
------------------------- max 1

200Kb/sec
------------------------- 1

100Kb/sec
-------------------------, 

 +
--=

extraTime1 4.4ms=

extraTime2 extraTime3 4.4ms= =

deadLine1 0.8ms 4.4ms+ 5.2ms==

deadLine2 deadLine3 4.8ms==

device-drivers to communicate directly with the bus or via a
communications chip, enhances the real-time kernels on
each processor to route messages to their destinations, and
implements the message attributes regarding queuing and
notification. The communication flow for a simple point to
point communication is shown in Figure 7. The end result is
that an application-specific real-time operating system is
generated for each processor.

 The first step groups all of the messages that are sent on a
particular bus. Protocol attributes are assigned to the
messages and processors based on the arbitration scheme of
the bus. We have modified the taxonomy in [20] to focus on
the attributes which are required for protocol synthesis. Our
taxonomy considers protocols that base arbitration on
message priority, processor priority, master/slave, time,
time/processor priority hybrid, and non-priority schemes.
The designer-specified bus protocol (e.g. CAN) is
automatically placed into this taxonomy and the protocol
attributes are determined according to the heuristics
presented below.

Message-based priority protocols give the most flexibility to
the synthesis tool in meeting the timing requirements of the
system. Priorities are assigned according to the deadlines of
the individual messages. Messages with smaller deadlines
have higher priority with ties broken arbitrarily but
consecutively allocated.

Because of priority inversion [16], processor-based
priorities are problematic for real-time systems and give the
least flexibility to the synthesis tool. For example, consider a
process that generates an infrequent and short deadline
message M1, but normally generates long deadline message
M2. If the processor is given a high priority to guarantee the
timing constraint of M1, then all of the M2 messages inherit
this high priority, potentially causing a priority inversion
with messages from other processors on the bus. Currently,
we allocate processor priorities according to the shortest
deadline of any message sent on the bus.

In a master/slave protocol, the master processor polls the
slave processors to see if any require the bus. There are
different higher-level protocols that can be implemented on

top of this protocol. For instance, it is possible to have
message priorities by having the master poll all of the slaves
and grant the bus to the slave with the highest priority
message to send. However, such a protocol has a high
overhead. An alternative protocol is to grant the bus to each
slave in a round-robin or some other pre-determined order.
We are investigating metrics to automatically select the
most appropriate policy based on the global analysis of the
designer's specification. Under both policies the bus master
is chosen to be the processor with the least utilization.

A variation of the master/slave protocol is one based on
time. Under this protocol, time is conceptually the master
and all of the processors are slaves. Each processor is
granted a time slice during which it can send messages over
the bus. Similar to the master/slave protocol above, the
processors are granted the bus in a fixed order with the
timing master selected as the processor with the lowest
utilization. The master sends out a heart-beat message and
then the processors send out their message at a given delta
time from this heart-beat.

After the protocol specific attributes have been determined,
the behavioral specification is modified to reflect these
attributes. For message-based priority protocols, the priority
must be incorporated into the message send. Note that
simply having a send API (subroutine call) is insufficient to
realize the protocol because the message priorities are not
determined until after the communication synthesis tool has
analyzed all of the messages on the bus. Furthermore, the
processes may come from reusable modules so assigning
static priorities at the behavioral level is not possible. The
tool must modify the send call to incorporate this additional
information. Consider the following example from the robot
where all of the processes are mapped to their own
processor and communicate via a CAN bus as in Figure 1a.
The CAN protocol has message-based priorities with non-
destructive contention for the bus. When using this protocol,
all of the send subroutine calls in the high-level specification
are automatically replaced with two new subroutines. The
first routine takes the user-level message along with
protocol attributes synthesized using the heuristics
mentioned above and creates a new low-level bus message.
The second routine calls the device-driver with the low-level
bus message which passes the message to the
communication chip.

