
Control Generation for Embedded Systems
Based on Composition of Modal Processes �

Pai Chou, Ken Hines, Kurt Partridge, and Gaetano Borriello

Department of Computer Science and Engineering, Box 352350
University of Washington, Seattle, WA 98195-2350 USA

fchou,hineskj,kepart,gaetano g@cs.washington.edu

Abstract

In traditional distributed embedded system designs, control
information is often replicated across several processes and
kept coherent by application-specific mechanisms. Conse-
quently, processes cannot be reused in a new system with-
out tailoring the code to deal with the new system’s control
information. Themodal processframework [5] provides a
high-level way to specify the coherence of replicated con-
trol information independently of the behavior of the pro-
cesses. Thus multiple processes can be composed without
internal tailoring and without suffering from errors common
in lower-level specification styles. This paper first describes
a kernel-language representation for the high-level composi-
tion operators; it also presents a synthesis algorithm for the
mode manager, the runtime code that maintains control in-
formation coherence within and between distributed proces-
sors.

1 Introduction

To handle the ever-increasing complexity of distributed em-
bedded systems, modern design methodologies must support
systemcomposition. For this reason, most distributed em-
bedded systems are modeled as communicatingprocesses.
Process composition has been particularly successful in data-
dominated applications, because a set of dataflow processes
can be composed as long as they agree on the protocol and
data format of their communication.

However, existing process models, based on the idea
of functional decomposition, do not compose control very
well. Control information shared among multiple processes
must be encoded as data and communicated using messages.

�This work was supported by PYI MIP-8858782, DARPA DAAH04-94-
G-0272, and a Mentor fellowship.

Transmissions, receipts, and tests of control information
must then be sprinkled throughout the data-processing code.
This approach is error-prone. For example, an update may be
accidentally omitted, and deadlock or other synchronization
problems may occur. Furthermore, although processes with
control information are composable, they are not very mod-
ular. Any change involving shared control information re-
quires changing multiple processes [3]. Control-dominated
languages such as Esterel [1] and StateCharts [6] attempt to
address these problems by also supporting thetemporal de-
compositionstyle of specification. Unfortunately, this results
in monolithic, centralized control with no modularity.

Thus, code is rarely reused as is. Since a process must
make fixed assumptions about what control interface it
wishes to have, it must anticipate the control interactions of
any other process with which it is composed. If its inter-
face does not match what is expected by other processes, it
cannot be composed with them. Instead, it or some of the
other processes must be modified, or an application-specific
translation process must be inserted between them. Modifi-
cation is sometimes impossible for intellectual property rea-
sons, and translation processes tend to be inefficient. More-
over, both techniques require an intimate understanding of
what, when, and how control is shared, thus potentially in-
troducing new coherence maintenance errors every time sup-
posedly “reusable” processes are composed.

We introduce themodal processframework [5] with an
emphasis on enablingcontrol composition. Each modal pro-
cess consists of a set of run-to-completionhandlersand
modes. A mode is an enable bit for a set of handlers and
is also a basis for spanning the control state space of the
system. Rather than keeping modes coherent by commu-
nicating their values at the application level, the designer
composes the control aspect of the system by applying in-
stances ofabstract control types(ACTs) to modes of dif-
ferent modal processes. A set of runtimemode managers
ensures that control is kept coherent on all processes in the
system, communicating between themselves as needed. Be-
cause the ACTs handle system-level control through mode
managers, the modal processes are free to focus on specific
modular, reusable behaviors. Modal processes also enhance



retargetabilityby synthesizing the runtime system for a spe-
cific distributed target architecture, potentially with different
processes-to-processor allocations, without requiring the de-
signer to write low-level synchronization primitives.

This paper describes the semantics of modal processes
and the synthesis of mode managers. For synthesis, the
coherence requirements are expanded into basic constraint
primitives and checked for consistency. Depending on the
constraint topology, various optimizations are possible for
greater run-time efficiency in terms of both space and time.

2 Programming model

This section describes the two fundamental aspects of our
programming model: modal processes and abstract control
types. We illuminate this discussion with aspects of a mobile
robot example, with control composed from processes for
controlling its wheels, its sonar, and its bumper sensor.

2.1 modal processes

A modal process contains a set of code segments called
handlers, which can be triggered byevents. Examples of
events are notifications of elapsed times and message ar-
rivals. Similar to ROOM [7], the handlers execute with run-
to-completion semantics, such that once a handler begins ex-
ecution, no other handler in that process may execute until it
completes. In addition, a modal process also has a number of
modesthat govern the behavior of the process. The state of a
mode is called itsstatus, which can be eitheractiveor inac-
tive. When a mode is active, it can enable the invocation of a
set of handlers to respond to events. A vector that represents
the active/inactive status of all modes is known as aconfig-
uration. Associated with each configuration is ascheduling
policy that manages the processing of events.

