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Abstract
This paper presents an efficient statistical design methodology
that allows simultaneous sizing for performance and optimiza-
tion for yield and robustness of analog circuits.
The starting point of this methodology is a declarative analyt-
ical description of the circuit. An equation manipulation pro-
gram based on constraint satisfaction converts this declarative
model into an efficient design plan for optimization based sizing.
The efficiency is due to the use of an operating point driven DC
formulation, so that the design plan avoids the calculation of si-
multaneous sets of nonlinear equations. From the same declar-
ative analytical description also a direct symbolic yield estima-
tion plan is generated. The parametric yield is estimated by
propagating the spread of the technological variables through
the analytical model towards the performance variables of the
circuit. The design plan and the yield estimation plan are then
combined together in the inner loop of a global optimization
routine. The strength of this methodology lies in the low CPU
times needed to perform yield estimation compared to the hours
of simulation batches with Monte Carlo simulations, while the
accuracy is comparable.

I. Introduction
Designing an analog circuit is one thing, producing it is another.
Real-life technology parameter variations make the circuits fail
for some or all of the specifications if no precautions are taken.
The ratio of the number of successful circuits over the number
of produced circuits is the total yield. The total yield consists of
yield due to production faults and yield due to soft faults. In this
paper we concentrate on the yield based on the soft faults, gen-
erated by the technology parameter variations: the parametric
yield.
The hard way to make the design more robust is to run multiple
batch jobs of Monte Carlo simulations in the inner loop of an op-
timization routine. Because a Monte Carlo simulation consists
of typically hundreds of SPICE simulations, the computational
effort is so large that only a post-design yield optimization is
considered. This is the known design centering method. Start-
ing from the nominal design a local optimization tries to push
the performances away from the specification boundaries in or-
der to make the circuit more robust against technology parame-
ter variations [1].
The same is true for analog circuit sizing or synthesis pro-
grams [2]. Most of them concentrate on the nominal design
only, without considering the process parameter or operating
condition variations. Performing hours of simulated annealing
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for just a nominal design is only half of the game. Only in [3]
a first approach towards analog synthesis for manufacturability
was presented that combines nominal circuit optimization with
variation analysis in an outer optimization loop. The results of
the variation analysis are used to change the cost function of the
inner circuit optimization by penalizing design solutions that do
not meet the specifications over the entire operating range. The
approach however is extremely time consuming.
Therefore, in this paper, an alternative approach is pre-
sented towards simultaneous circuit sizing for performance and
yield/robustness optimization. The approach results in a dras-
tic reduction of the required CPU time, without sacrifying too
much accuracy. It is based on the use of symbolic techniques to
capture the behavior of a circuit in a declarative model [4]. Con-
straint statisfaction techniques implemented in the tool DON-
ALD [5] are then used to derive an efficient sizing plan as well
as an efficient yield estimation plan. Both plans are then si-
multaneously evaluated in the inner loop of a global optimiza-
tion routine. The outcome of the optimization is a circuit design
point that fulfills all specifications and that at the same time has
pushed away the performances from the specification bound-
aries under the influence of the yield and/or Cpk measure.
The paper is organized as follows. Section 2 explains the
construction of the sizing plan by the DONALD tool starting
from the declarative behavioral model of the circuit. Section 3
describes how we used symbolic techniques to construct the
yield/robustness estimation plan. Section 4 explains the yield
optimization strategy. Section 5 shows experimental results.
Section 6 draws some conclusions.

II. Sizing plan
A declarative analytical model of an analog circuit is mainly
obtained by 2 sources: by applying symbolic methods on the
circuit’s graph topology and by hand. A simple illustrative ex-
ample of the outcome for an inverter is given in Fig. 1, where 7
equations describe the DC operating point.

The 7 equations are presented in a bipartite graph form (see
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Fig. 1 . Inverter and its simplified behavioral DC model.
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Fig. 2 . Depending on the input variables, D ONALD has to solve a
5x5 cluster or 2 simple equations.

Fig. 2a), where the square boxes represent the equations and
the circles represent the variables. We assume that the user can
give a value forVdd, Vss, Vin (typically half-wayVdd andVss).
Ln andL p can be chosen to be minimal size. The equation ma-
nipulation tool DONALD propagates these inputs throught the
graph, which is then partially directed. The traditional SPICE-
like inputs (choosingWp and Wn, see Fig. 2b), lets DONALD

simultaneously solve a set of 5 (possibly nonlinear) equations
with a nonlinear root solver. In this case convergence cannot be
guaranteed and the solution also depends on the starting point.
The operating point driven DC formulation [6], however, con-
strains node voltages and branch currents (choosingVnout and
Idsp, as in Fig. 2c). The DONALD program only has to solve
2 one-dimensional nonlinear equations to obtainWn and Wp,
which can be executed much faster. The computational effort
is drastically reduced since, for a circuit withN nodes andM
MOS-transistors, solvingM one-dimensional nonlinear equa-
tions is of the orderO.M Root.1// (where Root.x/ is the effort
to solve a cluster of size x). A simulator needs an effort of the
orderO.Root.N//, with a risk of divergence. This approach has
already been used for optimization based nominal sizing [6], [7].
In this paper we extend this to yield optimization.

