
Implementation and Use of SPFDs in Optimizing Boolean Networks

Subarnarekha Sinha Robert K. Brayton

Department of Electrical Engineering and Computer Sciences,
University of California, Berkeley, CA 94720

Abstract
Yamashita et. al.[1] introduced a new category for ex-

pressing the flexibility that a node can have in a multi-level
network. Originally presented in the context of FPGA syn-
thesis, the paper has wider implications which were discussed
in [2]. SPFDs are essentially a set of incompletely specified
functions. The increased flexibility that they offer is obtained
by allowing both a node to change as well as its immediate
fanins. The challenge with SPFDs is (1) to compute them in
an efficient way, and (2) to use their increased flexibility in a
controlled way to optimize a circuit. In this paper, we provide
a complete implementation of SPFDs using BDDs and apply
it to the optimization of Boolean networks. Two scenarios are
presented, one which trades literals for wires and the other
rewires the network by replacing one fanin at a node by a new
fanin. Results on benchmark circuits are very favorable.

1 Introduction
At ICCAD’96, an interesting paper by Yamashita et. al. [1]

was presented which develops a new way to express flexibility
when implementing a node in a multi-level circuit. Classically,
don’t cares or incompletely specified functions (ISFs) are used
to derive the flexibility at a node. These don’t cares have been
shown to express fully the flexibility of a node due to the non-
controllability or non-observability of a node. Satisfiability
don’t cares (SDCs) express that certain input patterns to a node
cannot appear. Observability don’t cares (ODCs) express that
for certain primary input patterns, the output of a gate is not
observable at any of the primary outputs. ODCs plus SDCs are
equivalent to ATPG testing techniques used for redundancy re-
moval. Since ODCs are expensive to compute, various subsets
have been proposed such as CSPFs (or CODCs) introduced by
Muroga. CODCs combined with image computations are im-
plemented in SIS in the command full simplify. CODCs can
be computed relatively simply by propagating CODCs back-
wards through the network. At a multiple fanout point, wire
CODCs on the fanouts are intersected to obtain the node CODC.
Besides being computationally efficient, CODCs are indepen-
dent; a CODC at one node can be used without affecting the
CODC at another node. ODCs do not have this property.
SPFDs are a generalization of CODCs.

To categorize different kinds of flexibility for combinational
networks, Sentovich [3, 4] used three categories, ISFs, Boolean
relations, and sets of Boolean relations and showed various
situations where each occur. SPFDs provide a new useful
category. They are essentially sets of ISFs. They can be
computed efficiently and are independent, like CODCs, but
express more flexibility. They are not a subset of any Boolean
relation.

In this paper we define SPFDs in Section 2 and in Section

3, we give an overview on computing SPFDs and introduce
some notation. In Section 4, we discuss how to compute them
efficiently using BDDs. In Section 5, we provide two different
methods for using them to optimize a network. Section 6 gives
some experimental results and Section 7 concludes the paper
and discusses future developments.

2 SPFDs
Definition 1 A function f is said to distinguish a pair of func-
tions g1 and g2 if either one of the following two conditions is
satisfied:

g1 � f � g2 (1)
g2 � f � g1 (2)

Note that this definition is symmetrical between g1 and g2.
We can think of g1 as the onset and g2 as the offset in condition
1 or vice-versa for condition 2.

Having to satisfy only one of the two conditions provides
the freedom to implement a function or its complement. This
is one source of additional flexibility provided by SPFDs.

Definition 2 An SPFD

f(g1a; g1b); : : : ; (gna; gnb)g

represents a Set of Pairs of Functions to be Distinguished.

Definition 3 A function f satisfies an SPFD, if f distinguishes
each pair of the set, i.e.

[((g1a � f � g1b) + (g1b � f � g1a)] ^ : : :^

[(gna � f � gnb) + (gnb � f � gna)]

An SPFD represents flexibility that can be used to implement
a node in a network - the only condition required is that the
function implemented at the node satisfy its node SPFD.

A trivial case is where the set is a single pair. In this
case the SPFD represents two incompletely specified functions
(ISF) where one is the complement of the other. If each of the
f(g1a; g1b); (g2a; :); : : : ; (:; gnb)g are pairwise disjoint, then the
SPFD represents 2n ISFs1.

It is instructive to consider how to represent a given ISF.
Think of each minterm mi in its onset as a function and each
minterm mj in its offset as a function. Then each (mi;mj) is
a pair of functions to be distinguished, i.e. we have to find a
function f such that f(mi) 6= f(mj). With ISFs it is necessary

1Note that an SPFD cannot represent a single function, it always represents at least a
pair. Thus it cannot represent the function 1.

that for all mi in the onset, we have f(mi) = 1 and for all mj

in the offset, we have f(mj) = 0. With SPFDs this is not
imposed, just that f distinguish all the pairs in the list.