When a handler finishes execution, it may return a request
for a configuration change. Changes to the configuration on
one modal process may affect the configuration of another
modal process. Hence configuration changes are negotiated
using a mechanism called avote. In a single-processor ar-
chitecture, the vote may be processed immediately, but in
a distributed architecture, multiple votes may be requested
simultaneously, and they must be resolved before being al-
lowed to proceed.

A vote contains a set of pairs, each of which names a mode
in the handler’s modal process, and the desired new value for
the mode. Formally, each component of a votev 2 V is de-
fined to be a member ofM� f‘+’, ‘�’g, where+means to
activatethe mode (change its status to active), and� means
to deactivatethe mode (change its status to inactive), and
M is the set of modes. Any modes in the modal process
unmentioned by the vote are treated as “don’t cares.” How-
ever, these modes as well as modes of other modal processes
may still be indirectly affected by this vote through com-
posed control.

ACT input cond. output cond.
unify(m[1 : N ]) �m[i] �m[8j]

mutex(m[1 : N ]) m[i] ^+m[j] �m[i]

mutexLock(m[1 : N ]) m[i] ^+m[j] deny+m[j]
parent(p;m[1 : N ]) :p ^+m[i] +p

�p �m[1 : N ]
(with default) +p +m[1]

guardian(p;m[1 : N ]) :p ^+m[i] deny+m[i]
�p �m[1 : N ]

(with default) +p +m[1]
preempt(p;m[1 : N ]) p ^+m[i] deny+m[i]

sequencing(m[1 : N ]) �m[i] +m[(i%N) + 1]
seqLoop(s;m[1 : N ]) +s +m[1]

s ^�m[i] +m[(i%N) + 1]

Table 1: Examples of ACTs

2.2 abstract control types

Control composition isaccomplished by means of instan-
tiating abstract control types (ACTs), each of which de-
fines a pattern for constraining how control should flow be-
tween a set of modes. This view is similar to the Living-
stone [8] approach to reactive self-configuring systems used
in the NASA Deep-Space One Probe (DS1) project. How-
ever, instead of solving the general satisfiability problem
with a fast heuristic for the purpose of reconfiguring the sys-
tem in response to failed valves, modal processes solve a
more restricted problem for the purpose of propagating mode
changes imperatively. ACTs can also be prioritized, allowing
behavioral composition similar to the subsumption architec-
ture [2]. While handlers are allowed to change only those
modes that are local to their process, ACTs allow the local
effects to be propagated to other processes globally, as well
as customizing the behavior of individual processes.

Some commonly used ACTs are shown in Table 1. The
most common way control is composed is to use theunify
ACT, which correlates modes in different processes and
keeps their status the same. In addition, ACTs can relate a set
of modes as a flat FSM with themutex ACT, or as super-
states/substates with theparent ACT; thesequencing
ACT can be used to express structured control flow. More-
over,mutexLock andguardian ACTs refine the seman-
tics ofmutex andparent with their ability todenyactiva-
tion requests when locked or when the designated superstate
is inactive. The key point is that the framework enables con-
trol composition using ACTs as high-level operators that are
user definable in terms of simpler ACTs.

example: mobile robot

Consider the example of a bumper process in a mobile robot.
The robot normally moves forward until the bumper is hit.
Whenever the bumper is hit, the robot should go in reverse
until two seconds after the bumper has been released, then
it turns 45 degrees before going forward again. Fig. 1(a)



shows a StateChart that captures this behavior. The states
areF (forward),B (bumped),W (waiting for 2 second since
release), andT (turn).

B
F W

T 2sec45deg bump

release

(a)

preempt

timerbumperSensor

{
}

G
{
}

s b

FL B W T

seqLoop

(b)

Figure 1: (a) The bumper process described in StateCharts;
(b) composition of the bumper process from two reusable
components.

The same behavior can be obtained by composition from
two reusable components: a bumper sensor and a timer pro-
cess (Fig. 2) and Table 2. Note that thepreempt ACT is
assigned a higher priority than theseqLoop .

mode handler
bumper sensor

s on (bumping) vote(+b);
on (releasing) vote(�b);

b (no handler)

timer process
on (modeEntry)t := 2 sec; enableTimer();

G on (tick) if (� � t � 0) vote(�G);
on (modeExit) disableTimer();

Figure 2: Reusable modal processes to be composed for the
bumper process.

