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Abstract
This paper introduces the first hardware/software co-

synthesis algorithm of distributed real-time systems that op-
timizesmemory hierarchyalong with the rest of the archi-
tecture. Our algorithm synthesize a set of real-time tasks
with data dependencies onto a heterogeneous multiproces-
sor architecture that meets the performance constraints with
minimized cost. Our algorithm choosescache sizes and al-
locates tasks to caches as part of co-synthesis. Experimental
results, including examples from the literature and results on
an MPEG-2 encoder, show that our algorithm is efficient and
compared with existing algorithms, it can reduce the overall
cost of the synthesized system.

1 Introduction
This paper describes a new system-level algorithm for

hardware-software co-synthesisof multi-rate real-time sys-
temson heterogeneous multiprocessors. Unlike most of the
previous work in hardware-software co-synthesis, the algo-
rithm not only synthesizes the hardware and software parts
of the applications, but also the memory hierarchy: it takes
into account the impact of memory hierarchies on system
performance and cost in the co-synthesis process. The algo-
rithm targetsperiodicreal-time applications running at mul-
tiple rates. The target architecture is a heterogeneous mul-
tiprocessor architecture that consists of multiple processing
elements (PEs) of various types (i.e., general-purpose pro-
cessors, domain-specific CPUs such as DSPs, and custom
hardware), memory components at different levels of mem-
ory hierarchy, and communication links. The algorithm syn-
thesizes the hardware, software and memory hierarchy based
on a multiprocessor target architecture to meet the perfor-
mance constraints with minimal cost.

With embedded CPU cores becoming increasingly com-
mon in VLSI systems, and with increasing use of multiple
embedded cores on a single chip (systems on a chip), sys-
tem designers need to implement major subsystems using
real-time system design techniques such as multiple, priori-
tized tasks sharing CPUs. The design of these systems (core-
based systems) is complex and requires sophisticated anal-
ysis and optimization. Hardware-software co-synthesis can
be used to explore the design space and synthesize the ap-
plication into hardware and software cores that meet design
constraints (performance, cost, power, etc.).

Memory hierarchies, in particular caches, are essential for
modern RISC embedded cores to obtain sustained high per-

formance. As the functionality of embedded systems in-
creases, caches and memories represent a significant portion
of the cost, size, weight, and power consumption of many
embedded systems. Ineffective use of the memory hierarchy
requires extra transfers of data and program and can signifi-
cantly increase both execution time and power consumption.

Memory hierarchy must be taken into consideration in
system-level design to minimize the overall system cost. For
example, to improve the performance of a system, the de-
signer may use a faster and usually more expensive CPU, or
add a piece of custom hardware, or use a bigger cache. It
is important for the designer to evaluate the tradeoffs among
these different design options in order to find the optimized
design. Although many processor chips already include
caches, they still provide several choices ofcache sizes for
the same CPU type. Incore-based designfor systems-on-a-
chip, the designer has the option of adjusting the cache sizes
of the CPU cores. However, most previous research in co-
synthesis has ignored thecache’s impact and only concen-
trated on the synthesis of PEs for software (processors) and
hardware (ASICs). So far, there is no systematic approach
for the design of memory hierarchies in co-synthesis. In our
previous work [8], we designed a task-level cache perfor-
mance model and concentrated on analysis and scheduling
with memory hierarchy but not co-synthesis.

To handle memory hierarchies in a multi-tasking environ-
ment, we need ahigh-levelmodel that can efficiently model
the application performance in presence of memory hierar-
chy. In this paper, we first present atask-level modelthat
efficiently bounds thecache performance of tasks running
in a multi-taskingenvironment (see Sec.3). We incorporate
this model into hardware-software co-synthesis and propose
a new co-synthesis algorithm that optimizes the use of mem-
ory hierarchy and synthesizes cache memory together with
hardware and software to optimize the total system cost (see
Sec.4). Sec.5 discusses the experimental results of our algo-
rithm.

2 Previous Work
Related work includes studies from hardware-software

partitioning, hardware-software co-synthesis, performance
analysis with caches, and real-time computing.

Hardware-software partitioning [3, 4, 14, 16] has been a
major topic in the area ofhardware-software co-design.
Most of the partitioning algorithms implement the system
based on a template of a CPU (software) and an ASIC (hard-
ware). Recent work in co-synthesis has used a more gen-
eralized model consisting of heterogeneous multiprocessors
with arbitrary communication links. The SOS algorithm
developed by Prakash and Parker [12] used an integer lin-
ear programming (ILP) approach. Yen and Wolf’s work
[15, 17] used a faster iterative improvement approach. The
co-synthesis algorithms developed by Daveet al:[2] can
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handle multiple objectives such as cost, performance, power
and fault tolerance. However, all of these algorithms ignore
memory hierarchy.