This leads to the representation that we use in this paper,
of an SPFD as a symmetric bipartite graph i.e. a symmetric
relation R(x; x0) (which can be represented compactly as a
BDD) where R(xi; x0j) = 1 , R(xj ; x0i) = 1. The variable x
is in some space X. If a pair of minterms (mi;mj) 2 R (i.e.
is an edge in the bipartite graph), then we seek a function f
such that f(mi) 6= f(mj).

Figure 1 illustrates the bipartite graph representation of an
SPFD. This shows that 000 has to be distinguished from 010
and 011 and 001 has to be distinguished from 100, but no re-
quirements are imposed on the remaining pairs of minterms.
Hence flexibility in optimizing f is provided. If the bipartite

000

001

010

011

100

000

001

010

011

100

Figure 1: Bipartite graph representation of
f(000; 010); (000;011); (001;100)g

graph R has a single strongly connected component (SCC) it
is a pair of ISFs. If it has k SCCs, it is a set of 2k ISFs. In
the above example, for instance, there are two SCCs which
represents 4 ISFs.

Classically, in computing the flexibility at a node in a
Boolean network, don’t cares are computed which represent
a single ISF. These computations can be generalized so that
SPFDs are obtained, which provide much more freedom in
optimizing the node.

3 Overview
3.1 Notation

We consider a Boolean network with primary inputs x =
(x1; : : : ; xn), internal variables y = (y1; : : : ; ym) and internal
nodes (�1; : : : ; �m). Each internal node, �i, is associated with
a function, fi, a Boolean function of the variables x; y. The
relation yi = fi is imposed. Since the Boolean network is
acyclic, each fi can be expressed as a global function, gi(x),
of the primary inputs only, by recursively substituting yj = fj
until only primary inputs remain. In the sequel, we use gi(x)
to denote fi expressed as a function of x.

The space of local input variables for fi is denoted Yi which
may consist of both x and y variables. For example, if fi =
y3y5+x6, thenYi = fy3; y5; x6g. The functions in the transitive
fanin of fi define a mapping from X to Yi, denoted by Gi(x) :
Bn ! Bk where k = jYij.

The fanout space of node �i, denoted Zi, is the union of the
input spaces of the fanouts of i, i.e.

Zi = [
j2 fanout(i)Yj

From now on, in this paper, we think of an SPFD as a symmetric
bipartite graph where the vertices are minterms in some space

(in the above, this is the space Yi). This is represented by a
relation, R, which is just the set of edges of the graph. In the
implementation of our algorithms, each R is represented by the
BDD of its characteristic function.
3.2 Computing SPFDs

SPFDs can be computed for an entire network by starting
at the primary outputs. The computation is a two-step process
done in reverse topological order.

1. At each node, the edges of its SPFD are distributed to its
input wires, creating wire SPFDs.

2. Once all the fanout wire SPFDs of a node are available,
the node SPFD is computed as the union of the wire
SPFDs.

To start, one can assume that at each primary output, a com-
patible don’t care set is given. This translates easily into a
corresponding SPFD for each output node. Suppose o is a
primary output and its SPFD is given as Ro(X;X0) i.e. as a
bipartite graph in terms of the primary inputs2. We first map
this into a SPFD Ro(Yo; Y 0

o) in terms of o’s input space. Next
each pair of minterms to be distinguished (edge) is assigned
to one of the inputs wires. The set of pairs assigned to in-
put wire (j; o) is denoted Rjo(Yo; Y 0

o). At an internal node
�j assume we have already computed its SPFD, Rj(Yj ; Y 0

j).
Then its edges are distributed to each input wire (k; j) to obtain
Rkj(Yj; Y 0

j).
Once all of the fanouts of node �i have been processed, we

have Rij(Yj ; Y 0
j) for each wire (i; j), j 2 fanout(i). Since the

function at �i must satisfy all the Rij(Yj ; Y 0
j) we must have

Ri(Zi; Z
0
i) = [

j2 fanout(i)Rij(Yj; Y
0
j)

The next step is to translate this into Ri(Yi; Y 0
i) using the

mappings,

Gj(x); j 2 fanout(i) and Gi(x)

Repeating this procedure in reverse topological order from out-
puts to inputs we obtain SPFDs for all nodes in the network.
3.3 Re-encoding the fanins of a function

Consider a node �i and an associated SPFD, Ri(Yi; Y
0
i).

Then, fi can be any function which distinguishes all (yk; yl) 2
Ri. Each minterm yk 2 Yi represents a function of the pri-
mary input variables x, i.e. qyk(x) = fxjyk = Gi(x)g. So
Ri(Yi; Y 0

i) induces a corresponding SPFD Ri(X;X0), i.e.

