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Abstract as I/ f noise has a significant impact on phase noise of practical oscil-
Oscillators are key components of electronic systems. Undesired perturbati@-tgfs- Un_dersta_ndmg how colored noise sources affect the osc_:|||ator
i.e. noise, in practical electronic systems adversely affect the spectral and §RECtrum is crucial for low phase noise, low cost, integrated oscillator
ing properties of oscillators resulting jshase noisewhich is a key perfor- designs that can meet the stringent specifications of today’s RF com-
mance limiting factor, being a major contributor to bit-error-rate (BER) of Rfiunications applications.

communication systems, and creating synchronization problems in clocked andFirst, in Section 2, we establish the equivalent of Floquet theory

sampled-data systems. In this paper, we first present a theory and numefigali some related results) for periodically time-varying systems of lin-

methods for nonlinear perturbation and noise analysis of oscillators descriggd paAEs. which we then use in Section 3 to develop the theory and
by a system oflifferential-algebraic equationtDAEs), which extends our re- merical methods for nonlinear perturbation analysis of autonomous

cent results on perturbation analysis of autonomous ordinary differential ecB - : .
tions (ODES). In developing the above theory, we rely on novel results we \Es. In Section 4, we analyze the case of colored noise perturbations

tablish for linear periodically time-varying (LPTV) systems: Floquet theory féNd obtain a stochastic characterization of the phase deviation. Models
DAESs. We then use this nonlinear perturbation analysis to derive the stochdéicburst (popcorn) and /if (flicker) noise, the most significant col-
characterization, including the resulting oscillator spectrum, of phase nois@ied noise sources in IC devices, are discussed in Section 5. Then,
oscillators due taolored(e.g., ¥ f noise), as opposed to white, noise sourcei Section 6, we calculate the resulting oscillator spectrum with phase
The case of white noise sources has already been treated by us in a recent pigiie due to a colored noise source. Our treatment of phase noise due
cation. The results of the theory developed in this work enabled us to implem@tolored noise sources is general, i.e., it is not specific to a partic-
arigorous and effective analysis and design tool in a circuit simulator for I(m/ar type of colored noise source. Henée, our results are applicable
phase noise oscillator design. to the characterization of phase noise due to not orilffy dnd burst

1 Introduction noise, but also other types of possibly colored noise, e.g., substrate or

Oscillators are ubiquitous in physical systems, especially electrqﬁﬁc\ger supply noise. In Section 7, we consider the presence of white

and optical ones. For example, in radio frequency (RF) communiés” colored noFi_se ﬁou_rces together, and derive the Ire_sulting olsci!la-
tion systems, they are used for frequency translation of informati spectrum. h inaty, In Sectlc;n 8,_|\|/ve preseilnt sm;u ation resu;sdln
signals and for channel selection. Oscillators are also present in difkﬁagsgclol'isrﬁitgt%ﬁ:tenzat'On of oscillators. All proofs are omitted due
electronic systems which require a time reference, i.e., a clock signa ,p )
in order to synchronize operations. 2 Floquet theory for DAEs

Noise is of major concern in oscillators, because introducing ewAfe now consider the-dimensional inhomogeneous linear system of
small noise into an oscillator leads to dramatic changes in its frequepagest
spectrum and timing properties. This phenomenon, peculiar to os- d
cillators, is known aphase noiser timing jitter. A perfect oscilla- 2 ct)x) + Glt)xLb(t) =0 1
tor would have localized tones at discrete frequencies (i.e., harmon- dt( (£))+ G(t)x+b(t) @
ics), but any corrupting noise spreads these perfect tones, resulting in . ) . .
high power levels at neighboring frequencies. This effect is the n’?ﬂjere the matrixC(-) : R—IR™" is not necessarily full rank, but we
jor contributor to undesired phenomena such as interchannel inted§gUMe that its rank is a constamt< n, as a function of. C(t)and
ence, leading to increased bit-error-rates (BER) in RF communicati@i}) areT-periodic. The homogeneous system corresponding to (1) is
systems. Another manifestation of the same phenomenon, timingdi¥en by

ter, is important in clocked and sampled-data systems: uncertainties d
in switching instants caused by noise lead to synchronization prob- — (C(t)x) +G(t)x=0 (2
lems. Characterizing how noise affects oscillators is therefore crucial dt

for practical applications. The problem is challenging, since oscillgp|ution and related subspaces

tors constitute a special class among noisy physical systemsatheir, . - . P

tonomousature makes them unique in their response to perturbatiozynzri]ti%(ggx'(sogagl;;jzﬂlgﬁn%vg;ggﬁ? Phaa\{tetr?g lgf&%nss v]:/%r :rllelggglling
In a recent publication [1] (which has a brief review of previoug are index-1 [2]. Then, the solutions of the homogeneous system

work on phase noise), we presented a theory and numerical method4 in anm-dimensional subspace defined by [2]

for practical characterization of phase noise in oscillators describe

a system ofrdinary differential equation§ODESs) withwhite noise t)= {zc R": (G(t)+C(t)) zc imC(t 3

sources. In this paper, we extend our results to oscillators described Y { ( ) +C( )) ( )} ®

by a system oflifferential-algebraic equation(DAEs) with colored Also, everyx(t) ¢ St) is a solution of (2) [2]. LeiN(t) be the null

as well as white noise sources. The extension to DAEs and cologdce o (t):

noise sources is crucial for implementing an effective analysis and de-

sign tool for phase noise in a a circuit simulator. Almost all of the N(t) = kerC(t) (4)

circuit simulators use the MNA (Modified Nodal Analysis) formula- = . ) ) )

tion, which is basically a system of DAEs. Colored noise sources si#ich is ann—m = k-dimensional subspace. For index-1 DAEs, we

have [2, 3]S(t) "N(t) = {0} and

St)®N(t) = R" ®)