Recent research, such as the path-based analysis algo-
rithm of Li et al:[10] has developed cache models for an-
alyzing the performance of asingle program. While such
models provide accurate estimates of the performance of a
single program, they do not take into account the effects
of preemptions between multiple tasks, and they are much
too expensive to be used in system-level synthesis and de-
sign exploration. When one task preempts another, it may
(or may not) change the state of the cache at a point in a
way that compromises the performance of the originally-
executing model. For preemptive real-time systems, such in-
teractions are critical to evaluate during system-level archi-
tecture design.

Lee,et:al:[7] proposed a technique to analyzecache-
related preemption delays of tasks that cause unpredictable
variation in task execution time for preemptive schedul-
ing. Kirk and Strosnider [6] developed a SMART (strate-
gic memory allocation for real-time) cache design that par-
titions thecache to provide predictable cache performance.
Danckaert,et al:[1] studied memory optimization aiming to
reduce the dominant cost of memory in hardware-software
co-design of multi-media and DSP applications. Their algo-
rithm concentrated on reducing data storage and did not con-
sider multi-level memory hierarchy. All these approaches [1,
6, 10] relies on program-level analysis, and are too expen-
sive to be used in design space exploration of multiple tasks.

Research in the area ofreal-time schedulingprovides an
important foundation to our co-synthesis algorithm which
targets multi-rate real-time tasks. In a uniprocessor environ-
ment, real-time systems commonly use one of two schedul-
ing policies to schedule periodic tasks:earliest-deadline-
first (EDF) andrate-monotonic scheduling (RMS)[11]. For
distributed real-time systems, Ramamritham [13] used an
task-graph unrolling approach and developed a heuristic
allocation and scheduling algorithm that considered data
dependencies, communication, and fault-tolerance require-
ments; Li and Wolf [9] developed an efficient hierarchical al-
gorithm to schedule and allocate multi-rate tasks with prece-
dence constraints.
3 Task-Level Memory Hierarchy Model

Accurate estimation of memory hierarchy (cache) behav-
iors requiresprogram-levelor trace-levelanalysis, which are
too expensive to be used in the design exploration ofmul-
tiple taskson a multiprocessor architecture. Ahigh-level
modelof memory hierarchy performance is critical for in-
tegrating memory hierarchy into co-synthesis of multiple
tasks. The model should be able to:

1. efficiently model themulti-taskingenvironment, which
may be further complicated by preemptions;

2. efficiently model cache behavior (hits/misses) when
cache sizechanges.

In our earlier work [8], we proposed the firsttask-level
model of memory hierarchy performance for system-level
synthesis, and allocation/scheduling algorithms with mem-
ory hierarchies. This model treats each task as an entity,
partitions the caches, and reserves some partitions exclu-
sively for certain tasks to guarantee predictable performance
of these tasks. While it provides a fast means to bound the
cache performance of tasks running in amulti-tasking en-
vironment, the cache partitioning/reservation approach re-
sults in inefficient utilization of thecaches. Furthermore,
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Figure 1: Mapping of tasks onto a 1KB cache.

the model is not flexible in terms of the memory allocation
of tasks: for tasks with cache partitions on the samecache,
the compiler has to make sure that they do not map to over-
lapped cache locations.

We have developed a task-level cache performance model
that handlesarbitrary mappingof tasks to caches. Fig.1
shows how tasks can map to a cache. For simplicity, we
make the following assumptions about the tasks and the
caches:

Assumption 1: Only one-level cache is modeled and
tasks are well-contained in the level-1 cache (each task’s
program size and data size are no bigger than the instruction
and data cache size, respectively). This may not be a reason-
able assumption in a general-purpose system, but it is plausi-
ble for many embedded systems. The kernels of time-critical
operations are frequently small enough to fit into a modest-
sized cache. Even when a task is too large to be contained
in a level-1 cache, it can be specified at a finer granularity to
satisfy the assumption.

Assumption 2: The caches are direct-mapped and the
cache sizes are powers of two.

Assumption 3: A task’s program is allocated a continu-
ous region of the memory and is, therefore, mapped into a
continuous region of thecache. A task’s data can be scat-
tered in several regions of the memory.

Due to the first assumption, when a task executes on a
processor, if not preempted by other tasks, the only cache
misses arecompulsory misses[20]. As opposed to capacity
and conflict misses, the number of compulsory misses of a
task does not change with cache size.

