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Abstract

In this paper, we propose a high-level variable se-
lection for partial-scan approach to improve the testa-
bility of digital systems. The testability of a design is
evaluated at the high level based on previously proposed
controllability and observability measures. A testabil-
ity grading technique is utilized to measure the rela-
tive testability improvement in a design as the result of
making a subset of the variables fully controllable and
observable. The variables that cause the greatest testa-
bility improvement are selected, and the selection pro-
cess is performed incrementally until no further testa-
bility improvement can be achieved. Then the registers
that correspond to the selected variables are placed in
the scan-chain for partial-scan implementation. The
experimental results shows that the variable selection
approach produces partial-scan implementations that
can achieve high fault coverage, while the logic over-
heads are fairly low.

1 Introduction

Conventional partial-scan selection techniques per-
form the flip-flop selection at the gate level after the
logic structures have been realized. Although high
fault coverages are often achieved, the information
from the higher levels of abstraction, such as the
register-transfer level or behavioral level, is not applied
to further improve the quality of the flip-flops selected
for partial scan. The lack of high-level information
also causes the flip-flops to be selected from dispersed
locations in a circuit. Although the partial-scan imple-
mentations may prove their effectiveness during test-
ing, they have little value for designers during design
debug and fault diagnosis.

Partial-scan approaches that use high-level informa-
tion to improve the quality of scan element selection
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were proposed in [1, 2, 3, 4, 5, 6].
In [1], the authors presented a resource sharing tech-

nique to generate circuits with minimal partial-scan re-
quirements. The algorithm first breaks all loops formed
in the control-data flow graph with the minimal num-
ber of scan flip-flops; then scheduling and allocation
are performed without introducing any loops in the
datapath. The testability of hard-to-test registers in
the circuit can be improved by sharing the same set of
scan registers.

A behavioral synthesis-for-testability technique was
presented in [2]. This technique generates easily
testable nonscan or partial-scan implementations of a
design by considering testability issues during resource
allocation and register binding. Another behavioral
synthesis approach was described in [3]. The authors
defined a set of test environments to represent the
testability of modules in a design. Given the sched-
uled data-flow graph of a design, the resource alloca-
tion algorithm is applied to generate an easily testable
circuit.

A resource allocation algorithm was proposed in [4].
The algorithm first analyzes the design at the high level
to identify loops such as functional loops, topological
loops, single assignment loops, and multiple assign-
ment loops. Then the allocation algorithm is applied
to produce an acyclic structure with minimal area and
partial-scan overhead.

The authors of [5] proposed a behavioral trans-
formation technique to minimize partial-scan require-
ments in synthesized circuits. By analyzing the testa-
bility cost, scheduling difficulty, and transformation
difficulty during high-level synthesis, designers can
generate an easily testable circuit that requires less
area and scan cost compared to the circuit synthesized
from the original description. The same authors also
presented a high-level partial-scan approach in [6]. In
this approach, hardware sharing is utilized to break
data-dependency loops, assignment loops, sequential
false loops, and register file cliques. By sharing scan
registers among several variables, the total partial-scan
cost can be minimized.

The contribution of this study is to develop a
partial-scan selection technique based on high-level in-
formation of a design. While most high-level tech-
niques emphasize on the testability analysis of the dat-
apath of a system, our technique focuses on both con-
trol flow and data flow. The testability analysis is per-



formed on the control-data flow graph of a design based
on a set of controllability and observability metrics. A
testability grade is also computed for the design. The
variables defined at the high level are chosen for scan
based on their ability to improve the testability of the
system. The variable selection is performed incremen-
tally until no further testability improvements can be
made. A similar testability-based partial-scan selec-
tion approach was described in [7]. In that approach,
testability measures are developed to guide the selec-
tion process based on the testability impact of each
flip-flop. Instead of selecting individual flip-flops, our
approach analyzes a design at the high level and selects
the variables that contribute the most to improving the
testability of a design.

After the desired variables are chosen, the regis-
ters that correspond to these variables are selected for
partial-scan implementation. The output of our tech-
nique is a testability-and-cost graph that estimates the
amount of partial-scan requirements needed to achieve
high testability. The graph also allows designers to
control the trade-offs between scan cost and testability
improvement. The proposed approach is independent
of the synthesis procedure and the test generation al-
gorithm as long as there exists a mapping between the
gate-level registers and variables defined in the high-
level description.