Ri(X;X0) =

f(xj; xp)jxj 2 qyk ; x
p 2 qyl; (y

k; yl) 2 Ri(Yi; Y
0
i)g

We note that Gi represents the current implementation of the
transitive fanin of �i. But we will be interested in changingGi

(using the computed SPFDs) to improve the circuit. Any new
implementation whose mapping Ĝi satisfies

Ĝi(x
k) 6= Ĝi(x

l); 8(xk; xl) 2 Ri(X;X0)

2Usually an output don’t care is given in terms of the primary inputs.

is allowed. If the change fromGi to Ĝi is made, fi must change
to reflect this re-encoding. Figure 2 illustrates the change
needed in fi where conceptually an encoding function Yi =
E(Ŷi) is inserted in front of fi. The new function f̂i(Ŷi) =
fi(E(Ŷi)) then replaces fi.

E(Y)^

Y

Y
^

f(Y)^ ^

f

Figure 2: Function f̂ is the original function f under the new
encoding of the inputs E(Ŷ)

We also note that in order for a function at �i to distinguish
yk from yl it is only necessary that one of its inputs has different
values on these two minterms. Thus, as done in the previous
section, different pairs of minterms can be assigned to different
wires each of which is given the task of distinguishing the pairs
assigned to it. The set of edges assigned to the input wires then
constitutes a new SPFD for that wire. This may require that the
function at �i be changed. Thus more flexibility is achieved, by
allowing both the function and its inputs to be changed. Note
also that the SPFDs generated on the wires are independent;
each wire has an assigned task, and it does not matter what any
other wire does as long as each satisfies its own task.
3.4 Controlling change

Note that in using the flexibility provided by SPFDs both
the function fi as well as its transitive fanin may be changed,
creating new functions f̂i and a new fanin mapping, Ĝi(x).
However, since it would probably be too expensive to change
the entire transitive fanin of fi, we restrict the change to only
the immediate fanin of fi as follows.

We assign a minterm pair (ya; yb) 2 Ri(Yi; Y
0
i) to a fanin

�j only if

gj(x
r) 6= gj(x

s)8xr 2 qya(x); x
s 2 qyb(x)

In other words, gj must already have the power to distinguish
the two minterms. This insures that only the immediate fanin
may need to change to get the new encoding in the Yi space.

Another concern is that if a node �i is changed then it may be
necessary to propagate this change through all of its transitive
fanouts. In using SPFDs with LUT FPGAs, this is not really
a concern, since in all the tables in the transitive fanout of an
LUT, even though the function may change, the fanins to each
LUT remains the same. For general Boolean networks, in the
implementation that we have done so far, we have confined the
propagated changes to just two nodes, �i and one of its fanins.
This is done for each �i. This can be done using the CODC
of i computed in the normal way instead of its SPFD. This is
translated into an SPFD at that node, which is distributed to
its inputs. One input, say �k, is chosen to be changed which
may imply that the function at �i must be changed, but because

the CODC at the output of �i was used, no other node in
its transitive fanout needs to be changed. In addition, if �k
is changed, this may require other functions in the transitive
fanout of �k to change. We again block this by requiring that
the new function at �k satisfy the CODCs on the fanout wires
of �k (other than the wire to �i). Thus in effect, we select a
region to be changed3 and surround it with a frontier of CODCs
to block propagation of any changes beyond this region. Of
course these restrictions limits the optimizations that can be
done, and in the future, we may experiment with allowing the
propagated changes to include a larger region.

4 Computing the SPFDs of a network
In the following, we give the resulting computations without

proofs, although the reader may be persuaded of their correct-
ness by the fact that for the benchmark circuits of Section 6, we
verified the equivalence between the original and the optimized
circuits.

4.1 Computing the SPFDs at the fanin wires
To calculate the SPFD at the fanins of a node, we assume

that the SPFD, Rj(Yj ; Y 0
j), has been computed4. Suppose we

have selected an ordering on the input connections of �j. We
assign an edge of Rj (a pair to be distinguished) to the first
input in the ordering which distinguishes the pair. The result
is that the SPFD of each fanin wire (i; j) is the set of minterms
that are distinguished by fanin �i but not by any of the fanin
wires earlier in the ordering. Thus, the SPFD of fanin wire
(i; j) is

Rij(Yj ; Y
0
j) =

Rj(Yj; Y
0
j)f

Y

kl2 fanin(j);kl<i
(ykl = y0kl)g(yi 6= y0i)

The BDD Rij(Yj ; Y 0
j) represents the SPFD at input wire �i

of node �j . Each edge of Rj(Yj ; Y 0
j) has been assigned to

one of fRij(Yj; Y 0
j)g; i 2 fanin(j). The above equation is a

straightforward BDD calculation.
This calculation essentially distributes the edges in the bipartite
graph Rj(Yj ; Y 0

j) among the fanins of �j so that each edge is
assigned to the first fanin in the ordering that distinguishes the
two vertices of the edge.