Fig. 3 shows how the composition works. On powerup
(Fig. 3(a)), the system initializes to the desired configuration.
In this case, modes should be activated to sense the bumper
(bubble (0)). BecauseL is bound tos and serves as the scope
mode inseqLoop , +L implies+F, the first body mode of
seqLoop (bubble (1)), resulting in the configuration shown
in Fig. 3(b). When the bumper is hit, modeb is activated by
the bumper-sensing handler (bubble (2)). Sinceb is bound
to B and serves as the preempting condition forpreempt ,
it forces the deactivation of[F, W, T] (bubble 3). When the
bumper is released, the bumper-sensing handler deactivates
b (bubble 4), which also deactivatesB, andseqLoop ac-
tivates the next mode in sequence, namelyW (bubble 5).
SinceW is unified with the timer’sG, it effectively starts the
count-down timer. When the timer finishes counting down, it
deactivatesG (bubble 6) and therefore votes for�W, caus-
ing seqLoop to activateT for turning (bubble 7). When

composed hidden component mode
mode mode process binding

F (none) (none)
B bumperSensor b

L s
W timerProcess G
T (none) (none)

ACTs for control composition
preempt (B, [F, W, T])
seqLoop (L, [F, B, W, T])

Table 2: Control composition of the bumper process from
two reusable components.

(a) power up

{
}

Gbs
{
}

preempt

F B W T

seqLoop

L

(1):
{+F}

(0):
{+s}

(b) forward

{
}

Gbs
{
}

preempt

B W T

seqLoop

L F

(c) bumping

{
}

Gbs
{
}

preempt

W T

seqLoop

L F

(2):
{+b}

(3):
{-F,-W,-T}

B

(d) bump release

bs G
{
}

{
}

preempt

B T

seqLoop

L F

(4):
{-b}

W

(5):
{+W}

(e) done waiting 2s

{
}

bs G
{
}

preempt

B W

seqLoop

L F

(6):
{-G}

T

(7):
{+T}

(f) done turning

{
}

Gbs
{
}

preempt

B W T

seqLoop

L F

(8):
{-T}

(9):
{+F}

Figure 3: Illustration of operation of the composed bumper
process.

turning is completed, the turning handler (not shown) deac-
tivatesT mode (bubble 8), causingseqLoop to activateF
mode (bubble 9). The resulting configuration in Fig. 3(f) is
identical to Fig. 3(b).

3 A kernel language

In this section we discuss one perspective on the evalua-
tion semantics forstatelessACTs, or ACTs whose behavior
is purely functional. The current tool uses a simplekernel
languagefor representing ACTs, consisting of only a single
simple constraint (�) which operates on a sensitivity list, an
activity, and an environment. The environment contains con-
sistent configurations for modes in the system. Each prim-
itive constraint is associated with a priority, which may or
may not coincide with the evaluation order.

This representation is useful for a couple of reasons: first,



it simplifies the evaluation semantics, and pushes the com-
plexity to the compiler instead of the runtime environment,
and second, it simplifies many of the consistency checks that
we may want to run on a system before committing to a run-
time system.

� : senselist! action! Z ! 2
M !M ! env! env

In the following:

� P represents a modelist of all source modes.

� S represents a senselist representing (parameterized) sensitiv-
ity.

� a represents the target mode of the constraint

� A represents the action to be performed on the target mode.

� E represents the environment in which this constraint is eval-
uated.

� and as indicated above, the final return value is an environ-
ment.

[[(P;S)�(a; A)]](E) = if(E \ S(a) = S; E ] (a;A); E)

A ]B = A [B � fvalues that contradict Bg

Figure 4: Semantics of the primitive constraint.

As shown in Fig 4, the primitive constraint� is a func-
tion that takes the following curried parameters: a sensi-
tivity list (� senselist = f(m; p)km 2 Modes, p 2
f0+0;0�0;0 T 0;0F 0g), an action to be performed on a mode
(2 action = f0+0;0�0g), a priority (2 Z), an input list
(2 2M ), an output (2 M ) and an environment (2 env) and
returns an environment.

So–if all of the conditions of the sensitivity list are
met by the environment when the constraint is evaluated,
then the constraint performs the appropriate action on the
environment–but only if this action has not already been pre-
empted by a constraint with a higher priority. Notice that
this implies that the conditions in a sensitivity list for a single
constraint are related through conjunction. We can achieve a
disjunctive relationship by using multiple constraints.