We will describe the high-level testability analysis
method and the testability grading technique in Sec-
tion 2. The proposed variable selection algorithm will
be discussed in Section 3, followed by experimental re-
sults in Section 4. Section 5 contains the conclusion of
this study.

2 Testability Analysis

Testability metrics were proposed in [8] to evalu-
ate the testability of a design at the high-level. The
control-data flow graph (CDFG) is first extracted from
the high-level description of a design. Then the graph
is analyzed based on the controllability and observabil-
ity metrics. The goal of controllability and observabil-
ity analysis is to estimate the testability of branch con-
ditions, functional units, and variables defined in the
design. Then the result of the testability analysis can
be summarized to form a testability grade for the sys-
tem. In this work, a node within a CDFG is the locus
of execution for the system if it is currently being
executed by the system. The testability definitions are
summarized as follows.

DEFINITION C-1: An assignment node in the
CDFG has controllability cost C if all of its operands
can be controlled by the primary inputs C clock cycles
before the locus reaches the node, where C is a specific
integer.

DEFINITION C-2: An assignment node in the
CDFG is noncontrollable if one or more of its

operands cannot be controlled by the primary inputs
within any predetermined number of clock cycles prior
to the locus reaching the node. This node has control-
lability cost C equal to infinity.

DEFINITION C-3: A branch of a decision node
has controllability cost C if the outcome of the branch
condition can be controlled to take that branch by the
primary inputs C clock cycles before the locus reaches
the node, where C is a specific integer.

DEFINITION C-4: A branch of a decision node
is noncontrollable if the outcome of the branch con-
dition cannot be controlled to take that branch by the
primary inputs within any predetermined number of
clock cycles prior to the locus reaching the node. This
branch has controllability cost C equal to infinity.

DEFINITION O-1: An assignment node in the
CDFG has observability cost O if the result of the op-
eration can be observed at the primary outputs after O
clock cycles, where O is a specific integer.

DEFINITION O-2: An assignment node in the
CDFG is nonobservable if the result of the operation
cannot be observed at the primary outputs within any
predetermined number of clock cycles. This node has
observability cost O equal to infinity.

In our experiments, the infinity value is typically set
to a large integer. It should be noted that the testabil-
ity measures defined above are used for guidance, and
therefore the accuracy of C and O is not extremely im-
portant. When high-level synthesis is used, the clock
cycle boundaries may not be known exactly before syn-
thesis. Therefore, one needs to approximate the above
measures. One approximation is to count the number
of register transfer (RT) statements in place of clock
cycles. Basically, the controllability cost estimates the
level of difficulty in controlling a node from the pri-
mary inputs, and the observability cost approximates
the level of difficulty in propagating the value of a node
to the primary outputs.

2.1 Controllability analysis

Before starting the computation of controllability
measures, all noninput variables have controllability
costs equal to infinity, and all primary inputs and con-
stant values have controllability cost equal to zero.
For an assignment node in the CDFG, the destination
variable can be controlled within one cycle after the
operands are controlled. The controllability cost rep-
resents the number of RT statements required to con-
trol a node. Therefore, the destination variable and the
functional unit denoted by the RT statement have con-
trollability cost equal to the maximum controllability
cost of the operands plus one. The formula to compute
controllability cost for the destination variable is

C(destination) = MAX [ C(operands) ] + 1



During the controllability evaluation of the CDFG,
the controllability cost of a variable is recorded every
time it is computed. The number of different control-
lability costs for each variable is equal to the number
of RT statements in which it is the designated destina-
tion variable. The combined controllability value for a
variable is calculated by taking the average of all the
controllability costs recorded for the variable. This av-
erage controllability value represents the ability of the
primary inputs to control the variable.

2.2 Observability analysis

Initially, all nonoutput variables have observabil-
ity costs equal to infinity, and all primary outputs
have observability costs equal to zero. The algorithm
starts with the last node in the CDFG. All functional
units that assign their results to a primary output
have observability costs equal to zero, because these
results are immediately observable. The computation
of observability cost of an arbitrary functional unit
(RT statement) is more complicated, because the prop-
agation of a signal at the input of a functional unit de-
pends on the controllability of other inputs to the same
unit, i.e., a hard-to-control input may cause difficulties
in the propagation of values at the other inputs. The
formula for computing the observability cost for each
input operand of a functional unit becomes

O(opi) = MAX

{
O(destination) + 1
MAX[C(opj 6=i)] + 1

During the observability evaluation of the CDFG,
the observability cost of a variable is recorded every
time it is computed. The number of different observ-
ability costs for each variable is equal to the number
of RT statements in which the variable occurs as an
operand variable. The combined observability value
for a variable is calculated by taking the average of all
the observability costs recorded for the variable. This
average observability value represents the difficulty in
propagating the content of the variable to the primary
outputs.