The following example illustrates how the edges are dis-
tributed. Suppose we are given a node Z which has two fanins
a and b and a is before b in the ordering. Let the SPFD of Z be
given as f(00; 01); (00; 10); (00; 11)g. Then, the SPFDs of the
wires (a; Z) and (b; Z) are f(00; 10); (00; 11)g and f(00; 01)g
respectively. Note that the edge (00; 01) was not assigned to
a because a = 0 on both minterms. Figure 3 below shows the
SPFDs of the wires (a; Z) and (b; Z) due to the SPFD at Z.

4.2 Forming the SPFD at a node
The SPFD at a node is obtained by the union of all the

SPFDs of the fanout wires of the node. For a node �j with
multiple fanout wires, the SPFD can be obtained as follows.
Let

Zj = [i2 fanout(j)Yi

3In the current implementation, this is just the two nodes �i and �k.
4All SPFDs are represented using BDDs.

00

01

10

11

00

01

10

11

00

01

10

11

00

01

10

11

00

01

10

11

00

01

10

11

Z

a b

Figure 3: Computing the SPFDs of (a; Z) and (b; Z) from the
SPFD of Z

be the fanout space and Gj(X;Yj) be the relation

Gj(X;Yj) =
Y

yk2Yj

(yk = gk(x))

Let the SPFD associated with the ith fanout wire be
Rji(Yi; Y 0

i). Then, the SPFD associated with �j can be ob-
tained by taking the union of the SPFDs of the fanout wires
and then taking its image in the Yj space. Let

Rj(Zj ; Z
0
j) = [

i2 fanout(j)Rji(Yi; Y
0
i)

Then the SPFD of �j is given as

Rj(Yj ; Y
0
j) = 9X;X0Gj(X

0; Y 0
j)Rj(Zj(X); Z0

j(X
0))Gj(X;Yj)

where Rj(Zj(X); Z0
j(X

0)) is obtained from Rj(Zj ; Zj) by
composing each zk 2 Zj by gk(x). This technique of com-
puting the SPFD at the output of a node in a single step may
be expensive since during this computation, the entire space
fYj [Y 0

j [X [X0g has to be considered. Moreover, the
intermediate BDD Rj(Zj(X); Z0

j(X
0)) may be big.

An alternative approach is to map the SPFD on each fanout
wire into the input space, Yj, and then do the merging. Given
the SPFD of the ith fanout wire, Rji(Yi; Y 0

i), its image in the
local input space, Yj, can be obtained as follows:

1. Substitute yi = gi(x) in Rji(Yi; Y 0
i) for each yi 2 Yi

This gives the modified SPFD Rji(X;Y 0
i).

2. Compute Rji(Yj ; Y
0
i) = 9XGj(X;Yj)Rji(X;Y 0

i)

3. Substitute y0i = gi(x) inRji(Yj ; Y 0
i) for each y0i 2 Y 0

i to
obtain the SPFD, Rji(Yj; X).

4. Compute Rji(Yj ; Y
0
j) = 9XGj(X;Y 0

j)Rji(Yj ; X)

This process is repeated for the SPFDs of all the fanout wires
of �j. The SPFD of �j, is then obtained by

Rj(Yj ; Y
0
j) = [

i2 fanout(j)Rji(Yj ; Y
0
j)

Note that while merging the SPFDs in the local input space,
Yj , the largest space that has be considered at any time is
(Yj
S
Y 0
j

S
X), which is definitely smaller than the largest

space encountered by the first method. However, note that
each Rji is handled separately.

4.3 Computing the function at a node
As mentioned previously, if the fanin mapping of a node is

changed, then the function at the node may have to be changed
to reflect this re-encoding. We compute the SPFDs for all the
nodes in the network in a reverse topologicalorder from outputs
to inputs. Then, we obtain the implementations of the functions
at the nodes in topological order from inputs to outputs. So, at
any step, when the function at a node is being derived, the new
global functions at the input wires are already known i:e: the
fanin mapping is known. To compute a set of functions that can
be implemented at �j, the modified SPFD of the node under
the new encoding at the inputs is obtained. The new encoding
Ŷj is related to the old encoding Yj as:

E(Yj; Ŷj) = 9XGj(X;Yj)Ĝj(X; Ŷj)

The modified SPFD is then

Rj(Ŷj ; Ŷ 0
j) = 9Yj;Y 0

j
Rj(Yj; Y

0
j)E(Yj ; Ŷj)E(Y 0

j ; Ŷ
0
j):

Figure 4 illustrates how the new encoding of the inputs changes
the original SPFD.