It is important to note that the evaluation order and the
priority of constraints are specified separately. A significant
effect of this is that constraints can cause changes in the en-
vironment that may not appear directly in the new configu-
ration. For example, a particular mode may be associated
with activation at some point during the evaluation, and this
apparent activation may be propagated through the system –
but later this same mode may be deactivated by a constraint
with higher priority. This allows modes to be used as tempo-
rary place-holders in determining a new configuration.

The curried parameters in the functional definition of the
primitive constraint allow us to specialize this for certain
general applications. For example, one interesting set of
primitive constraints are called theforce constraints. These

e

c a

bd

Figure 5: A bipartite digraph representation of modes with
primitive constraints.

are constraints with single input and output modes, and are
sensitive only to changes. This type of constraint is com-
monly given a two letter designation indicating the input sen-
sitivity and output action (e.g. AA for activation (’+’) sen-
sitivity and an activation action, DA for deactivation (’�’)
sensitivity and an activation action etc.) Force constraints
are actually sufficient for representing many ACTs, so they
will appear often in the following discussion.

3.1 graph formulation

A system of modes and primitive constraints can be repre-
sented as a bipartite graphG(M;C;E), whereM is a set
of vertices representing modes,C is a set of vertices rep-
resenting primitive constraints, andE represents the edges.
An example of a graphic representation is shown in fig-
ure 5, in which modes are represented by round vertices and
constraints are represented by square vertices. Some short-
hand is employed in this example: edges entering constraints
with small circles indicate ’�’ sensitivity, edges exiting con-
straints with small circles indicate a ’�’ action, and edges
without the small circles indicate ’+’ sensitivity or actions.
Note: this graph does not show any information pertaining
to evaluation order or to priority. This information was left
off for clarity. Also note that most constraints shown in this
graph are simple force constraints, with the only exception
being the conjunctive constraint betweena, b andd (as ex-
plained earlier, the evaluation semantics consider the con-
junction of all edges entering a constraint vertex, and the
disjunction of all edges entering a mode vertex)

3.2 ACT expansion

Building a constraint graph from a set of modes and state-
less ACTs is performed by treating each ACT as a constraint
macro, and expanding it into its relevant constraints. Both
priority and evaluation order are derived from the original
ACT description.

As an example, consider the composition of the bumper
and wheels processes in Fig. 6. The bumper process is inter-
nally constrained as a composition of aseqLoop (F, R, W,
T) at priority 1 andpreempt (R, F, W, T) at priority 2. It is
possible to apply ACTs across the processes, such as theor
that designates R and W of the bumper process as the chil-



F R

WT

modes

bumper

N B

HT

wheels

seqLoop(F, R, W, T)
priority = 1

or(B, R, W)
priority = 3

merged
constraints B

F R

WT

F R

WT

F R

WT
B

R

W

Figure 6: example of ACT expansion on the bumper and
wheels processes

dren of mode B of the wheels process. These constraints are
merged as shown at the top of Fig 6.

checking consistency

In many applications, the reduction of ACTs to simple con-
straints makes it possible to perform a variety of consistency
checks. An example of one such check is the finding of con-
straint conflicts, which may result in race conditions. Con-
straint conflicts occur when the change of one mode prop-
agates through the constraint graph over two separate paths
which result in conflicting votes for a single mode. Although
this may be desired behavior in some circumstances, such as
when the conflict is used to maintain some temporary state,
if both paths have the same priority and execution order is
arbitrary, this situation may cause an indeterminate system.

To perform a conservative constraint conflict check, it is
only necessary to take a transitive closure of the constraints,
and compare constraints with a match between left hand side
and right hand side arguments.

optimization

There are several optimizations available for a constraint
graph, and although many of these depend on the target ar-
chitecture of the system and will be addressed in later sec-
tions, there are some optimizations that may be performed
directly when transforming ACTs to constraint graphs. For
example, an optimization that may be performed with uni-
fication ACTs is to collapse the unified modes into a single
supermode.

4 Centralized mode manager

Following the transformation of ACTs and constraints into
their runtime form, the mode manager code that implements
the constraints must be produced. The implementation de-
pends significantly on whether the target architecture is a

uniprocessor or a distributed architecture. The discussion of
distributed architecture implementations is postponed to the
next section.

The centralized mode manager has a notion of a discrete
step, which defines a sequential boundary for a set of votes
to be accumulated and resolved as a single externally visible
change of configuration. We support two possible step se-
mantics: event-triggered and time-triggered. Both share the
same engine that computes the next configuration.