The designer is abstracted away from low-level protocol
details. For instance, the CAN protocol has a limit of eight
data bytes. Messages larger than eight bytes are
automatically divided into multiple CAN messages sharing
the same id. The eighth data byte is filled with a constant
indicating that more data for this particular message is
pending. The CAN device-driver receiving the message
builds up the original behavioral message before delivering
it to the message router.

The next step customizes the user processes. An input port
data structure is instantiated for each behavioral input port
and implements the queuing semantics according to the

Wheels
Process

OutPort

Device
driver

Comm.
chip

AutoPilot
Process

InPort

Message
Router

Device
driver

Comm.
chip

Figure 7. The Wheels process sends a message to the Auto-
Pilot process (dashed line). The actual communication flow

automatically generated is shown by the solid lines.

individual message attributes from the behavioral
specification. Each port is given a unique id and at run time
registers itself with the message router described below.

Once the processes have been transformed, the bus protocol
device-drivers are instantiated from a protocol library. These
device-drivers are written using the communication model
from the previous section. The device-driver has three
primary handlers that execute during the normal operation
of the system. The first one is the protocol specific send
routine which executes in the application‘s handler. It stores
a message in the device-driver’s send queue and
immediately returns (a non-blocking send call). The second
entry point is an interrupt handler that sets a flag indicating
that an interrupt occurred. The third entry point, the execute
method called by the scheduler, is responsible for receiving
packets and sending out any messages on the send queue.

If the processor has built-in support for a bus protocol, then
the given interface to this internal peripheral only requires
software instructions to access the particular control
registers. However, it may be necessary to use an external
communications chip such as the SAE 81C90[1]. In [4] and
[3] it was shown how to automatically connect peripheral
devices to a microprocessor by synthesizing any necessary
glue logic and reflecting the new hardware interface to the
device in the low-level device-driver. Using these
techniques, we can synthesize a bus interface for processors
which do not internally support a given protocol

The device-driver is also responsible for stripping out
protocol specific attributes and re-constructing the original
behavioral message from the received packets. After an
entire behavioral message has been received, the device-
driver passes the message to the processor’s message router
which delivers the message to each of the destination ports
according to the message receive attributes of the port. The
message router is customized for each processor. It contains
a mapping of messages to the input ports for the processes
(including hop processes) mapped to this processor.

5. CO-SIMULATION
At this point the communication synthesis tool has
synthesized the necessary information to construct an
application-specific communication architecture. To provide
system architects with an integrated rapid-prototyping
environment, the tool also generates all of the files needed to
run a timing accurate co-simulation of the synthesized
system. The designer can attach logic analyzer probes to
individual busses and gather statistics about any message in
the system. The communication synthesis tool generates
code to automatically log the generation and reception of all
messages. Analysis of the log file gives system architects
performance information allowing them to quantify various
architectural tradeoffs and validate the performance of the
synthesized communication infrastructure.

6. EXAMPLES
The robot from Figure 4 was mapped to different bus
topologies and protocols. We used these mappings as a

proof of concept and did not attempt to achieve a minimal
cost system. The communication synthesis tool was run as
an interpreted Java application on a 233MHz PowerPC 750.
The execution time results are summarized in Table 1.

The first two mappings place each process on its own
processor and all of the processors are connected via a
common bus. The processors have an on-chip protocol
processor. To go from the CAN mapping to the I2C mapping
required changing only 11 lines of code in the architectural
description: 5 different processors, 5 different bus
interfaces, and a different bus. These small modifications
illustrate the ease of considering different mappings. In the
first mapping a 1 Mb/sec CAN bus is used while the second
one uses an 400Kb/sec I2C bus. For each mapping the
synthesis tool generated 23 Java files (a total of 3000 lines
of code): 13 files output port class definitions, 5 enhanced
user processes, and 5 message routers. For simulation, the
tool generated an additional 7 files (5 simulated processors,
a netlist, and the Makefile).