00

01

10

11

00

01

10

11

00

01

10

11

00

01

10

11

E

old SPFD new SPFD

Figure 4: The modified SPFD under the encoding E = f00 !
11, 01 ! 10, 10 ! 00, 11 ! 11g

Each strongly connected component of Rj(Ŷj; Ŷ 0
j) encodes

the pairs of minterms that have to be distinguished. However,
the minterms in one SCC do not have to be distinguished from
those in another. This is similar to the graph coloring problem
where any two vertices that are connected by an edge cannot
be assigned the same color. In the case when Rj(Ŷj ; Ŷ 0

j) is
bipartite, we can color all the vertices of the graph using only
two colors. So, for each SCC, this corresponds to placing one
set of minterms in the onset of the function and the other set in
the offset. In this way, a new ISF is obtained at �j. Thus, if
there are k strongly connected components inRj(Ŷj; Ŷ 0

j), then
there are 2k functionally different ISFs that can be implemented
at �j. The new implementation at a node is chosen to be the
minimum of the minimum covers of all the 2k ISFs.
Non-bipartition:

There could be situations where Rj(Ŷj ; Ŷ 0
j) is not bipartite,

even though Rj(Yj ; Y
0
j) is. Figure 5. illustrates one such

example. In such a situation, the result is a general graph. If
we can color the graph using k colors, we can encode the new
function using logk bits. Thus, the original node is replaced by
logk nodes, all of whose fanouts are the same as the original
node. This situation is undesirable since the number of fanins
of the fanout nodes may increase. We are looking at ways to
constrain the SPFD propagation through the network so that
under any encoding, the graph Rj(Ŷj ; Ŷ 0

j) remains bipartite.

110

001

100

000

111

110

001

100

000

111

010 100

111

old SPFD new SPFD

E

Figure 5: The modified SPFD under the encodingE = f110 !
111, 101 ! 010, 001 ! 100, 000 ! 010, 111 ! 111g

It should be emphasized that in both cases all the minterms
in any SCC of the original SPFD are still distinguished. But
the new encoding can cause two SCCs of the original SPFD to
become incompatible and hence destroy the bipartite structure.
This situation can only arise if the SPFD at a node has more
than one strongly connected component. Our intial experience
is that non-bipartite structures occur rarely. In the experiments
described in Section 5, this cannot happen since there is only
one SCC at each node.

Finding the SCCs:
Given an SPFD, R(z; z0), the individual SCCs can be ob-

tained as follows. Initially, the two step graph R2(z; z0) =
9yR(z; y)R(y; z0) and the set of left-side nodes N (z) =
9yR(z; y) in the bipartite graph are obtained. Then the fol-
lowing steps are performed.

1. Pick z0 2 N (z).

2. Compute the fixpoint, E1(z), which is all the nodes that
can be reached from z0 using R2. Compute E0(z) =
9yR(y; z)E1(y), the set of nodes that are connected by
an edge to a node in E1(z). Store (E1; E0) as an SCC
pair.

3. Let N (z) = N (z)E1(z) + E0(z) . If N 6= ;, go to 1.

5 Circuit Optimization using SPFDs
5.1 Minimum fanin computation

The objective here is given a node �j determine if any of the
fanin wires can be removed, or if not can any of the fanins be
simplified enough to obtain an improved cost function.

In order to simplify a fanin, �k, as much as possible, we
compute the minterms that are distinguished uniquely by that
fanin. The minimum SPFD of the wire (k; j), Rmin

kj gives
the minterms that need to be distinguished at the output of �j
and can be done only by the wire (k; j). Given the SPFD,
Rj(Yj ; Y

0
j), of �j,

Rmin
kj (Yj ; Y

0
j) = Rj(Yj ; Y

0
j)f

Y

yi2Yj;i6=k

(yi = y0i)g(yk 6= y0k)

If Rmin
kj is nil, we could remove the wire, but we do not do

this until it is determined that the new function at �j is small
enough. If Rmin

kj 6= �, then a new function is obtained at �k
that satisfies Rmin

kj . We then test if the result also satisfies the
CODCs of all the other fanouts of �k. If so, a new encoding

at the inputs of �j due to the new function at �k is computed.
This is related to the old encoding Yj as:

E(Yj; Ŷj) = 9XGj(X;Yj)Ĝj(X; Ŷj)

Note that if Rmin
kj = �, wire (k; j) can be removed. This is

equivalent to setting the term ŷk = gk(x) to 1 in the computa-
tion of Ĝj(X; Ŷj).

The modified SPFD of �j under the new encoding,
E(Yj ; Ŷj), is

Rj(Ŷj ; Ŷ 0
j) = 9Yj;Y 0

j
Rj(Yj ; Y

0
j)E(Yj ; Ŷj)E(Y 0

j ; Ŷ
0
j)

which is minimized as discussed in the previous section. The
gain of these changes is computed as

gainkj = loldn + loldf � flnewn + lnewf g

+� � fwold
n + wold

f � fwnew
n +wnew

f gg

where l stands for the literal count in the factored form, w the
number of fanins of the node, the superscripts, old and new,
refer to the original and new implementations respectively and
the subscripts, n and f , refer to the node and fanin respectively.
The parameter � above relates the value of a wire relative to a
literal.