INote that the time derivative operates on the prodi(¢x, not onx only. It will
become clear in Section 3 why we use this form.




where ¢ denotesdirect sum decomposition For our purposes, Remark 2.1 The following orthogonality/biorthogonality conditions
it suffices to know that (5) is equivalent to the following: Ihold:
Z(t) = {z1(t),2(t),...,zm(t)} is a basis forSt), and W(t) =

{wy(t),wa(t),... ,Wi(t)} is a basis foN(t), thenZ(t) UW(t) is a basis v (OCHUi(t) = &;j i=1....mj=1....m (14)
n

for IR™. VJT(t)C(t)u.() i=1...mj=m+1...n (15)

Adjoint system and related subspaces T ) ]

Before we discuss the forms of the solutions of (2) and (1), we would ~ Vj (DG(t)ui(t) = i=m+l..,nj=1...m (16)

like to introduce theadjoint or dual system corresponding to (2), an

the related subspaces. The adjoint system corresponding to (2) is Jﬁh and (15) follow from (11). (16) follows from the fact that

yexp(—pt), j =1,...,mis a solution of (6), andi(t), i = m+

by ,nisin the null space i) of C(t).
cT (t)Ey— G (t)yy=0 ©6) The state transition matri®(t,s) in (10) can be rewritten as
m
Note that the time derivative operates pmnly, not on the product P(t,s) = Zlexp(ui(t —9))u (v (s)C(s) 17)
C'(t)y, in contrast with (2). It will become clear shortly why (6) is i=

the form for the adjoint of (2). 1§(t) is a solution of (6) ana(t) is a Theorem 2.2 The solutiong of (1) satisfying the initial condition

solution of (2), then we have x(0) = xo € S(0) (for b(0) — 0) is given by
d _ (9 T d .
at V000XV = (dty (t)> ) +y () g COX) 9t.30) = 0,000+ [ Wit, 9B+ T(Ub)  (18)
= Y (OG(HX(H) -y (OGHXY) Where
= 0
Thusy™ ()C(U)X(t) = yT (0)C(0)x(0) for all t > 0. Let W(t,s) =U(OD(t -9V (s) (19)
g (t) = {ze R cT (t)ze imcT )} %) andr (t) : nx nis a T-periodic matrix of rank k which satisfies
and F(HCH) Uy (t), . ,um(t)] =0 (20)
NT(t) = kerCT (t) (8) i-e. the null space df(t) is spanned bYC(t)u(t),...,C(t)um(t)}.
From (10) and (19), the solutions of the homogeneous system (2) and
ThenS' (t) NNT(t) = {0} andST (t) &NT (t) = R". the inhomogeneous system (1) are respectively given by
State-transition matrix and the solution m
Having introduced the adjoint system for (2), we now consider the X4 (1) = Zexp(uit)ui (t)v' (0)C(0)x(0)
state-transition matrix and the solutions for (2) and (1). =
Theorem 2.1 The solutiong of (2) satisfying the initial condition
x(0) = Xp € S0) is given by .
X + u /ex -s s)b(s)ds+ T (t)b(t
where the “state transition matrixtb(t,s) is given by If the initial conditionx(0) = Xg is not inS(0), i.e., if it is not a consis-

_ tent initial condition for (2), therx(t) = d(t,0)xo is still a solution of
o(t,s) =U(HD(t —5)V(s)C(s) (10) (2), but it does not satisfy(0) = xg. Any X € IR" can be written as
where X0 = Xoeff +Xon Wherexpet € S(0) andxoy € N(0), which follows

from (5). Then
D(t —s) = diaglexp(p(t — 9)), ... ,exp(bm(t — 9)),0,...,0]

— P(t,0)%0 = U (1)D(1)V (0)C(0)x0 = P(t, 0)xcer
U(t) :nx nand V(t) : n x n are both T-periodic and nonsingular (forSiNCEC(0)% = C(0)xae+1. Hencex(t) = ®(t,0)x is a solution of (2)
all't), and satisfy satisfying theeffectiveinitial conditionx(0) = Xgef .
State-transition matrix for the adjoint system
V(OCHU(t) = { I(r)" 8 ] (11) The state-transition matri®(t,s) for the adjoint system (6) isot sim-
ply given by ®'(st) in terms of the state transition matrii(t,s) =

W are called the characteristic (Floguet) exponents of (2),Jand Y (1)D(t —$)V(S)C(s) for (2), as it would be the case for ODEs. In-
exp(1 T) are called the (Floguet) characteristic multipliers. Note thgtead, itis given by
(2) hask = n— mFloquet multipliers that are 0. T T T

Letui(t) be the columns dfl (t), andy{ (t) be the rows o¥/ (t): Qts) = Vm (HD(s-YU(5)C ()