2.3 Testability Grading

After a high-level testability analysis, the computed
measures include the controllability of branch/loop
conditions, the controllability and observability of as-
signment nodes, and the controllability and observabil-
ity of variables and signals, as shown at the top of
Figure 1. The testability values of various portions of
a design can be combined according to their type and
weight, as shown in Table 1. The testability values
from various components can be combined by comput-
ing the weighted-average of their testability values.

First, the controllability value of every branch from
a decision node can be combined; each branch has a
weight equal to the number of nodes following each

Table 1: Testability and weight of system components.

Type T. Wt.
Branch condition C # of nodes in branch
Assignment node C/O # of operations
Variable (V) C/O Log2 (# of bits)
Signal (S) C/O Log2 (# of bits)
Control logic C # of decision nodes
Datapath C/O # of assignment nodes
Func. network (F) C/O # nodes in CDFG
Data network (D) C/O wt(V) + wt(S)
Entire system C/O wt(F) + wt(D)

Conditions Variables Signals

Data Network

Entire System

Functional Network

Control Flow Data Flow

Nodes
Assign.

Conditions
LoopBranch

Figure 1: Testability grading hierarchy.

branch. The combination of the testability of all de-
cision nodes provides the testability estimate for the
control flow of the system.

The combined testability value of an assignment
node is computed by taking the average of its control-
lability and observability values. Then the combined
testability of all assignment nodes is computed by tak-
ing the weighted-average of the testability value from
each assignment node. The resultant testability rep-
resents the testability of the data flow of the system.
Together with the testability of the control flow, we
have an estimate of the testability of the entire CDFG,
which is also referred to as the functional network in
Figure 1.

The testability of each variable/signal is calculated
by combining the testability values computed during
testability analysis. The weight of each variable equals
Log2 of the number of bits defined for the variable, with
1 as the minimum weight. This is done to avoid plac-
ing too much weight on large variables such as mem-
ory arrays. The controllability and observability values
are first combined for each variable/signal; then, the
testability values of all variables/signals are combined
to form a single value representing the testability of
the underlying data and interconnect framework. This
combined testability value provides a testability esti-
mate of the data network.

Finally, the testability of the functional network and
the data network can be combined to generate a quan-



titative measure of system testability. Notice that this
single measure can range from zero (easily testable)
to infinity (not testable), assuming infinity is a large
integer. The following formula can be utilized to trans-
form the testability value into a testability-grade (TG)
number between zero and 100, which is a notation com-
monly used. Similar to the fault coverage value repre-
senting the level of testability for a circuit, the testabil-
ity grade represents the system testability at the high
level.

TG(0↔100) =
|inf | − Testability(0↔inf)

|inf | ∗ 100

3 Variable Selection Procedure

Conventional partial-scan selection approaches per-
form the flip-flop selection at the gate-level, after the
structure of the circuit is known. Our approach uti-
lizes high-level information to guide the scan selection
process in order to generate the optimal partial-scan
implementation. Gate-level techniques tend to select
individual flip-flops that meets certain testability cri-
teria, while our approach requires all flip-flops that cor-
respond to the selected variables to be scanned.

The selection algorithm starts by obtaining the reg-
ister mapping information from the gate-level regis-
ters to the variables defined at the high level. Dur-
ing high-level synthesis, registers may be allocated for
some variables, while the other variables are treated
as temporary signals, and no registers are allocated.
Before variable selection is performed, all registered
variables are recognized and placed on the candidates
list for selection. After the register mapping is ob-
tained, variables that are costly to scan and variables
that will not contribute to testability improvement are
eliminated from the selection process; large arrays and
output buffers are removed from the candidates list.