Since it is not practical to do this computation for each
fanin wire of �j, in our current experiments, only a subset of
the fanins are considered; only those fanins whose own fanins
are a subset of the fanins of �j are selected. This procedure
is repeated for each candidate fanin and the one giving the
largest non-negative gain, gainkj, is chosen. Then the original
function at �j and the corresponding fanin function are replaced
by the new ones. This procedure of trying to simplify the fanin
of a node as much as possible is called fanin simplify.
5.2 Alternative wire computation

The objective here is to replace wire (k; j) to node �j with
a wire from another node �s, originally not a fanin of node �j,
such that a new function f̂j can be found which depends on �s
but not on �k. The function f̂j must still satisfy the SPFD at
�j and some gain should be obtained by this replacement.

A wire (s; j) can replace the wire (k; j) if all the minterms
in mi 2 X uniquely distinguished by the wire (k; j) are also
distinguished by �s. The procedure for replacing one wire by
another is explained below.

Suppose Rj(Yj ; Y 0
j) has been computed. The minimum

SPFD of the wire, (k; j), is computed. Now we seek candidate
nodes f�sg in the network that can distinguish all the minterms
inRmin

kj (Yj ; Y 0
j) . A necessary and sufficient condition for this

is that H(ys) = �, where H(ys) is derived by the following
steps.

1. Substitute yj = gj(x) in Rmin
kj (Yj ; Y

0
j) for each yj 2 Yj

to obtain Rmin
kj (x; Y 0

j).

2. Compute
Rmin
kj (ys; Y 0

j) = f9x(ys = gs(x))Rmin
kj (x; Y 0

j)g.

3. Substitute y0j = gj(x) in Rmin
kj (ys; Y 0

j) for each y0j 2 Y 0
j

to obtain Rmin
kj (ys; x).

4. Compute H(ys) = f9x(ys = gs(x))R
min
kj (ys; x)g.

H(ys) has the property that if H(ys) 6= ;, then there exists
at least one pair of minterms in Rmin

kj (Yj; Y 0
j) that are not

distinguished by �s and hence �s cannot be a candidate.
Since it is not practical to consider all the nodes in the

network, only a subset is considered; only the fanins of �k and
the nodes in their transitive fanout are considered. Of course,
nodes in the transitive fanout of �j cannot be considered.

After the set of candidate nodes is obtained, the following
procedure is repeated to obtain the node �s from which a wire
can be added that can replace wire (k; j). First, the modified
SPFD of �j is obtained in the new space

Ŷj = fyi 2 Yj; i 6= kg [fysg

A new minimized function at node �j is then obtained from
this modified SPFD as previously described. If the number of
literals in the factored form of the new function is less than the
number in the factored form of fj , the replacement is done5.
In case of a tie in the number of literals, the replacement is also
done if the level of �s is less than the level of �k. Otherwise,
the next node in the candidate set is selected and the same
procedure repeated. We call this procedure of replacing wires
by other wires, wire replace.

To illustrate the power of wire replace, consider

z = gb+ gb

g = ab+ ab

Running full simplify on this example results in no simpli-
fication. Now consider wire replace. Wires (a; g) and (b; g)
have no alternative wires and hence g remains unchanged. For
wire (g; z), the minimum SPFD is A = f(00; 10); (01; 11)g.
(In the set A, each minterm is of the form gb). Now, if we ex-
press the minterms ofA in terms of the primary inputs, a and b,
we get A0 = f(00; 10); (11; 01)g. (The minterms in A0 are of
the form ab). The primary input, a, can distinguish both pairs
in A0. Hence, a is a candidate node and can be used to replace
(g; z). Simplifying z we obtain z = a. It is also interesting to
note that in g, f00; 11g are in the offset and f01; 10g are in the
onset. However for a, f00; 01g are in the offset and f11; 10g
are in the onset. Yet, a can be used to replace g. This ability to
mix onset and offset minterms is another source of additional
flexibility provided by SPFDs.

6 Results
The results for fanin simplification are shown in Table 1.

The initial circuits were obtained from the various benchmarks
by running script.rugged in SIS on them. The result served
as our point of comparison. We then took this output and
subjected it to an iteration of fanin simplify until no gain was
obtained or the cost function (which was equal to the gain in
the number of literals plus twice the gain in the number of
wires) became non-positive for the first time. In some circuits,
the cost function kept oscillating and for these circuits we took
the point at which the cost function first started to oscillate.
We recorded, under the heading, (fanin simplify)*, both the
number of connections in the circuit “wires” and the number of

5Of course, we could use the gain function given in Section 5.1 to control acceptance,
but the experiment here is to reduce literals (and hopefully wires too).