III. Yield/robustness estimation plan
Our approach replaces the Monte Carlo simulations with a di-
rect yield estimation technique. We start with a statistical tran-
sistor model, which gives us a reduced set of quasi-independent
technology parameters�. Then we calculate the nominal design
point and then we calculate the variances of all performance pa-
rametersy with respect to the reduced set of technology parame-
ters�. Using these variances, we construct an efficient represen-
tation of “yield” based onCp /Cpk indices. Both the sizing plan
and the yield estimation plan are then placed in the inner loop
of the optimization routine as explained in section 4. The flow
diagram in Fig. 3 with the setup for the yield estimation plan is
explained in the following subsections (x stands for designable
parameters ande stands for simulator variables).

A. Statistical transistor model

The default transistor models have to be replaced by statistical
models in order to take the correlations of the technology param-

eters into account. This is necessary to estimate the yield in a
statistically correct way. The statistical model describes all tech-
nological variables as a function of only 7 quasi-uncorrelated in-
put variables, which are TOX, NSUBn, NSUBp, CJn, CJp, LDn

and RSHn. A method for deriving such a statistical transistor
model has been discussed in [8]. The Monte Carlo routine per-
turbes only these 7 parameters and extracts performances from
the SPICE output to construct the yield estimation figures based
on a pass/fail mechanism. This way of calculating the yield is
very costly: a large number (e.g. 300) of SPICE simulations
have to be executed. Our symbolic yield estimator also starts
from the same 7 parameters�.

B. Direct yield estimation

As the pass/fail measure used in Monte Carlo simulation is very
rough and gives little or no information about which perfor-
mance does not meet its specification, another quality measure
is preferred. The Taguchi quality measure gives a much better
idea of the quality of a circuit, because it takes absolute variabil-
ity and bias to the target spec into account:

MTAG D varfy.x/g C .y � SpecT /2 (1)

To ease the calculation ofMTAG, two capability indices were
introduced in [9]: the capabilitypotentialindexCp :

Cp D
SpecU � SpecL

6�y
(2)

and the capabilityperformanceindexCpk :

Cpk D minf
SpecU � y

3�y
;

y � SpecL

3�y
g (3)

The first index represents the variability, the second index the
bias. As can be noticed from formulae (2,3), these indices
strongly depend on the variances of the performances. The vari-
ances of the 7 technological parameters are propagated through
the computational path by means of sensitivities. In case�1, �2,
: : : �nD7 are not correlated, the variability of the performances
can be written as follows:

�yi D
p

Var.yi / �

vuutnD7X
jD1

.S yi
� j
/2� 2

� j
(4)

(assuming that�� j =
N� j is sufficiently small).

Sensitivity _y
Symbolic

Analysis

yield measure

σy
Direct

Monte

Method

Carlo Transistor

x,

V

θ

bias
biasI

branchI
Vnode

L

Statistical

Model
θe=e(x,  )

_
e

Carlo
Monte

SPICE

y

yield estimate Y
^

y
σy

θ
Model

Statistical
Transistor

e=e(x,  )

Computational
Plan for

Nominal Point
W,L

Vbias
biasI

Vnode
Ibranch

Fig. 3 . Yield estimation methods. Monte Carlo and SPICE versus
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An extension has been made to DONALD (see Fig. 4), so that
it also builds a computational plan to calculate all sensitivities
from the output variables w.r.t. the input variables. The sensi-
tivities have to be known foreveryoperating pointx . Our Jaco-
bians are in symbolic form, so the Jacobian updating for every
x is relatively cheap.
This computational path is derived from the same set of equa-
tions used to determine the nominal point, butW and L must
be chosen as input variables. This time however, we donot
solve the set of nonlinear equations, but we reuse the values pre-
viously obtained in the nominal point calculation (see Fig. 4).
Symbolic derivatives from all equations are automatically de-
rived. Out of this a computational path results, which is a chain
of one-dimensional and more-dimensional subsystems of equa-
tions. The local sensitivities are calculated using Jacobians in
symbolic form. The global sensitivity matrixS y

�
with elements

S yi
� j
D @ yi=@� j , is calculated by applying the chain rule accord-

ing to the computational plan:

S y
�
D S y

zn
Szn

zn�1
: : : Sz1

�
(5)

wherezk are the internal variables along the calculation path.
The calculation of the local sensitivities is complicated but
straightforward. First, at each square subsystem with equa-
tions f1; : : : ; fn, a distinction is made between those variables
of the subsystem that have been solved by the subsystem, and
those variables that are solved by previous subsystems. The for-
mer are called theoutput variableszout D .zout

1 ; : : : ; zout
q /

T of
the subsystem, the others are called theinput variableszin =
.zin

1 ; : : : ; zin
p /

T . For each square subsystem the change�zout

is then calculated of the output variables with respect to a
unit change�zin of the input variables. The local sensitivity

S
zout

i

zin
j
D �zout

i is solved from the following system of linear equa-

tions:
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where all partial derivatives are in symbolic form. By multi-
plying local sensitivity values along the computational path be-
tween two variablesr and s, a global sensitivityvalue Sr

s D

@r=@s can be calculated.