We now analyze the cache performance of multiple tasks
for a fixed cache size. Note that only compulsory misses can
happen because ofAssumption 1. The cache performance of
a task depends on the history of task execution on the pro-
cessor: if the task is executed on the processor for the first
time, it is initially loaded into thecache (cold start), with
compulsory misses; if the task has been executed before and
has not been overwritten by other tasks, then there are no
cache misses; if it has been partly overwritten by other tasks,
then there are compulsory misses associated with the cache
regions that were overwritten. It is important to monitor the
change of the cache status to tightlybound thecache perfor-
mance of tasks.

As shown in Fig.1, when tasks are mapped to a cache,
there can be overlap between tasks. These overlaps deter-
mine all the possibilities of task overwriting. We divide the
cache into several regions according to distinct taskbound-
aries. Suppose there aren tasks mapped to the cache, the
number of tasks boundaries is bounded byO(2n), which
means the cache is divided into at mostO(2n + 1) regions.
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Figure 2: Mapping of tasks onto a 2KB cache.

In the example of Fig.1, the cache is divided into seven re-
gions by four tasks, with each task spanning several regions
of the cache.

We define thestateof a cache region as the task currently
loaded in that region, and thecache stateas a tuple of the
states of all the regions. In the example of Fig.1, after exe-
cutinga; b; d; a, the cache state isfa; a; a; a; 0; 0; dg, where
0 indicates the region has never been accessed. During a
multi-tasking execution, we can look up the currentcache
state to determine a task’s number of misses and, there-
fore, its execution time. LetWCET base be the worst-
case execution time of a task assuming no cache misses,
and#miss the number of misses. TheWCET consider-
ing cache misses is shown in Eq.(1). The number of cache
misses is shown in Eq.(2), where#miss comp(i) is the
number of the task’s (say taskx) compulsory misses asso-
ciated with regioni.

WCETx = WCET basex +#missx � miss penalty (1)

#missx =

X

state(i)6=task x

#miss compx(i) (2)

In summary, for a fixed cache, the cache performance model
1. map tasks to the cache and divide the cache into regions

according to task overlaps;
2. for each task and each of its related regions, obtain the

number of compulsory misses of that task associated
with that region;

3. in the multiple task execution, monitor thecache state
to compute the number of cache misses andWCETs
for the tasks in their execution context, using Eq.(1) and
Eq.(2).

When we change the cache size, the overlap between tasks
may change. In Fig.2, we double thecache size of Fig.1 and
tasksa-d map differently onto the new cache and generate
different divisions of cache. However, an important obser-
vation is that doublingcache size does not incur more divi-
sions on the cache: the number of regions that a task spans
can only stay the same, or decrease. Since the number of
compulsory misses of a task on a particular region does not
change with cache size [20], we do not need to re-compute
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Figure 4: Task graphs.

the compulsory miss numbers for the tasks. For example, in
Fig.1, taska spans four regions1-4; when cache size isdou-
bled, as shown in Fig.2, since taskb no longs overlapsa, task
a now spans two regions (1,2) and (3,4). The compulsory
misses ofa for these two regions can be easily computed by
adding up the compulsory misses of their correspondent sub-
regions1-4. Based on this observation, to analyze all pos-
sible cache sizes, we can start from the smallest cache that
satisfiesAssumption 1, the analysis of any other cache size
can be inductively done from thecache half of its size.

The above discussion is based on the assumption that each
task is mapped to one continuous region of thecache. While
this is true for task program, it is not valid for task data
which may occupy several disjoint regions (Assumption 3).
The only difference is that the multiple data regions for one
task will result in more divisions on the data cache, but a
similar analysis still applies.

4 Hardware/Software Co-synthesis with
Memory Optimization

Based on the task-level model for cache performance, we
have built a framework for hardware/software co-synthesis
with cache. Fig.3 shows the flow graph of our framework.
It has two main phases: the first phase,parameter extrac-
tion, prepares for co-synthesis—it extracts task graphs and
task-level parameters from the original application specifica-
tions (source programs); these parameters are then used by
the second phase—design space exploration (co-synthesis)
to synthesize the architecture. Sec.4.2 and Sec.4.3 will de-
scribe these two steps respectively.

4.1 Problem Specification
The problem specification of our co-synthesis algorithm

includes two components: a set of real-time applications and
a technology database. The real-time applications are peri-
odic, running at multiple rates. Each application is repre-
sented by anacyclic task graph, as shown in Fig.4, where
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nodes represent tasks, and directed edges represent data de-
pendencies between tasks. Different tasks may share pro-
gram or data in the memory. The data dependencies can
be either read-after-write (RAW), write-after-read (WAR) or
write-after-write (WAW).