The next mapping uses two different CAN busses with an
I2C bus connecting them (see Figure 8). The joystick
process generates the message DeadManHalt which has the
shortest deadline of any message. It must be delivered from
Pa to the wheels process on Pd and the control arbiter
process on Pb. The designer indicates that this message is

routed via Pb and its I2C bus to Pd. Therefore, a hop process
is placed on Pb. Since this highest priority message travels

from Pb to Pd, processor Pb is assigned a higher I2C priority.
In a similar fashion the autoPilot process must communicate
with the control arbiter causing a hop process to be placed
on Pd. Within 9 seconds after the mapping, we were able to

Mapping # of
synthesis

 files

Time to
generate
syn. files

(s)

of
sim.
 files

Time to
generate
sim. files

(s)

Total
time
 (s)

 CAN bus 23 5.03 7 1.47 6.5

 I2C bus 23 5.09 7 1.34 6.43

CAN/I2C 35 7.46 7 1.48 8.95

Table 1: Execution time results for the communication
synthesis tool on three mappings of the robot specification.

joystick

CAN

Pa

wheels

CAN

Pd

I2C

logger

I2C

Pc

control

CAN

Pb

arbiter
I2C autoPilot

CAN

Pe

Figure 8. A mapping of the robot control system. After parti-
tioning the timing constraints among the busses, hop processes
are placed on Pb and Pd, and the protocol parameters are de-

rived for the messages.

begin simulating. Synthesis for this mapping takes longer
because the deadlines are partitioned for multihop
communication, generating files for the hop processes (6
messages are multihop) and their corresponding outports.

Each of the architectures was executed in the Pia co-
simulation environment[9]. The joystick process was
modified to send out periodic commands. After 20
commands, the logging of the system was halted. A few of
the more interesting statistics are shown in Table 2. This

type of data can be used by system architects to quantify
architectural tradeoffs. DeadManHalt is sent from the
joystick processor to the wheels and arbiter processors. It
has a faster minimum delivery in the CAN/I2C architecture
because of bus contention in the other architectures. The
message was sent when another message was being
transmitted. Since DeadManHalt has the highest priority, it
is the next message on the bus. When the CAN/I2C system
has bus traffic there is a longer delay of 309µs. Evaluating
the performance of these three architectures, the system
architect can choose the most appropriate architecture.

7. CONCLUSION
Designers of distributed embedded systems require tools to
explore in detail different points in the design space.
Communication synthesis allows designers to investigate
the tradeoffs between different architectures by managing
the low-level protocol and routing details required to
implement system communication. A global view of
communication is necessary to map to those fixed protocols
which are most suitable for real-time systems. The
communication model presented allows for retargeting to
different protocols and architectures. Designers can map
high-level specifications to arbitrary architectures. The
communication synthesis tool is fully integrated with a co-
simulator so that designers can gather performance statistics
to evaluate tradeoffs between different architectures.

8. ACKNOWLEDGEMENTS
We would like to thank Ken Hines for his support during the
integration of the communication synthesis tool with Pia.

9. REFERENCES
[1] SAE 81C90/91 Stand Alone Full CAN Controller, Preliminary

Data. Siemens, 1996.
[2] I. Bolsens, H.J. DeMan, B. Lin, K. Van Rompaey, S. Vercau-

teren, D. Verkest. Hardware/software co-design of digital tele-

communication systems. In Proceedings of the IEEE,
85(3):391-418, March 1997.

[3] P. Chou, R. Ortega, and G. Borriello. Synthesis of the hard-
ware/software interface in microcontroller-based systems. In
Proceedings of the International Conference on Computer-
Aided Design, November 1992.

[4] P.H. Chou, R.B. Ortega, and G. Borriello. Interface co-synthe-
sis techniques for embedded systems. In Proceedings of the
International Conference on Computer-Aided Design,
November 1995.