U(t) = [U(t),.. ,Um(t), Uma(t), -, Un(t)] 12) _Zexp(—w(t —s)Vvi(t)y (SCT (s)
i=
VT(t) = [va(t), ., Vi(t), Vg2 (1), -,V (1)] (13) .
) ) ] Monodromy matrix
{us(t),... ,um(t)} is a basis foS(t), and{um;1(t), ... 7”“(t)T} isaba- \ye define the monodromy matrix for (2) @§T,0), and it is given by
sis for N(t). Similarly, {vi(t),...,vm(t)} is a basis forS'(t), and
{Vms1(t),-..,Vn(t)} is a basis forNT(t). For 1< i< m, x(t) = il T il T
i (t) exp(it) is a solution of (2) with the initial conditior(0) = u;(0).  ®(T:0) = Z\exp(p.T)u. (T (0)C(0) = Z\exp(p.T)u. (O)vi (0)C(0)
Similarly, for 1<i <m, y(t) = vi(t) exp(—t) is a solution of (6) with = =
the initial conditiony(0) = vi(0). ui(0) for i = 1,...,m are the eigenvectors of the monodromy ma-
2Authors in [3] derive a similar result for the state-transition matrix of a DAE systenirix @(T,0) with corresponding eigenvalues €xpT ), andu;(0) for




i=m+1,... nare the eigenvectors of the monodromy ma®i{,0) where
corresponding to thi-fold eigenvalue 0.v;(0) arenot the eigenvec-

tors of thetransposednonodromy matrixtD(T,O)T. Here, we must Cit) = Eq(x) (26)
consider the monodromy matri®(T,0) for the adjoint system (6), dx X=Xs
which is given by d

" G = oK (27)

Q(T,0) = Ziexp(—uiT)vi (O)uT (0)CT(0) (21) =

i= Let ®(t,s) be the state transition matrix of (25). Since (25) hds-a
Now, vi(0) fori = 1,...,mare the eigenvectors of the monodromy mderiodic solutiorxs(t), we can choose, without loss of generality,
trix Q(T, 0) with corresponding eigenvalues &xpy; T), andy; (0) for U (t) = —Xs(t) (28)
i=m+1,... nare the eigenvectors of the monodromy ma®ix, 0) ! s
corresponding to thie-fold eigenvalue 0. and

Numerical computation of the monodromy matrix

The eigenvalues of the monodromy matrix determine the stability of
(2) [4, 5]. Hence, one would like to calculate the monodromy m
trix and its eigenvalues. Authors in [5] defineeducedmonodromy
matrix for (2) as aaonsingular mx m matrix, as opposed to the mon
odromy matrix we defined which isx n and hask eigenvalues equal
to 0. The monodromy matrix they define has the same eigenvalues O ' P

as the one we define, except for théold eigenvalue 0. For the nu- Al =[expuT) <1 1=2,...m (30)
merical computation of the reduced monodromy matrix, as proposggny(t) is an asymptotically orbitally stable solution of (22).

by the authors in [5], one needs to calculatdinearly independent . , . .
consistent initial conditions for (2). With our definition, we avoid hay=6mma 3.1 If xs(t) is a solution of (22), thenstt +a(t)) is a solution

ing to computem linearly independent consistent initial conditions foPf

(2). Instead, we integrate (2) with affectivematrix (rankm) initial d

conditionXge £ : N x N (columns of which are consistent initial condi- —q(x) +9(x) +c(t)C(t+a(t))ur(t+a(t)) =0 (31)
tions for (2)) fromt =0 tot = T to calculate the monodromy matrix dt

as follows: In numerical integration of (2), we set the initial conditio, ;

X(0) = I, the n-dimensional identity matrix. From (5), we can Wri’u\?,here the scalars,Gt) anda(t) satisfy

A =exp(uT)=1 (29)

ffi the representation @(t,s) in (17). Hence, one of the Floquet (char-
acteristic) multipliers of (25) is 1. One can show that if the remaining
m-— 1 Floquet multipliers have magnitudes less than 1, i.e.,

In = Xoet  + Xkerc Where the columns ofge ¢ lie in S(0) of (3, and d
the columns ofye(c lie in N(0) (null space of£(0)). X(0) = Xpeff iS aa(t) = afl)
effectively realized during numerical integration by c(t)=0 for t<O alpha(0) =0

C(0)In = C(0)Xoe  +C(0)Xcerc = C(0) Xoe f 1 _ N _
. o ) Now, consider a small, additive, state-dependent perturbation of the
Note that during the numerical integration of (2), one does not negdy, B(x)b(t) to (22) (whereB(-) : IR"—IR™P andby(-) : IR—IRP):
to calculateXpe st itself, but onlyC(0)Xpe s = C(0)ln. The numerical

integration of (2) is started with an order 1 method (i.e., backward d

Euler) at t=0 that requires on$(0)X(0) to compute theX(t) at the g9 +9() +B(X)b(t) =0 (32)
first time step. If one would like to obtain the effective initial condition

Xoetf, @ backwards step in time (with the same time step) can be takégxt, we decompose the (small) perturbati&m)b(t) into its compo-

after the first forward time step is computédThis is a much more nents using
efficient way of computing consistent initial conditions for (2) then the

one used in [5]. {Clt+a(t))u(t+a(t)),...,Clt+a(t))um(t +a(t)),
3 Perturbation analysis for autonomous DAES G(t+a(t))umya(t+a(t))..., Gt +a(t))un(t+a(t))}
Consider the system of autonomous DAES: as the basfs whereu () are the columns dfl (t) of Section 2
d m
gidx+9(x) =0 (22) B(x)b(t) = ZQ(X,G(I),I)C(IM(I)M (t+a(t) +
i=
We assume that (22) has an asymptotically orbitally stable periodic n (33)
solution xs(t) with period T, i.e., a stable limit cycle in the solution > cilxa(t),)G(t+a(t))ui(t+a(t))
space. Hence i=m+1
d where the coefficients (x,a(t),t), 1 <i < mare given by
—0(Xs) +9(xs) =0 (23) (oa®.y

dt

. _ _ G(xa(t),t) = (t+a(t)Bxb(t) for 1<i<m  (34)
Let us take the derivative of both sides of (23) with respett to

which was obtained using the orthogonality/biorthogonality relation-

d/(d . d . ships in (14) and (16). We distinguish the component in (33) along
di | 3™ — *s |+ 59X — Xs=0 (24) C(t+a(t))us(t+a(t))’= —C(t+a(t))%s(t +a(t)) from the rest:
bi(xt) = ci(xa(t),t)C(t+a(t))ur(t+af(t))