Tasks in one application run at the same rate. We as-
sume that the deadline of the tasks is equal to their period.
Each task can have several implementation options differing
in area cost and execution time. Thetechnology database
provides the tasks a number of choices for the types of pro-
cessors, ASICs, and caches, each associated with a certain
cost.

We use a heterogeneousshared-memory multiprocessor
as the template architecture (see Fig.5). The architecture has
a number of PEs of various types. Each processor has its pri-
vate instruction cache and data cache. An ASIC may have
a private data cache. Lower-level caches and memory are
shared. PEs and memory components are linked by a shared
bus.

Thegoalof the algorithm is to:
1. choose the number and types of components in the tar-

get architecture from the technology database, such that
the applications can be scheduled to meet their perfor-
mance constraints (deadlines) and the total cost of the
result system is minimized.

2. return the allocation and scheduling of the tasks on the
result architecture.

4.2 Parameter Extraction
For each task, from its program-level description, weex-

tract task-level parameters that are essential for evalu-
ating the task’s execution and caching behaviors. These
parameters include: worst-case execution time when there
are no cache misses (WCET base), the task’s instruction
and data address ranges in memory (program region, and
data region1, data region2, ... ). Then separately for data
and instruction caches, we compute the smallest cache size
that satisfiesAssumption 1, and assuming all tasks are al-
located to this one cache, we divide the cache into regions
according to task overlaps in cache and compute the tasks’
compulsory misses on each of its relevant regions (as de-
scribed in Sec.3). In the co-synthesis process, only a subset
(sayT ) of all the tasks will be allocated to a given PE (say
P ), this will result in fewer regions inP ’s cache. The com-
pulsory misses for each task inT associated with each cache
region can be obtained by removing boundaries related to
tasks that are not allocated toP .

In our framework, task execution times and memory ad-
dresses are obtained by behavior simulation tools, and the
number of cache compulsory misses are easily obtained with

a cache simulator. These parameters can be also obtained us-
ing performance analysis tools such asCinderella[10].

Cache coherency. In a shared-memory multiprocessor
architecture, caching of shared data introduces thecache co-
herencyproblem. In our algorithm, we use thewrite inval-
idate protocol. A write on one PE will invalidate all other
copies of the same data on other PEs to ensure this PE has
exclusive access to the data. After a task finishes its execu-
tion, its data is written back to the main memory such that
the updated data can be used by other tasks. Note that there
is no need to write to the main memory during the execu-
tion of a task (saya), because any other tasks that are data-
dependent ona do not start running untila is finished.
4.3 Hardware/Software Co-synthesis

Based on the task-level cache model described in Sec.3,
we have designed aniterative improvementalgorithm that
uses the task-level parameters as inputs and outputs a design
that meets the performance constraints with minimal cost.

The total costC of the system is evaluated as the sum of
the component costs (C(:::)):

C =

X

i2CPUs

(C(CPUi) + C(I cachei) + C(D cachei))

+

X

j2ASICs

(C(ASICj) + C(D cachej))

+

X

k2links

C(communication linkk) (3)

Performance evaluation. We have used two different
methods at different points in the design process to evalu-
ate the performance of a design. One method is to compute
the workload (Eq.(4)) on each PE to quickly check its feasi-
bility. The workload on a PE is the sum of the workload of
all the tasks allocated to this PE:

Workload(PE) =
X

i2Tasks

WCET (taski; PE)=Period(taski)

whereTasks is the set of tasks allocated toPE. If any PE
in the system has a workload of higher than 100%, then the
design is not feasible. Workload analysis is used in the in-
termediate steps of the design space search to quickly weed
out infeasible designs. However, due to data dependencies
and bus contention, a PE can rarely achieve a 100% utiliza-
tion. A design is validated only when a schedule can be con-
structed without violating task deadlines.

Synthesisrefers to the exploration of the design space.
It is integrated with the cost/performance evaluation and
scheduling algorithm to find the optimized design. Our syn-
thesis algorithm consists of the following steps:

1. Find an initial solution.
2. Iterative PE and cache cost reduction.
3. Allocate and schedule tasks and bus transfers for the fi-

nal design.
In step 1, theinitial solution is constructed by assigning

each task in the task graphs the fastest PE that is available
for the task. The PE with the leastWCET base is chosen.
If the PE chosen is a CPU, instruction and data caches of the
task’s program and data sizes are added; if it is an ASIC, a
data cache of the size of the task’s data size is added. The
performance of the initial solution is evaluated. If it cannot
meet the real-time deadlines, then for the given task graphs,
there exists no feasible design given the current technology
database and the algorithm returns without a solution.