3.1 Selection Algorithm

The selection procedure requires three major com-
ponents: the candidate list, the solution list, and the
testability grading engine. The candidate list contains
all registered variables with the exception of large ar-
rays and output buffers. The solution list is the record
of partial-scan solutions developed during the iterative
selection process. The testability grading engine is the
tool developed to perform testability grading using the
proposed controllability and observability measures.
In this work, a solution is defined as a combination
of variables selected for partial-scan implementation,
and each solution has its testability grade and associ-
ated scan cost (bit-width). The solutions are ranked
first by increasing testability and second by decreasing
scan cost, because a good partial-scan solution should
achieve high testability while requiring a minimal num-
ber of scan flip-flops. A seed is the highest ranking
solution in the solution list.

Best Solutions

Solution List

Seeds

Add VariableCandidate
List

Testability
Grading

Figure 2: Variable selection algorithm.

The first step of the selection process is to evalu-
ate the testability impact of each candidate variable.
Testability grading is performed individually assuming
each variable is fully controllable and observable; this
is to simulate the effects of scanning the corresponding
registers. The result is a list of single-variable solu-
tions, each with a testability grade and scan cost. The
best solutions are stored in the solution list for the
next iteration. In our experiments, only the five best
solutions are stored on the solution list.

The next step is an iterative process starting from
the existing single-variable solutions. Instead of the ex-
haustive approach that is of O(2N) complexity, where
N is the number of variables, we have developed an
O(N2) greedy algorithm to select the best combina-
tions of variables for partial-scan. The algorithm starts
by using the five best solutions from the solution list
as seeds. For each seed, variables not already present
in the seed are added individually to the seed to form
new solutions. For each of these newly formed solu-
tions, testability grading is performed on the design,
treating the selected variables as fully controllable and
observable elements. Then the testability grade and
the scan cost are stored with the solution, and the so-
lution is inserted into the solution list according to its
testability grade and cost.

At the end of an iteration, a brief examination
will reveal whether there are testability improvements
among the best solutions in the solution list. If the
maximum testability grade have not increased in the
current iteration, it means the optimal testability level
has been achieved, and the procedure terminates. Oth-
erwise, more iterations are required until no further
testability improvement can be achieved. The variable
selection algorithm is also presented pictorially in Fig-
ure 2.

3.2 Barcode Example

The output of the variable selection process is a
testability-and-cost graph, similar to the one shown
in Figure 3. The original order listed in the solution
list is displayed at the bottom of the figure, with ver-
sion 1 being the best solution suggested by the selec-
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Figure 3: Testability and cost graphs for Barcode.

tion procedure. The second best solution is labeled 2,
etc. In the figure, the data points are first ordered by
their testability grade, then by their scan cost. Actual
ATPG was performed for every partial-scan implemen-
tation of Barcode to construct the fault coverage curve
in the figure.

Each flat segment on the testability grade curve rep-
resents a group of solutions having similar testability
while each solution scans different subsets of registers.
Since the proposed variable selection approach is an
estimation technique, it does not predict the exact
fault coverage of the circuits. However, the increas-
ing trend displayed by the fault coverage curve demon-
strates good correlation between the testability grades
and the actual fault coverages.

Notice the plateau region formed by both the testa-
bility grade and the fault coverage curve at the right-
hand side of the figure. This occurs when the selection
algorithm cannot develop better solutions with higher
testability grades. One reason is that no further testa-
bility improvements can be achieved even if more vari-
ables are selected for scan. The second reason is that
further testability improvement is very costly. While
the partial-scan implementation for several solutions
can achieve very high fault coverage, the least costly
solution is preferred. For the Barcode design, Solu-
tion 1 requires only 58% of flip-flops to be scanned to
achieve maximum testability.

4 Experimental Results

Experiments were conducted to demonstrate the ef-
fectiveness of the proposed partial-scan selection tech-
nique. The gate-level netlists were obtained using De-
sign Compiler [10]. Each synthesized circuit contains
the entire system, including the control logic and the
datapath. Automatic test generation was conducted
using the tool from Sunrise Test Systems [11].

To compare the performance of different partial-
scan selection techniques, three partial-scan circuits

were implemented for each design. The first version
scans the flip-flops suggested by OPUS [9] to break
all cycles in the circuit structure. The second version
scans the flip-flops selected by Autoloop [11] targeting
95% fault efficiency. The third version scans the regis-
ters suggested by the proposed variable selection tech-
nique. The time spent for the variable selection pro-
cess ranges from a few seconds for the smallest design
to more than 15 hours for the largest design. OPUS
and Autoloop are gate-level tools while ours is a high-
level tool. The full-scan fault coverage is also listed for
reference. The results are shown in in Table 2.