Thus,xs(t) is aT-periodic solution of the LPTV system of DAEs

b(xt) = B(X)b(t) —by(xt)
% (Ct)x)+G(t)x=0 (25)

SRecall that the columns dl(t) form a basis for IR for index-1 DAEs. It can
3They also spa(0), since the columns df, are linearly independent. be shown tha{C(t + a(t))ui(t +a(t)),... ,C(t +a(t))um(t + a(t)),G(t + o (t)) Umpa (t +
4The author would like to thank Hans Georg Brachtendorf for pointing this out. a(t))...,G(t+a(t))un(t+af(t))} also forms a basis for [Rfor the index-1 DAE case.




Theorem 3.1
1. x%(t+a(t)) solves

5. Compute the periodic vectey(t) for 0 <t < T by numerically
integrating the adjoint system backwards in time

d T
—y—G (t)y=0
gty & My
usingvi(0) = v1(T) as the initial condition. Note that (t) is a
periodic steady-state solution of (39) corresponding to the Flo-
quet multiplier that is equal to 1. It is not numerically stable to
calculatevy (t) by numerically integrating (3%prwardin time.

cTt) (39)

S+ 900+ br(xt) = a0 +906) +
Vi (t+a(t)B(x)b(t)C(t +a(t))ui (t +a(t)) =0

where

Ea(t) =] (t+a(t))B(xs(t+a(t))b(t) a(0)=0 (35) Inimplementing the above algorithm, one can increase the efficiency
dt by saving LU factored matrices that need to be calculated in Step 2
2. %(t+a(t))+zt) solves and reuse them in Step 5. One can also avoid calculating the full
n x n monodromy matrixQ(—T,0) explicitly, and use iterative meth-
Eq(x) +9(x) +B(X)b(t) =0 (36) ods (which require only the computation of product€Xyf-T,0) with

dt

where #t) doesnot grow without bound and it indeed stay

small (within a factor of (t)). If b(t) =0, t > t; for some 4

tc > 0, then 2t)—0 as t—oo, and x%(t + a(tc)) solves (36) with colored noise sources

for_t—>oo. . _We now find the probabilistic characterisation of the phase deviation
We considered the perturbed system of DAEs in (32), and obtaineddfi§ (which satisfies the differential equation (35)) as a stochastic pro-
following results: The unperturbed oscillator’s periodic respogé  cess when the perturbatiort) is a (one-dimensional) stationary, zero-
is modified toxs(t 4 a(t)) + z(t) by the perturbation, where(t) isa .., € [b(t)] = 0), Gaussian colored stochastic procedset Ry (1)

changtin%tiéne Shlllﬁt op(?)a_se devi;aéi_?nin the periodtic Oﬁ.tp#t of :he be the autocovariance function, afid( ) be the power spectral den-
unperturbed oscillatoz(t) is an additive component, which we term:; - - -
the orbital deviation to the phase-shifted oscillator waveforra(t) "Sity, of the stationary Gaussian stochastic probesss

some vectors) at Step 4 to calculate the eigenvect@(efT,0) that
Lorresponds to the eigenvalue 1.

Stochastic characterization of the phase deviation

andz(t) are such thata(t) will, in general, keep increasing with time Ru(t) = E[b(t+1/2)b(t —1/2)] (40)
even if the perturbatiom(t) is always small, and if the perturbation 00 .
is removeda(t) will settle to a constant value. The orbital deviation S(f) = F{Rv(D}= /_oo Ru(t)exp(—j2mfr)dr  (41)

Z(t), on the other hand, will always remain small (within a bounded ) )
factor of b(t)), and if the perturbation is removed(t) will decay to Note thatRn(t) is a real and even function of. Let v(t) =
zero. Furthermore, we derivednanlinear differential equatiof35) V] (t)B(xs(t)), which is a scalar (botix (.) andB(.) are vectors) that is
for the phase deviatioa(t). periodic int with periodT. Hence, (35) becomes
Numerical methods dor(t)
For perturbation analysis and phase noise/timing jitter characteriza- T =V(t+a(t))b(t),
tions of an oscillator, one needs to calculate the steady-state peri
solutionxs(t) and the periodic vector (t) that appears in (35). Below,
we describe the numerical computationveft).
1. Compute the large-signal periodic steady-state solugi@nfor
0<t < T by numerically integrating (22), possibly using a tech-
nigue such as the shooting method [6].