The PE and cache cost reduction step is the core step of
the algorithm and Sec.4.3.2 describes the details of this step.
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4.3.1 Task Allocation and Scheduling
Task allocation and scheduling are important aspects of the
co-synthesis algorithm. The scheduling routine is used not
only to generate the allocation and schedule of the final de-
sign, but also to evaluate the performance of intermediate so-
lutions, and to help generate new solutions. A schedule that
utilizes the PEs well is critical to lower the system cost. A
fast scheduler is important to shorten the performance evalu-
ation time of a design and, therefore, allows the design space
to be more thoroughly searched.

Scheduling of multiple real-time tasks onto heterogeneous
multiprocessors is a difficult problem in itself. The addi-
tion of caches make it even more complicated. We built
our scheduling algorithm based on thehierarchical schedul-
ing algorithm (referred as HS-algorithm) developed by Li
and Wolf [9]. This HS-algorithm uses the hierarchical
structure of the system’s task graphs to hierarchically allo-
cate and schedule tasks on the multiprocessors and mem-
ory transfers on the bus, to meet the real-time constraints.
The HS-algorithm targets the same task model and archi-
tecture model as used by our framework, but did not orig-
inally consider memory hierarchies. We added caches to
the PEs and integrate our memory hierarchy model to HS-
algorithm. In the HS-algorithm, the task’s execution time
on a certain PE is assumed to be fixed. This is no longer
valid when caches are added—the execution time of a task
taski on a PEPEj not only depends on the speed of the
PE, but also the speed of the cache and the current cache
size and cache state. Therefore, instead of using a fixed
WCET (taski; PEj), we dynamically compute itaccord-
ing to the the current cache state (Sec.3). This change is
reflected in the calculation ofdynamic urgency, a measure
used by the HS-algorithm to decide the next task to sched-
ule. In the following equation,WCET (taski; PEj should
be computed according to the current cache state.Dynamic
urgencyencourages a task to re-use the cache state to reduce
cache misses.

dynamic urgency(taski ; PEj) =

static urgency(taski)� earliest available time(PEj)

+(average WCET base(taski)�WCET (taski; PEj))

Other parts of the equation, as well as other parts of the
scheduling algorithm remain the same and are not discussed
in this paper.

4.3.2 PE and Cache Cost Reduction
PE and cache cost reduction is the most critical step in the
co-synthesis algorithm. We used aniterative improvement
strategy to search for the optimized design by cutting PE and
cache cost interactively.

A single iteration of cost reduction is shown in Fig.6. This
step tries to eliminate lightly loaded PEs by moving the tasks
on those PEs to other PEs. The PEs are ordered by their
workload (line 3). Starting from the most lightly loaded PE,
we identify the tasks on it that can be executed on other PEs
(line 6); these tasks are then moved to the other PEs that pro-
vide the best performance for the tasks (line 7); the cache
sizes of the other PEs increase to accommodate the tasks that
are newly moved there (line 8). The PE is removed if it be-
comes empty (line 10-11). When there are tasks on a PE that
cannot be moved to other PEs, the algorithm tries to imple-
ment the remaining tasks with a cheaper PE (line 12-13). If
such a PE cannot be found, the current PE is kept in the de-
sign, but an attempt is made to cut its instruction and data
cache sizes (line 14-16).

1.PE_&_cache_cost_reduction(design) {
2. foreach PE_i in design, calculate workload;
3. sort PEs by increasing workload;
4. foreach PE_i in sorted list {
5. foreach task_j allocated to PE_i {
6. other_PEs =other PEs in design with enough

workload left to execute task_j;
7. move task_j to fastest PE_x in other_PEs;
8. increase PE_x’s I-cache/D-cache size by

task_j’s program/data size;
9. }
10. if PE_i is empty
11. remove PE_i and its caches;
12. else if exists a cheaper PE_x to

implement all tasks left on PE_i
13. replace PE_i with PE_x;
14. else
15. keep PE_i;
16. if feasible cut PE_i’s cache size by half;
17. }
18. return the new design;
19. }

Figure 6: One iteration of PE/cache cost reduction.

iterative_pe_cache_cost_reduction(initial_design){
last_cost = cost(initial_design);
last_design = initial_design;
do {

thisdesign=PE_&_cache_cost_reduction(last_design);
last_design=allocate_and_schedule(thisdesign);

} while(!stop_condition);
/*stop condition: no cost improvement in 3

consecutive iterations*/
}

Figure 7: The iterative PE/cache cost reduction.