For DHRC, the variable selection technique selected
26% of the flip-flops and achieved 98.2% fault cover-
age. Although OPUS selected only two flip-flops to
achieve 97.5% fault coverage, it is much more difficult
and costly to gain additional testability improvement.

Our approach is able to obtain very high fault cov-
erage for GCD while the number of flip-flops selected
is much less compared to the results of Autoloop. Al-
though our approach selects more flip-flops compared
to OPUS, the difference between the results is two
bits in a variable; OPUS selects six bits out of eight
bits while our approach selects the eight flip-flops cor-
responding to the variable. Similarly, our technique
scans every flip-flops corresponding to the selected vari-
ables in Barcode and achieves higher fault coverage
compared to the circuits generated by the other partial-
scan techniques.

Scanning only 40% of flip-flops in LRU can improve
the fault coverage to 93.4%, higher than the 85.4%
resulting from cutting all cycles in the circuit. The
fault coverage of circuit implementations suggested by
our technique is comparable to the fault coverages pro-
duced by Autoloop, while fewer flip-flops are selected
for partial scan.

In Kalman, the variable selection technique is able
to achieve 97.3% fault coverage by scanning just 11%
of flip-flops, only a fraction of the cost compared to the
94% scan implementation recommended by Autoloop.
Our approach produces a much more testable partial-
scan implementation compared to the design generated
using OPUS.

In Prawn, higher fault coverage can be achieved us-
ing fewer scan flip-flops compared to the circuits pro-
duced by Autoloop. However, our approach selects
more flip-flops in AM2910 to achieve similar testability
compared to the other two approaches, the difference
being that our approach selects every flip-flops in a
variable, while others select only a portion of the reg-
isters.

The results for GL85 and i8251 are very similar to
each other. Our approach selects more flip-flops com-
pared to OPUS, but less compared to Autoloop, while
the fault coverage achieved by variable selection is also
between OPUS and Autoloop.

In general, the circuits produced by the variable



Table 2: Results for various partial-scan implementations.

Original OPUS Autoloop Var Select Full
Circuit Prim. Var. DFFs FC Scan FC Scan FC V.S. Scan FC FC

(%) (%) (%) (%) (%) (%) (%) (%) (%)

DHRC 4503 10 123 83.4 2 97.5 90 99.1 50 26 98.2 99.9
GCD 943 3 51 92.5 65 97.2 100 99.7 67 69 99.5 99.7
Barcode 835 8 46 66.1 39 83.8 53 97.5 50 61 99.6 99.8
LRU 1271 7 93 23.7 55 85.4 62 96.9 71 40 93.4 99.9
Kalman 7326 13 540 4.5 5 43.7 94 98.9 31 11 97.3 99.3
Prawn 2214 17 84 77.3 18 95.2 41 98.0 53 38 98.5 99.7
AM2910 1543 9 115 47.5 22 95.7 13 95.6 33 24 95.8 100
GL85 6045 78 280 13.7 30 72.2 82 98.2 35 51 89.5 98.4
i8251 6926 57 289 7.48 20 47.3 100 96.8 77 63 91.0 96.8

Prim.: number of logic primitives Var.: number of registered variables
Scan %: percentage of DFFs scanned FC: fault coverage

V.S. %: percentage of registered variables selected for partial scan

selection technique are able to achieve higher fault
coverage compared to circuits produced by OPUS,
and slightly lower fault coverage compared to circuits
generated by Autoloop. The proposed partial-scan
technique produces circuits with smaller logic over-
head compared to circuits generated by Autoloop, and
slightly higher logic overhead compared to circuits pro-
duced by OPUS.

5 Conclusions

A variable selection for partial-scan approach is de-
scribed in this paper. Variables defined at the high
level are selected for scan based on their ability to im-
prove the testability of the system. The selection pro-
cedure is an iterative process in which variables are
selected incrementally until no further testability im-
provements can be achieved.

The result of the selection process is an estimation
of the amount of scan registers required to achieve
high fault coverage. The designer may allocate circuit
area for scan circuitry using the estimated scan cost
early in the design flow. The testability-and-cost graph
also allows designers to control the trade-offs between
testability and scan cost. Furthermore, by identifying
partial-scan solutions at the high level, the synthesis
tool can perform logic optimization which can reduce
the scan cost in the gate-level implementation.
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