2. Compute the monodromy matiX —T,0)% in (21) by numeri-
cally integrating

a(0)=0 (42)

?rqlt%is section, we will follow the below procedure to find an adequate

probabilistic characterization of the phase deviatigh) due to the

colored noise sourda(t) for our purposes:

1. We first derive apartial integro-differential equationfor
the time-varying marginaprobability density functior(PDF)
pa(n,t) of a(t) defined as

0P (a(t) <n)

on

whereP (.) denotes th@robability measure

2. We then show that the PDF of a Gaussian random variable,
“asymptotically” witht, solves this partial integro-differential
equation. A Gaussian PDF is completely characterised by the
mean and the variance. We show tlgt) becomes (under

some conditions oy (T) or Sy(f)), for “large” (to be con-
cretized)t, a Gaussian random variable with a constant mean

Pa(N,t) = t>0 (43)

ol (t)%v ~GT(t)Y=0 Y(0) =1y
from 0 to—T, backwards in time, whet@(t) andG(t) are de-
fined in (26). Note tha®(—T,0) = Y(—T). Note that it is not
numerically stable to calcula®(T,0) by integrating (37)or-
ward in time. SinceC(t) is not full rank, in generaly (0) = I
can not be realized in solving (37). Please see the discussion at
the end of Section 2.

. . and a variance that is given by

. Computeuy (0) usinguy (0) = —Xs(0). ¢ o

4. v1(0) is an eigenvector d@(—T,0) corresponding to the eigen- var(a(t)) = [3/ / R (ty —to) dty dtp

value 1. To computer(0), first compute an eigenvector of 0Jo

Q(-T,0) corresponding to the eigenvalue 1, then scale thifieorem 4.1 If b(t) is a stationary, zero-mean, Gaussian stochastic

eigenvector so that process with autocovariance functio ®). and ifu(t) satisfies (42),
Vl(O)TC(O) u(0) = 1 (38) then the time-varying marginal PDFyn,t) of a satisfies

t
is satisfied. For some oscillators (encountered quite often i Pa(n,t) _9 (M/ V(T«I»F])RN(th)pq(r],t)dT) +
practice), there can be “many” other eigenvalue¢+T,0) ot on 0

37

w

(44)

on

with magnitudes very close to 1, and they may nonbener-
ically distinguishable from the eigenvalue that is theoretically
equal to 1. In this case, to choose the correct eigenvector of

2
25 (vt [ R 0,0k )
s

Q(-T,0) asvy(0), calculate the inner products of these eigen-

vectors withC(0)xs(0) and choose the vector which has the "The extension to the case wheft) is a vector of uncorrelated white and colored noise
largest inner product. Theoretically, the inner products of tRgirces is discussed in Section 7. Noise sources in electronic devices usually have inde-

“wrong” eigenvectors witlC(0)xs(0) are 0.

6Note the minus sign in front oF .

pendent physical origin, and hence they are modeled as uncorrelated stochastic processes.
Hence, we consider uncorrelated noise sources. However, the generalization of our results
to correlated noise sources is trivial.



with the initial/boundary condition for 0 This is satisfied when thbandwidthof the colored noise source is
muchlessthan the oscillation frequenayy, or equivalently, thecor-

Pa(N,0) =3(n) (46) relation widthof the colored noise source in time is muainger than
. 5 the oscillation periodl' = 21/wg. We will further comment on this
i.e, E[a(0)]=0andE [o*(0)] =0. condition in Section 5, where we discuss the models for burst afd 1

The partial integro-differential equation (45) for the time-varyingoise. With (54), (52) and (53) become
marginal PDFpq(n,t) of a(t) is a generalization of a partial differ-

ential equation known as ttikker-Planck equatiofv, 8] derived for du(t) do?(t) 2 [t
the PDF ofa(t) satisfying (42) wherb(t) is a white noise process, da 0 da 2|Vol /0 Ru(t—T)dt (55)
which is given below
From (55)
9pa(n,t) 0 ( ov(t+n) )
by o 2 (A Yy 1))+ t ot
a on M aq VtHUR(Y (47) o) =20 [ [ Rulte—t)ctuct (56)
102
202 ( (t—l—r])pq(n,t)) follows trivially. Since, the autocovariand® (1) is an even function

of 1, (56) can be rewritten as
where 0< A < 1 depends on the definition of the stochastic integral [7] -
used to interpret the stochastic differential equation in (42) \afth a2(t) = V. 2/ / to —t1)dtrat 57
as a white noise process. Hft) is a white noise process, theft) is (t) = Mol 0Jo Rultz ~t)dudtz ®7)
a Markov process. However, whéift) is colored,a(t), in general, .
is not Markovian. (47) is valid for any initial/boundary condition. Or] NUS: We obtained (44).
the other hand, (45) is valid only for initial/lboundary conditions of thHeemma 4.2 The variances?(t) of a(t) in (56) can be rewritten with
type a single integral as follows:

Pa(n,0) = &(n —ao) (48) 02(t) = 2|Vo|? /0 {(t— R0 (58)

for somea.

We would like to solve (45) fopq(n,t). We do this by first solving |t can also be expressed in terms of the spectral density of the colored
for the characteristic function Fw,t) of a(t), which is defined by noise source ) as follows:

- i _[" i © 1— exp(j2mft
Flet) = £ exp(joa(t)] = [~ exp(jen) pa(n,t)ch 220207 [ su(n L2y g
v(t) is T-periodic, hence we can expawud) into its Fourier series: . .
)isT-p pand) 5 Models for burst (popcorn) and 1/ f (flicker) noise
a . 2n Burst noise
v(t) = i:ZooV' expljict), W=7 The source of burst noise is not fully understood, although it has been
shown to be related to the presence of heavy-metal ion contamina-
Lemma 4.1 The characteristic function af(t), F(w,t), satisfies tion [9]. For practical purposes, burst noise is usually modeled with a
colored stochastic process with Lorentzian spectrum, i.e., the spectral
0 gtu,t) _ z z VIV exp joaoit) (7&0“*)7(02) density of a burst noise source is given by
i=—00k=—_o0 4 Ia
t ) ) (49) Sourst(f) = Kﬁ (60)
| Rt =0 exp(— ek (co(i — ) + )t 14 (4)
wherex denotes complex conjugation. whereK is a constant for a particular devideis the current through
Theorem 4.2 (49) has a solution that becomes (with time) the chaj® device,a is a constant in the rangeSto 2, andf; is the 3 dB
acteristic function of a Gaussian random variable: bandwidth of the Lorentzian spectrum [9]. Burst noise often occurs
with multiple time constants, i.e., the spectral density is the summa-
) w?a?(t) tion of several Lorentzian spectra as given by (60) with different 3 dB
F(ot) =exp(jou(t) - =) (50)  bandwidths.