In the single-iteration procedure, when we move tasks
from one PE to another, the performance constraint may be
violated. We use the quick workload bound method (Eq.4)
to check the utilization of PEs. In summary, a single itera-
tion of cost reduction is achieved by:
� elimination of PEs that become empty after moving all

their allocated tasks to to other PEs;
� replacing PEs with cheaper ones; and
� reducing cache cost.

The iterative algorithm is shown in Fig.7. Starting from
the initial design, the algorithm performs the PE/cache cost
reduction step-by-step, until there is no improvement in
three consecutive iterations. For each new design returned
by a single iteration of PE and cache cost reduction, we call
the allocation and scheduling procedure to:
� check the validity of the design;
� if it is valid, we generate a new allocation and schedule

that is customized to the current system. This is impor-
tant because the single iteration of cost reduction moves
tasks between PEs, eliminates and replaces some PEs.
The resultant design may not have a balanced alloca-
tion of tasks on the PEs included in the design. We
re-allocate and re-schedule the task graphs to achieve
a better utilization of the PEs in the current architec-
ture. The newly re-allocated design is used as the start-
ing point of the next cost reduction iteration.

Fig.8 gives an illustrative example of the synthesis pro-
cess. Starting from the task graph in (a), an initial solution
of three PEs and two caches are generated (Fig.8(b)). The
algorithm then iteratively reduces the PE and cache cost to
obtain a new solution with one less PE and smaller cache

5



root

p1 p2

p3

(a)  a task graph

PE A

cache

p1

PE B

cache

p2

PE C

p3

PE A

p1 p2

PE C

p3

p1, p2

p1 p2

PE C
p3

PE A

cache

p1
p2

p1, p3

(b)  initial  solution

(c) after PE/cache cost reduction

(d) final solution after re-allocation and re-scheduling.

PE A

PE C

p1 p3

p2

cache
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rithm.
(Fig.8(c)). Fig.8(d) shows the result of the final design after
the tasks are re-allocated and re-scheduled.

4.3.3 Complexity of Our Algorithm
To determine the time complexity of our framework, we
recognize that the dominant part is the parameter extrac-
tion phase, where program-level estimation or simulation is
needed to estimate theWCET base of tasks, and the pro-
gram/data memory locations for tasks on different types of
PEs. For one task, the complexity of parameter extraction is
either related to the size of its program-level representation
if estimation tools are used, or related to the size of its exe-
cution trace if simulation tools are used. In our framework,
program-level or trace-level analysis is only needed once to
extract task-level parameters; the design space search is per-
formed on a task-level abstraction which is much more man-
ageable.

We analyze the worst-case complexity of our co-synthesis
algorithm. Suppose there arem task graphs, each with at
mostk tasks. So the total number of tasks,n, is bounded by
mk. Let P be the number of different PE types. Letp be
the number of PEs in a design. Because the maximum num-
ber of PEs in any design will not exceed the number of tasks,
p = O(n). Each full allocation/scheduling step has the com-
plexity ofO(n2p) = O(n3). The complexity for a single it-
eration of PE/cache cost reduction isO(pnP ) = O(n2P ).
The total number of iterations is bounded byO(pP ) =
O(nP ) because for each PE, it is either eliminated or can
be replaced by a cheaper PE at mostP times. Therefore,
the worst-case complexity of the co-synthesis algorithm is
O(nP � (n2P + n3)) = O(n4P + n3P 2).

5 Experimental Results
We conducted two sets of experiments: synthetic task

graphs from the literature, and real-life examples includ-
ing a real MPEG-2 encoder. To compare with existing co-
synthesis algorithms, we used examples from the literature
[2, 5, 12], as shown in Table 1. We used the same technology
database (PE database) as those used in the corresponding

references. Table 1(a) shows the results (CPU time and the
synthesized system cost) of these examples using several ex-
isting algorithms: Prakash and Parker’s algorithm [12], Yen
and Wolf’s algorithm [5], and COSYN by Daveet:al: [2].
We ran the same examples on our algorithm, but with three
different setups (see Table 1(b)):

Without cache: while running our algorithm, we set the
cache part in the technology database to be null, so that the
synthesized architecture does not have caches. The results
show that even without the benefits ofcaches, our algorithm
can achieve comparable results.

With fixed-size cachesassociated with each processor:
Similar to a typical design practice, we manually picked
fixed cache sizes to be used in the target architecture The re-
sults show improvements in term of system cost, compared
to the no-cache results.

Co-synthesis with cache optimization: This allows the
full potential of our algorithm to synthesize software, hard-
ware as well as caches simultaneously. The results show fur-
ther cost reduction over the fixed-size cache approach.