IV. Yield Optimization
We can now perform a nominal point analysis and to calculate
all sensitivities and hence theCp=Cpk values. The step towards
simultaneous nominal and statistical optimization is small by
combining the approach of Fig. 4 in a optimization loop. The
optimization is done stepwise, as can be seen in Fig. 5, where
the solution is gradually narrowed by enforcing more and more
constraints on the design [4].

The initial solvability space is narrowed by adding the following
sequence of constraints to the design plan. The manufacturabil-
ity space�M is the set of circuits that can be produced within a
given technology. The operationality space�O contains the cir-
cuits whose transistors are in the correct operating region. The
functionality space�F contains the designs that fulfill the de-
sign requirements (such as first order behavior for an OTA). The
applicability space�A contains the circuits that fulfill all specifi-
cations. The robustness space�R contains the designs that take
all performance variations into account by retreating from the
design space boundaries. Once all specifications fulfilled, there
is still room left for trade-off between different performance pa-
rameters.
With each of these spaces inequality functions can be associated,
which in their turn correspond to penalty functionsh j :

h j D

�
� 0 if inequality is fulfilled
> 0 else

The subdivision of the solvability region�S is reached by
adding a weighted sum of penalties to the total cost function
of the optimization routine. To assure asequential design space
pruning process, the weightsW are chosen as follows: the steer-
ing function for robustness gets the reference weightWR. The
penalties of the applicability space�A get weights of 10WR.
The weights belonging to the other spaces are 102WR for �F ,
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Fig. 5 . Spaces encountered in optimization based s izing of analog
circuits.
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103WR for �O and, 104WR for �M . This way the optimizer
tackles the sizing problem in a stepwise way. First it assures the
manufacturability, then the operationality, the functionality and
the applicability. In the final stage the yield estimation model is
activated and the cost belonging to the not-yet optimal yield and
variability is added to the global cost function of the optimiza-
tion routine. We chose to leave out the yield estimation till the
optimizer was in the applicability space�A, because a yield es-
timation in an earlier stage of the optimization is computational
expensive and doesn’t change the problem that much.
The quality measure for robustness used in the cost function is:

8
�

i .x/ D Cp;i � �

SpecUi CSpecLi
2 � yi

3�yi

(9)

8i .x/ D minf8C

i .x/; 8
�

i .x/g (10)

The weight factor� acts as a penalty term on the bias, with
respect to target SpecT

i . If � D 0 then8i D Cp;i , if � D 1 then
8i D Cpk;i . A value of� D 0:8 has been chosen experimentally.
The optimization problem to be solved is then

8.x/ D
X
x2Rx

jD�M ;�O ;�F ;�A

W j h j .x/ C max
x2Rx

min
i
f8i .x/g C � f .trade-off/

(11)

whereRx is a hyperbox of constraints.

V. Experimental Results
The circuit is a CMOS current buffer OTA (see Fig. 6) in a 0.7u
CMOS process. An arbitrary starting point (formulated as a DC
operating point) has been chosen for the optimizer. Then a si-
multaneous sizing and optimization is performed (in 2h15’ time)
with both the sizing plan and the yield/robustness estimation
plan (see Fig. 4) in the inner loop of of the annealing routine.
In the resulting optimized point a Monte Carlo is run for verifi-
cation.
The yield/robustness estimation plan is extremely fast (10s)
compared to Monte Carlo (300 samples: 2h20’ on a Sparc I).
Such an optimization with Monte Carlo in the inner loop would
take approximately 20 days! The first two columns of Table 1
contain the mean and the variance of the performance variables,

TABLE I
FINAL RESULTS OF YIELD OPTIMIZATION .

Specs After optimization
Yield Model Monte Carlo

y �y y �y

GBW>100MHz 165 23.1 172 21.4
Av0>60dB 78.0 1.68 78.1 1.74
PM>60� 60.2 0.2 63.6 0.4
OR>3.0V 3.1 0.05 3.27 0.058
Vof f <5mV 4.8 0.14 3.5 0.7
Itot<3.0mA 2.6 0.4 2.6 0.56

which come out of the yield/robustness estimation model. The
last two columns in Table 1 give the estimate mean and variance
of the performances from the Monte Carlo run.

VI. Conclusions
A new statistical design method using symbolic techniques has
been presented. A direct yield estimation model has automati-
cally been derived from the whole set of symbolic design equa-
tions by constructing a computational plan to calculate sym-
bolically the sensitivities of the performances w.r.t. the tech-
nology parameters. By propagating the variances of 7 quasi-
independent technology parameters the quality measuresCp and
Cpk for the performances were obtained. This yield model was
directly used in the inner loop of a yield optimization routine to
perform simultaneous nominal and yield/robustness optimiza-
tion. The experimental results show that the model is accurate
enough to steer the optimization in the direction of a “better”
design in a much faster way than using a simulator. Research is
still to be continued to improve the yield model.
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