A stationary colored stochastic process with spectral density
solves (49) for t large enough such that

V
15. 1 i=k Swourst( ) = 5———— (61)
exp<—§w%(| —k)zoz(t)> ~ { 0 £k (51) Y2+ (2mf)?
has the autocorrelation function
where
Y
dut > t .. Rubursi(T) = - exp(—Y|T|) (62)
Y~ 5 janiMP [ Rut-Dexplionit-D)d  (52) 2
X I=—e If the 3 dB bandwidthy of (61) is much less than the oscillation fre-
do<(t) i 5 [t .. quencyuy, or equivalently, the correlation widthy¢ of (62) is much
a _72 2|\l /0 Ru(t—t)exp(jani(t —T))dt  (53) |arger than the oscillation periol = 2r1/wy, then (54) is satisfied.
_ = 1/f noise
Assumption 4.1 1/f noise is ubiquitous in all physical systems (as a matter of fact,
t . in all kinds of systems). The origins of/1 noise is varied. In IC
t JoRn(t—T)dt i=0 i it i i - -
.. 0 devices, it is believed to be caused mainly by traps associated with
/0 Ru(t —1) exp(jeoi(t —1)) dr ~ . (54)  contamination and crystal defects, which capture and release charge
0 i#0 carriers in a random fashion, and the time constants associated with



this process give rise to a noise signal with energy concentrated at Tdve following simple Lemma establishes the basic form of the autoco-
frequencies. For practical purposes it is modeled with a “stationamgriance:
and colored stochastic process with a spectral density given by | emma 6.1

|a ) 00
Sy(f)=K— (63) Ry(t,T) = XX exp(j(i — K)ut) exp(— jKugT
/ i (t,7) i:ka:Z,m X exp(j (i — k)uot) exp(— jkaot) 70)
whereK is a constant for a particular devideis the current through E [exp(jwo (ia(t) —ka(t +1)))]

the device, an@ is a constant in the range3to 2. There is a lot of

controversy both about the origins and modeling ¢f hoise. The The expectation in (70), i.eE [exp(jwy (ia(t) —ka(t +1)))] is the
spectral density in (63) is not a well-defined spectral density for a stharacteristic function oift(t) — ka(t 4+ t). This expectation is inde-
tionary stochastic process: It blows upfat 0. Keshner in [10] argues pendent of for large time as established by the following theorem:
that 1/f noise isreally a nonstationary process, and when one triesfhieorem 6.1 If t is large enough such that

model it as a stationary process, this nonphysical artifact arises. We

are not going to dwell into this further, which would fill up pages and 1, 1 i=k
Ceg Ay exp( 5681~ k200 ) = { )

~

would not be too useful other than creating a lot of confusion. In- G 0 i#k
stead, we will “postulate” a well-definestationarystochastic process

model for I/ f noise: We will introduce a cut-off frequency in (63)then oi(t) — ka(t + 1) is a Gaussian random variable and its charac-
below which the spectrum deviates fromfland attains a finite value teristic function, which is independent of t, is given by

at f = 0. To do this, we use the following integral representation [11]

L 0 i £k
® E [ex ia(t)—ka(t+t m{ . .
i :4/ 1 zdy (64) [exp(jox (ia(t) ( ) EXD(—%(A)%IZO'ZOTD) i=k
] 0 Y2+ (2mf) (72)
We introduce the cut-off frequengy in (64), and use whered?(t) is as in (57), (58) or (59). Note that the condition (71) is
o 1 same as the condition (51) in Theorem 4.2.
Syt (f) —————dy (65)  We now obtain the stationary autocovariance function:
Yo Y2+ (2mf)
Corollary 6.1
1 arctan(%) - 1
= W 8 Rm= 3 xx el jiwnen( o) 73
j=—00
for the spectral density of a stationary stochastic process that models = . . .
1/f noise. The spectral density in (65) has a finite valug at0: To obtain the spectral density gf(t + a(t)), we calculate the Fourier
transform of (73):
4
Suy/(0) = — (67) ad . .
/ Ye S/(f)= 3 XX S(f+ifo) (74)
The autocorrelation function that corresponds to the spectral density in =
(65) is given by wherewy = 21tfg and
R/ (1) = 2E1(YelT]) (68) S(f) = F{R()} (75)
where the exponential integrl (2) is defined as = F {exp(—%a)%izoz(hD) } (76)
® exp(—tz) _ . .
Ei(t) :/1 fdz The Fourier transform in (76) does not have a simple closed form.