script.rugged (fanin simplify)*
NAMES wires literals wires ratio literals ratio

apex6 650 741 633 0.974 731 0.987
apex7 222 245 210 0.946 241 0.984

b9 115 122 111 0.965 122 1
bbara 51 63 45 0.882 61 0.968
bbsse 140 140 138 0.986 140 1
c1908 378 540 357 0.944 534 0.989
c432 205 205 194 0.946 201 0.98
c499 344 552 296 0.86 554 1.004

c8 128 139 118 0.922 144 1.036
cht 165 165 164 0.994 165 1
cse 213 215 201 0.944 206 0.958

dk16 348 348 307 0.882 345 0.991
dk17 88 89 44 0.5 58 0.652
ex1 279 280 259 0.928 261 0.932
ex2 172 172 158 0.919 173 1.006
ex3 84 86 81 0.964 87 1.012
ex4 91 91 87 0.956 87 0.956
ex5 71 71 47 0.662 66 0.93
ex6 108 109 96 0.889 111 1.018

f51m 60 91 39 0.65 88 0.967
frg1 79 136 60 0.759 137 1.007
frg2 833 886 753 0.904 894 1.009
i6 391 457 391 1 457 1
i7 587 596 517 0.881 583 0.978
i8 1012 1015 989 0.977 999 0.984
i9 587 596 577 0.983 603 1.012
k2 1112 1120 1084 0.975 1100 0.982

kirkman 300 308 87 0.29 135 0.438
lal 89 105 83 0.933 103 0.981

planet 614 617 594 0.967 610 0.989
s1 429 430 356 0.83 375 0.872

sand 612 613 579 0.946 584 0.953
scf 983 985 974 0.991 977 0.992
sct 63 79 55 0.873 78 0.987
sse 140 140 109 0.779 117 0.836
styr 596 596 561 0.941 565 0.948

term1 130 179 104 0.8 174 0.972
too large 266 347 255 0.959 349 1.006

ttt2 184 219 167 0.908 215 0.982
vda 611 615 606 0.992 612 0.995
x1 285 298 275 0.965 301 1.01
x2 44 48 42 0.955 49 1.021
x3 720 787 675 0.938 764 0.971
x4 367 386 353 0.962 384 0.995

z4ml 29 41 20 0.69 41 1
AVERAGE 0.887 0.962

Table 1: Results for fanin simplify

script.rugged (wire replace)* (script.rugged, (wire replace)*)*
NAMES wires literals wires ratio literals ratio wires ratio literals ratio

apex6 650 741 625 0.962 724 0.977 621 0.955 715 0.965
apex7 222 245 203 0.914 235 0.959 198 0.892 226 0.922

b9 115 122 111 0.965 119 0.975 112 0.974 122 1
bbara 51 63 46 0.902 60 0.952 49 0.961 61 0.968
bbsse 140 140 119 0.85 126 0.9 102 0.729 110 0.786
c1908 378 540 352 0.931 525 0.972 352 0.931 525 0.972
c432 205 205 186 0.907 222 1.083 186 0.907 222 1.083
c499 344 552 300 0.872 552 1 300 0.872 552 1

c8 128 139 127 0.992 138 0.993 125 0.977 136 0.978
cht 165 165 164 0.994 165 1 163 0.988 164 0.994
cse 213 215 201 0.944 204 0.949 162 0.761 183 0.851

dk16 348 348 316 0.908 321 0.922 187 0.537 245 0.704
dk17 88 89 40 0.455 53 0.596 37 0.42 51 0.573
ex1 279 280 255 0.914 258 0.921 219 0.785 229 0.818
ex2 172 172 142 0.826 160 0.93 134 0.779 151 0.878
ex3 84 86 82 0.976 85 0.988 45 0.536 62 0.721
ex4 91 91 82 0.901 85 0.934 71 0.78 78 0.857
ex5 71 71 60 0.845 67 0.944 26 0.366 51 0.718
ex6 108 109 92 0.852 103 0.945 89 0.824 96 0.881

f51m 60 91 39 0.65 83 0.912 45 0.75 70 0.769
frg1 79 136 44 0.557 127 0.934 51 0.646 127 0.934
frg2 833 886 696 0.836 792 0.894 690 0.828 735 0.83
i6 391 457 391 1 457 1 391 1 457 1
i7 518 584 517 0.998 583 0.998 517 0.998 583 0.998
i8 1012 1015 980 0.968 988* 0.973*
i9 587 596 584 0.995 596 1 580 0.988 592 0.993
k2 1112 1120 1067 0.96 1082 0.966 * *

kirkman 300 308 137 0.457 198 0.643 85 0.283 126 0.409
lal 89 105 82 0.921 101 0.962 79 0.888 102 0.971

planet 614 617 586 0.954 593 0.961 555 0.904 589 0.955
s1 429 430 349 0.814 381 0.886 275 0.641 298 0.693

sand 612 613 566 0.925 574 0.936 521 0.851 550 0.897
scf 983 985 970 0.987 974 0.989 870 0.885 917 0.931
sct 63 79 57 0.905 78 0.987 55 0.873 75 0.949
sse 140 140 119 0.85 126 0.9 102 0.729 110 0.786
styr 596 596 550 0.923 555 0.931 431 0.723 482 0.809

term1 130 179 97 0.746 152 0.849 93 0.715 103 0.575
too large 266 347 253 0.951 234 0.674 * *