For the second and the third setups, we needed more in-
put parameters required by our algorithm, such as the mem-
ory regions of programs and data for tasks. These parame-
ters were generated because the examples from theliterature
only have the task-graph representations.

We applied our algorithm to a real MPEG-2 video en-
coding algorithm. MPEG encoding involves both intensive
computation and large amount of data transfers. In real
time, image frames arrive at the rate of 30 frames per sec-
ond. We used the MPEG-2 encoding software fromMPEG
Software Simulation Group. We first extracted the task
graph that is composed of 1350 blocks with 12 tasks per
block. The graph is huge but the blocks share the same
structure, which our algorithm can take advantage of. The
technology database consists of SPARC processors, ASICs
for DCT, IDCT, various-length encoder and motion estima-
tion, and SRAM to be used as first-level caches. For the
SPARC processors,WCET base, program and data mem-
ory regions are obtained using a SPARC behavior simulator
Sparcsim [19]. A cache simulator was used to obtain the
compulsory miss numbers. We assumed a cache and mem-
ory access time ratio of 1:20. We used the retail prices of
SPARC processors and SRAMs.WCETs and the cost for
ASICs were estimated with high-level synthesis. Synthesis
results of the MPEG encoder is shown in Table 2. Even
in this example, with the huge number of tasks in the task
graph, our algorithm was able to find a solution of good
quality (average PE utilization 95%) in a short period of
time. The short CPU time of our algorithm on such a big
design is made possible by the efficient task-level cache per-
formance model, and the hierarchical scheduling methodol-
ogy which takes advantage of the task graph structures.

An interesting fact of the MPEG experiment is the CPU
time spent in different phases of our frame work: in the pa-
rameter extraction phase, for all the tasks, generating their
execution traces (about 100M instructions in total), com-
puting WCET base and program/data memory mapping
took about about 4 hours in total; using the task execution
traces, it took alittle less than 1 hour to compute compul-
sory misses for all tasks. In contrast, the co-synthesis al-
gorithm itself only took minutes (see Table 2). This shows
that the task-level abstraction and the task-level cache model
greatly speed up the design space exploration, which would
have been impossible with program-level analysis tools that
spend hours to evaluate just one single design for the MPEG
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Prakash/Parker Yen/Hou/Wolf COSYN
Examples,#tasks #PEs / CPU time on #PEs / CPU time #PEs / CPU time

Solboume on Sparc 20 on Sparc 20
Cost($) 5/e/900 (sec) Cost($) (sec) Cost($) (sec)

Prakash&Parker, 4 1/5 37 N/A N/A 1/5 0.20
Prakash&Parker, 9 1/5 3691.20 1/5 59.15 1/5 0.40
Prakash&Parker, 9 2/10 7.2hrs 3/10 56.79 2/10 0.54
Yen&Wolf Ex, 6 N/A N/A 3/1765 10.63 3/1765 0.74

Hou&Wolf Ex1, 20 N/A N/A 2/170 14.96 2/170 5.10

(a) Experimental results for three existing co-synthesis algorithms.
Without cache With fixed cache Our algorithm

Examples #PEs/Cost($) CPU time(sec) #PEs /Cost($) CPU time(sec) #PEs /Cost($) CPU time(sec)
Prakash/Parker 1/5 0.30 1/4.2 0.36 1/2.6 0.45
Prakash/Parker 1/5 0.71 1/4 0.73 1/2.4 0.89
Prakash/Parker 2/10 0.75 2/7.4 0.75 1/4.8 1.10
Yen/Wolf Ex 3/1765 1.16 3/1640 2.02 2/1220 2.38

Hou&Wolf Ex1 2/170 6.59 2/190 6.60 2/145 7.12

(b) Experimental results for our co-synthesis algorithm.

Table 1: Experimental results for examples from literature.

Without cache Fixed caches Co-synthesis w/ caches
Example/Results #PEs/Cost($) CPU time(sec) #PEs/Cost($) CPU time(sec) #PEs/Cost($) CPU time(sec)

MPEG video encoder 6 / 840 121 5 / 680 157 4 / 520 203

Table 2: Co-synthesis results for the MPEG-2 video encoder.

encoder.

6 Conclusions
In this paper, we described a task-level model for bound-

ing cache performance of tasks in a multi-rate, multi-tasking
environment. This model is used by our algorithm for
hardware-software co-synthesis with cache memory opti-
mization. The algorithm is the first co-synthesis algorithm
that considers the impact of memory hierarchy on the system
performance and cost. Our algorithm synthesizes complex
multi-rate real-time applications onto a heterogeneous mul-
tiprocessor architecture to meet real-time deadlines at mini-
mal cost. The co-synthesis algorithm works at the task level,
does not require a detailed program analysis, and is very
computationally efficient.