Mullen and Middleton in [12] calculate various limiting forms for this
The power in a 1f noise source modeled with a stochastic proceggurier transform through approximating series expansions. We are
with the spectral density (65) is concentrated at low frequencies, fgeing to use some of their methods to calculate limiting forms for (76)
quencies much less than the oscillation frequency for practical osciffi- different frequency ranges of interest, but before that, we would

tors. Hence, (54) is satisfied fof 1. noise sources. like to establish some basic, general propertiesofiit), Ri(t) and
6 Spectrum of an oscillator with phase noise due to S(f).
colored noise sources Lemma 6.2
Having obtained the stochastic characterizatiom @f due to a col- . o4(t) 5
ored noise source in Section 4, we now compute the spectral density t'm)T = [Vo|” S (0) (77

of the oscillator output, i.exs(t +a(t)). We first obtain an expression
for the non-stationary autocovariance functi®ft, 1) of xs(t +a(t)). Corollary 6.2
Next, we demonstrate that the autocovariance is independerfoof

“large” time. Finally, we calculate the spectral densityxgft + ai(t)) o, ® S (0) #0
by taking the Fourier transform of the stationary autocovariance func- Jim o%(t) = 5 (78)
tion for xs(t +a(t)). 0%() S(0)=0
We start by calculating the autocovariance functiors@f+a(t)), 5 o )
given by whereg“() < o is a finite nonnegative value.

For the models of burst and 1 noise discussed in Section 5, we have
Suburst(0) =1

Rv(t,T) = E [Xs(t+a(t)) xs(t+T+a(t+1))] (69)
Definition 6.1 Define Xto be the Fourier coefficients of(t):

00

s(t) = i ji ot
Xs(t) i:me.exp(um) Sﬂ/f(o):%

from (61), and



from (67). ThusSy(0) # 0, and hence, lim,. 0%(t) = » are satisfied case when both white and colored noise sources are present and unify

for both. our results. Let there bp white noise sources arld colored noise
Sinced?(0) = 0 we have sources:
RO =1 79 A0 +900 + Bu(bu(®) + 5 Bom(ber(®)  (89)
and hence m=1

® whereBy(.) : R"=IR™P, Bem(-) : IR"=-IR", m=1,... M, by(-) :
/WS(f)df =1 (80) |R—IRP is a vector of (uncorrelated) stationary, white Gaussian noise
- processes, afikm(-) : R—IR, m=1,... ;M are zero-mean, Gaussian,
for any colored noise source. The total powgK* in the ith har- stationary colored stochastic processes (uncorrelated with each other,
monic of the spectrum is preserved. The distribution of the powerand withby(t)) with autocorrelation function/spectral density pairs

frequency is given b (f). If Sum(f) = F{Rum(1)} m=1,...,M

lim 0%(t) = oo (81) where

thenS (0) is nonnegative anfinite, which is the case when the noise Sm0)#0 m=1...,.M
source spectrum extends to DC. On the other hand, when the ngis@ry (1) m=1,... M are assumed to satisfy (54). In this case,

source is bandpass, i.e., its spectrum does not extend to DC, then g hhase erran(t) satisfies the nonlinear differential equation
will not be satisfied, and () will have ad function component at

f =0. Now, we concentrate on the case when (81) is satisfied, i.eq(t) T
when the spectrum takes a finite value at the carrier frequency (anditg — vi(t+a(t))
harmonics). Next, we proceed as Mullen and Middleton in [12, 13 M
and calculate limiting forms to the Fourier transform in (76) throug B _
approximating sefies: Buw(Xs(t +a(t)))bw(t) +n§1 em(Xs(t+a(t)))bem(t) |, a(0)=0
Theorem 6.2 Let (81) be true. For f away fror, (76) can be ap- (85)
proximated with _ o _ _

where v, (t) is the periodically time-varying Floquet vector of Sec-

. f2 tion 3. Let
s(f)mz\vo\zf—gsN(f) f>0 (82) LT
| | ov =1 [ VIOBulsDBLSMMTd  (86)
wherewg = 2mtfp. For f aroundO, (76) can be approximated with 0
1 and
s~ F{exn( - e ML s )+ LT
2 Vom == /O V(DBem(xs(T))dt m=1,....M (87
1 55,2
F {eXp<*§“’g' [Vol“Su(0) \T\> } ® Lemma 7.1 a(t) that satisfies (85) becomes a Gaussian random vari-

able with constant mean, and variance given by

e {oB2No? (1 [ Rucaazs | "2Ruaer) |

o?(t)
1812 (Vo2 (0)) . 18i2 (VoS (0))

M t
owt+ 3 2Nonf? [ (6= Rum(1)cr
m=1

M .
~ : 2 : 2 _ 2 [ (1—exp(j2mft))
re i (Vo Su(0)) "+ 12 21 (VoS (0)) "+ 12 = fwt+m;2\V0m| /wsvm(f)vdf
® It
F {wgiz‘vo‘z <|T| g RN(z)dz+/ ZR\,(z)dz>} f~0 fortlarge enough such that
T 0
15, 1 i=k
(83) exp(—éwg(l _k>202(t)> ~ { D (88)
where® denotes convolution. The first term in (83) is a Lorentzian ) ) )
with corner frequency Theorem 7.1 With a(t) characterized as above, the oscillator output
xs(t+a(t)) is a stationary process, and its spectral density is given by
migi2 (VoIS (0)) o _
Si(f)= 3 XX S§(f+ify) (89)
and can be used as an approximation for (76) arourd @by ignoring i=—oo

the higher order second term. (83) contains the first two terms of . . -
series expansion for (76). Where X are the Fourier series coefficients af ), and

From (82), we observe that the frequency dependengg bfis as 1812t 3 o [Vom|* Sum(0) ) f a0
1/ £2 multiplied with the spectral densit ( f) of the noise source for T2 144 (ot Y1 Vor *Sum(0) )+ 12 -
offset frequencies away from the carrier. This result matches with mea- S(f) = (90)

surement results for phase noise spectrum du¢ tmbise sources.