ttt2 184 219 160 0.87 206 0.941 122 0.663 163 0.744
vda 611 615 607 0.993 612 0.995 571 0.935 579 0.941
x1 285 298 279 0.979 295 0.99 279 0.979 295 0.99
x2 44 48 43 0.977 48 1 39 0.886 46 0.958
x3 720 787 650 0.903 753 0.957 628 0.872 705 0.896
x4 367 386 347 0.946 381 0.987 332 0.905 367 0.951

z4ml 29 41 28 0.966 38 0.927 28 0.966 38 0.927
AVERAGE 0.888 0.936 0.807 0.871

Table 2: Results for wire replace

literals in the factored forms of the Boolean network. The ratio
of these results to the output of script.rugged is also shown. At
the bottom of the table we compute the average ratios for both
the wires and the literals. We see, on average, a 11% reduction
in the number of wires as well as a 3% reduction in literals.
But since we assigned greater weights to wires (� = 2), there
is a greater reduction in wire count.

The results for wire replacement are shown in the Table 2.
The initial circuits were obtained as in the previous case. We
took the output of script.rugged and subjected it to an iteration
of wire replace until no gain was obtained. The number of
wires, the number of literals in the factored form of the network
and the ratio of these results to the output of script.rugged were
stored under the heading (wire replace)*. For i8, the program
ran out of memory before the iterations could converge, so
we took the values of the previous iteration. The third set of
columns was obtained by taking the result of (wire replace)*
and repeating script.rugged followed by (wire replace)* until
no gain was recorded. For k2 and too large, the program
ran out of memory even before the first iteration was over.
At the bottom of the table we compute the average ratios for
both experiments and for both wires and for literals. We see
on average a 11% reduction in wires and 6% in literals after
(wire replace)*, and still better results for the repetition of
script.rugged and (wire replace)*, a 19% reduction in wires
and 12% in literals.

The experiments were made with automation in mind.
We wanted to devise an automatic script that could be run
on any module without having to interact with it. The re-
sults are the “scripts”, (script.rugged(fanin simplify)*) and
(script.rugged(wire replace)*)*.

In (script.rugged (fanin simplify)*), it is possible to trade
off wires for literals or vice-versa by setting different costs to
the literals and wires. In (script.rugged (wire replace)*)*,
we could set conditions for choosing an alternative wire for a
given wire. In addition to minimizing literals, we could use this
to optimize different criteria like delay, maximum wire length,
etc.

Since the computation at a node can take an arbitrarily long
time, we have introduced timeouts to prevent the computation
from hanging up. So, with every node in the network we
associate a timeout interval and if the time of computation
exceeds the interval, we just quit that node and move on to the
next. Right now, we set a timeout interval of 20 sec., more for
ruggedizing the algorithms than a concern for the run time. We
are looking at a number of techniques to improve the run times.

In the future, we see this technology as important for im-
proving delay and wireability for DSM designs.

7 Conclusions
We have implemented the computation of SPFDs using

BDDs and have shown that their use is quite feasible in circuits
of medium size. Roughly, any circuits where script.rugged
can be used, SPFDs can also be used. Ultimately, both
fanin simplify and wire replace can be made more rugged
following suggestions by Savoj [5], by filtering out known
problems and by better controlling time-outs on some of the
BDD calculations. The initial experiments with fanin simplify
and wire replace are very encouraging. In these experiments,
we have strongly restricted the SPFDs computed, in order to
control the change in the network. We want to experiment with
relaxing these conditions while still controlling the gains made
in a predictable way.

Ultimately, we plan to use SPFDs in DSM synthesis where
the ability to assign costs to the wires during circuit optimiza-
tion or to replace one wire by another should be very useful to
alleviate wiring problems or to improve wire delay and noise
problems.

Acknowledgements
This research was supported by the SRC under contract DC-

324, and the California MICRO program with participating
industrial sponsors, Cadence, Motorola, and Fujitsu.

References
[1] S. Yamashita, H. Sawada, and A. Nagoya. A New Method

to Express Functional Permissibilities for LUT based FP-
GAs and Its Applications. In International Conference on
Computer Aided Design, pages 254–261, November 1996.

[2] Robert K. Brayton. UnderstandingSPFDs: A New Method
for Specifying Flexibility. In IWLS, 1997.

[3] E. M. Sentovich and R. K. Brayton. Multiple Boolean
Relations. In International Workshop on Logic Synthesis,
Tahoe City, CA, May 1993.

[4] Ellen M. Sentovich, Vigyan Singhal, and Robert K. Bray-
ton. Boolean Function Sets. In unpublished manuscript,
1996.

[5] H. Savoj. Improvements in Technology Independent Opti-
mization of Logic Circuits. In IWLS, 1997.

	CDROM Home Page
	ICCAD98
	Front Matter
	Table of Contents
	Session Index
	Author Index