[5] J-M. Daveau, G.F. Marchioro, T.Ben-Ismail, and A.A. Jer-
raya. Protocol selection and interface generation for hw-sw
codesign. IEEE Trans. on Very Large Scale Integration
(5)1:136-144, March 1997.

[6] R. Ernst and T. Benner. Communication, constraints, and
user-directives in COSYMA. Technical Report TM CY-94-2,
Technical University of Braunschweig, June 1994.

[7] D. Gajski, F. Vahid, S. Narayan, and J. Gong. Specification
and Design of Embedded Systems. Prentice-Hall, Englewood
Cliffs, NJ, 1994.

[8] M. Gasteier and M. Glesner. Bus-based communication syn-
thesis on system-level. In Proceedings of the International
Symposium on System Synthesis, November, 1996.

[9] K. Hines and G. Borriello. Dynamic communication models
in embedded system co-simulation. In Proceedings of the
34th Design Automation Conference, pp. 395-400, June 1997.

[10] D.D. Kandlur, K.G. Shin, and D. Ferrari. Real-time communi-
cation in multihop networks. IEEE Trans. on Parallel and
Distributed Systems (5)10:1044-1055, October, 1994.

[11] H. Kopetz et al. Distributed fault-tolerant real-time systems:
the Mars approach. IEEE Micro, 9(1):25-40, February 1989

[12] A.H. Mebane IV, J.R. Schmedake, I-S Chen, and A.P. Kadon-
aga. Electronic and firmware design of the HP LaserJet Draft-
ing Plotter. Hewlett-Packard Journal 43(6):16-23, December
1992.

[13] R.B. Ortega, L. Lavagno, and G. Borriello. Models and meth-
ods for hw/sw intellectual property interfacing. In 1998 NATO
ASI on System-level Synthesis.

[14] R.B. Ortega and G. Borriello. Communication synthesis for
embedded systems with global considerations. In Proceedings
of the 5th International Workshop on Hardware/Software
Codesign, March 1997.

[15] I2C Peripherals for Microcontrollers. Philips Semiconductors,
1992.

[16] R. Rajkumar, L. Sha. and J.P. Lehoczky. Real-time synchroni-
zation protocols for multiprocessors. In Proceedings of the
Real-Time Systems Symposium, Dec. 1988.

[17] J.A. Rowson, A. Sangiovanni-Vincentelli. Interface-based
design. In Proceedings of the Design Automation Conference,
pp 178-83, June 1997.

[18] B. Selic, G. Gullekson, and P.T. Ward. Real-Time Object-Ori-
ented Modeling. John Wiley & Sons, 1994.

[19] K. Tindell and A. Burns. Guaranteed message latencies for
distributed safety-critical hard real-time control networks.
Technical Report YCS-94-229, University of York, 1994.

[20] B.P. Upender and P.J. Koopman Jr. Communication protocols
for embedded systems. Embedded Systems Programming,
7(11):46-58, November 1994.

[21] F. Vahid and L. Tauro. An object-oriented communication
library for hardware-software codesign. In Proceedings of the
5th International Workshop on Hardware/Software Codesign,
March 1997.

[22] T.-Y. Yen and W. Wolf. Communication synthesis for distrib-
uted systems. In Proceedings of the International Conference
on Computer-Aided Design, November 1995.

[23] H. Zeltwanger. An inside look at the fundamentals of CAN.
Control Engineering, 42(1), January 1995.

Mapping DeadManHalt
(min, max)

(µs)

Joystick
(min, max)

(µs)

WheelsVel
(min, max)

(µs)

AutoPilots
(min, max)

(µs)

CAN bus 47, 47 29, 155 97, 165 38, 134

I2C bus 99, 197 97, 5022 616, 960 144, 339

CAN/I2C 29, 309 29, 12275 97, 132 38, 438

Table 2: Evaluation of the three robot mappings. Min and max
transmit times are shown for selected messages.

	CDROM Home Page
	ICCAD98
	Front Matter
	Table of Contents
	Session Index
	Author Index