Future work may include: developing co-synthesis algo-
rithms with a more generalized memory hierarchy model.
We plan to model set associative caches, and extend the
one-level cache model to multiple level caches. Secondly,
our memory-hierarchy model optimizes context switching at
task-level, which not only helps reduce computation time,
but also power consumption. We plan to develop a quanti-
tative model for power consumption at system level and use
power as another objective of co-synthesis.

Acknowledgments
This work was supported by the NSF under grant MIP-

9424410. The authors would like to thank Zhao Wu of
Princeton University for his constructive comments on drafts
of the paper.

References
[1] K. Danckaert, F. Catthoor, and H.De Man, “System level memory

optimization for hardware-software co-design”, inProceedings, In-
ternational Workshop on Hardware/Software Co-Design,1997.

[2] B. Dave, G. Lakshminarayana, and N. Jha, “COSYN: Hardware-
software co-synthesis of embedded systems”, inProceedings, 34th
Design Automation Conference,1997.

[3] R.Ernst, J. Henkel, and T. Benner, “Hardware-Software Cosynthesis
for Microcontrollers”,IEEE Design and Test of Computers, vol.10,
no.4, pp.64-75, Dec. 1993.

[4] R. Gupta and G. De Micheli, “Hardware-software Cosynthesis for
Digital Systems”,IEEE Design and Test of Computers, vol.10, no.3,
pp.29-41, Sept. 1993.

[5] J. Hou and W. Wolf, “Process partitioning for distributed embed-
ded systems,” inProceedings, International Workshop on Hard-
ware/Software Co-Design,1996.

[6] D. Kirk and J. Strosnider, “SMART(strategic memory allocation for
real-time) cache design using the MIPS R3000,” inProceedings,
11th Real-time Systems Symposium,1990.

[7] C.-G. Lee et al:, “Analysis of cache-related preemption delay in
fixed-priority preemptive scheduling,” inProceedings, 17th Real-
Time Systems Symposium, 1996.

[8] Y. Li and W. Wolf, “A Task-Level Hierarchical Memory Model for
System Synthesis of Multiprocessors,” inProceedings, 34th Design
Automation Conference,1997.

[9] Y. Li and W. Wolf, “Hierarchical Scheduling and Allocation of Mul-
tirate Systems on Heterogeneous Multiprocessors,” inProceedings,
European Design and Test Conference,1997.

[10] Y.-T. Li, S. Malik and A. Wolfe, “Performance Estimation of Em-
bedded Software with Instruction Cache Modeling,” inProceedings,
ICCAD ’95,1995.

[11] C.L. Liu and J.W. Layland. “Scheduling Algorithms for Multipro-
gramming in a Hard Real Time Environment,”J. ACM,vol.20, no.1,
pp.46-61, 1973.

[12] S. Prakash and A. Parker, “SOS: synthesis of application-specific
heterogeneous multiprocessor systems,”Journal of Parallel and Dis-
tributed Computing, vol.16, pp.338-351, 1992.

[13] K. Ramamritham, “Allocation and scheduling of complex periodic
tasks,” In Proceedings,International Conference on Distributed
Computing Systems,1990.

[14] F. Vahid, J. Gong, and D. Gajski, “A binary-constraint search algo-
rithm for minimizing hardware during hardware/software partition-
ing,” in Proceedings, EuroDAC’94, 1994.

[15] W. Wolf, “An Architectural Co-Synthesis Algorithm for Distributed,
Embedded Computing Systems,”IEEE Transactions on VLSI Sys-
tems, vol.5, no.2, pp.218-229, Jun. 1997.

[16] W. Wolf. “Hardware-software co-design of embedded systems,”Pro-
ceedings of the IEEE, July 1994.

[17] T.-Y. Yen and W.Wolf, “Communication Synthesis for Distributed
Systems,” InProceedings, International Conference on Computer
Aided Design, 1995.

[18] Motion Pictures Experts Group ISO-IEC/JTC1/SC29/WG11. “Infor-
mation technology-Coding of moving pictures and associated audio
for digital media at up to about 1.5 Mbit/s,” 1992.

[19] W. Ye et al:, “Fast Timing Analysis for Hardware-Software Co-
Synthesis,”,ICCD93, 1993.

[20] J. Hennessy and D. Patterson. “Computer architecture, a quantitative
approach”, second edition, Morgan Kaufmann, 1995.

7


	CDROM Home Page
	ICCAD98
	Front Matter
	Table of Contents
	Session Index
	Author Index