218 ( M 2
. . 24 (cw+ 31 Mom2Sum(f))  f>0
7 Phase noise and spectrum of an oscillator due to f m
white and colored noise sources The full spectrum of the oscillator with white and colored noise sources
In [1], we considered the case where the perturbaijbpis a vector of has the shape of a Lorentzian around the carrier, and away from the car-

(uncorrelated) stationary, white Gaussian noise processes and obtdigédhe white noise sources contribute a term that had ftequency
a stochastic characterization of the phase deviati(i) and derived dependence, and the colored noise sources contribute terms that have a

the resulting oscillator output spectrum, as we did it here for a célequency dependence asf? multiplied with the spectral density of
ored noise source in Section 4 and Section 6. Now, we consider tthecolored noise source.



8 Examples e B °0

We have derived aanalytical expression, given by (89) and (90), for
the spectrum of the oscillator output with phase noise due to white
and colored noise sources. The analytical expression in (89) and (90)
contains some parameters to be computed:

e X;: The Fourier series coefficients of the large-sigrabeless (a) Simple oscillator
periodic wavefornxs(t) of the oscillator output.

o Cu= 1% Jo V] (1)Bu(xs(T))Bh(Xs(T))Va(T)dT: Scalar that char-
acterizes the contributions of the white noise sources.

o Vom = £ Jg VI (T1)Bem(Xs(T))dt m=1,...,M: Scalars that
characterize the contributions of the colored noise sources.

Once the periodic steady-statgt) of the oscillator and the scalatg
andVom, m=1,... M are computed, we have an analytical expres-
sion that gives us the spectrum of the oscillatoa@ay frequencyf.

The computation of the spectrumrist performed separately for every
frequency of interest. We compute the whole spectrum as a function
of frequencyat once which makes our technique very efficient. Using

f(v)

V1(1) for Capacitor Voltage
1 T T T T

the results of the theory developed in this work, an analysis and de- P
sign tool for low phase noise oscillator design was implemented in an
in-house circuit simulator. (b) vi(t) for the capacitor voltage

Oscillator with parallel RLC and a nonlinear current source

We now present simulation results in the phase noise characteriza-
tion of a simple oscillator in Figure 1(a). The resistor is assumed to
be noiseless, but we insert a stationary external current noise source
across the capacitor. The Floguet vectgft) is a two-dimensional
vector, since the oscillator has two state variables, namely the capac-
itor voltage and the inductor current. Figure 1(b) shows the entry of
vy (t) corresponding to the capacitor voltage.

Now, let us assume that we have two current noise sources across
the capacitor, one of them a white stationary noise source, and the
other a colored stationary noise source with bandwidth much smaller
than the oscillation frequency. To calculate the spectrum of the capac-
itor voltage given by (89) and (90), we need to compatein (86)
for the white noise source, aMg in (87) for the colored noise source.

x10™ v1'(9) BBT va() for the noise source

For stationary noise sourceBy(t) in (86) andBc(t) in (87) are con- (©) VI (1)B,BLv;(t) for the noise source

stant functions of time. Figure 1(c) shows (t)ByBjva(t) which is

a periodic function of timé. Note thatcy is the time-average of this Figure 1. Simple oscillator with parallel RLC-nonlinearity
quantity.

From (87), we observe thg is the time-average WfI (t)Bc. The  [6] R. Telichevesky, K.S. Kundert, and J. White. Efficient steady-state analysis based on
time-average Oﬁ/l(t) in Figure 1(b) for the capacitor voltage is 0! matrix-free krylov-subspace methods.Rroc. Design Automation Conferendeine
Thus, we conclude that arstationary (with the modulatiorBe(t) a 1995. _ . _
constant function of time) colored noise source (With bandwidth muéﬁ] C.W. C—:iardlner. Handbook of I'\Stochastlc Methods for Physics, Chemistry and the

P . Natural SciencesSpringer-Verlag, 1983.
smaller than the oscillation frequency) connected across the capacir , "risken.The Fokﬁer_%,anck Eguatiorsprmger_\,enag 1989.
has no Cont“bUt'O_n to _the oscillator spectrum due to phase Nnoise, k§-pR. Gray and R.G. MeyeAnalysis and Design of Analog Integrated Circuishn
cause/g=0 for this noise source. Wiley & Sons, second edition, 1984.
CMOS ring-oscillator [10] M.S. Keshner. 1f noise.Proceedings of the IEEE0(3):212, March 1982.

. N . . . _[11] F. X. Kaertner. Analysis of white anfi"® noise in oscillatorsinternational Journal
A ring-oscillator with CMOS inverter delay cells was simulated for itS ~ of Circuit Theory and Applications.8:485-519, 1990.

phase noise spectrum. It oscillates 8&2GHz and burns 150 mW.[12] J.A. Mullen and D. Middleton. Limiting forms of fm noise spectfoceedings of
Figure 2 showsS;(f) in (90) using the expression fdr>>> 0. Contri- the IRE 45(6):874-877, June 1957.

butions of the thermal (Wh|te) andl_ (Colored) noise sources, as Wel[l3] D. Middleton. An Introduction to Statistical Communication TheoMEEE Press,
as the total spectrum, are plotted. 1996.
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