4.1 computing a new configuration

Algorithm 4.1 Centralized mode manager configuration se-
lection.
foreach voteV = f(mi; si; pi) 2M � f+;�g � Zg

foreach ((mi; si; pi) 2 V )
mi.set(si, pi)

foreach constraintC = (f(mj ; sj) 2M � f+;�;0 T 0;0F 0gg;
(mi; si; pi))

ifall mj .polarity ==sj and pi > mi.priority
mi.set(si, pi)

Algorithm 4.1 shows how the next configuration is com-
puted. At the end of a step, the mode manager is given
an ordered set of requests, or votes, to change either part
or all of the configuration. Each vote is a set of tuples
V = f(mi; si; pi) 2 M � fA;Dg � Zg, wheremi is the
specific mode to change, andsi indicates whether it should
be activated or deactivated. Each mode with a pending vote
is set to the vote’s value, and flagged with the priority of the
vote. If there are multiple votes for a single mode, then the
mode is set to the value of the highest priority vote. (Since
potential votes must be totally ordered, there is always a
uniquely chosen vote.)

In the next step, the mode manager evaluates each primi-
tive constraint according to the evaluation order specified by
the designer (or the source ACTs) depending on whether or
not the constraint has higher priority than the vote already
placed on the target mode. Higher priority constraints are
always evaluated, even if their result would not conflict with
the state of the target since these may change the priority of
the state.

Example

To illustrate the operation of the mode manager algorithm,
we consider an example based on the bumper process of the
robot (Fig. 7). Note that the mode manager maintains the
configurations without using any knowledge about what pro-
cesses the modes belong to. Therefore, the mechanism for
managing modes within a process is exactly the same as that
for a set of processes.



F

WT

G

R F

WT

G

R

Figure 7: Example for computing the next configuration.

Assume the current configuration isf F, W, G g, and a
handler votes for activation of R. The algorithm first marks
R active, then iterates over all constraints in the system that
are sensitive to this change. These constraints are AD(R,
F), AA(R, T), and the conjunctive constraint sensitive to+R
and 0

F
0G. DA(R, W) is not applicable because the vote is

for activation, not deactivation. The result: F is deactivated
and T is activated, however, since G is active, the conjunctive
constraint is not satisfied and therefore W does not change.
The resulting configuration is thereforef R, T, W, Gg.

4.2 voting steps

The execution of a modal process system with centralized
control can be viewed as a sequence of discrete steps. All
events generated during a step are consumed during a later,
though not necessarily the next, step. Furthermore, no han-
dler execution crosses a step boundary. Several handlers may
be invoked in a given step. If they requests mode changes,
the requests are queued until the end of the step when they
are processed collectively for the next step. We provide
the mechanism for defining a variety of steps, ranging from
event-driven steps to dataflow and time-triggered steps.

The simplest step is defined by an event occurrence. That
is, the designer may assume no simultaneous events and that
a mode change request is serviced right after dispatching an
event to a set of handlers. Discrete event models are more
general in that events are not only completely ordered but can
also be simultaneous, such that vote processing is performed
after all (logically) simultaneous events have triggered their
handlers.

Another way of defining steps is to mark certain event
types as step-delimiting events. For synchronous dataflow
(SDF) models, a reasonable step would be to process votes
after an entire iteration of the dataflow graph has been in-
voked. This allows the dataflow graph to be invoked accord-
ing to a static schedule without using the more expensive
event dispatch mechanism. Although dataflow models are
untimed, dispatching according to a static schedule can be
extended for real-time systems by replacing dataflow events
with timer events. In general, statically scheduled, time-
triggered systems offer the best determinism and can make
the strongest guarantee in meeting hard real-time constraints.

5 Distributed mode manager

When mapping a design to a distributed architecture, con-
trol may be implemented in a centralized or a distributed
style. If the designer desires a centralized control process,
the centralized mode manager described in the previous sec-
tion can be used, with slight extension to communicate votes
explicitly in a message. However, such an organization is not
very efficient and defeats the very advantages offered by dis-
tributed architectures, because the centralized mode manager
must handle and generate communication to all processes
even if most are not affected by a localized mode change.

To exploit the architectural distribution, we supportdis-
tributed mode managers, which maintain consistent mode
configurations between processes residing on different
processors—without centralized control. With distributed
mode managers, each processor in the system is given its
own mode manager and each of these coordinate activation
and deactivations between themselves. In this case, however,
there is no single notion of step. In fact, the rate of step pro-
gression may be different for each specific mode manager.
To avoid over-specification, the modal process model does
not impose specificsynchronysemantics on the interactions
between mode managers; instead, several synchrony options
can be supported, as described in [4]. This section focuses on
one on synchrony option calledmode synchronousseman-
tics, where a mode change blocks progress of only those pro-
cesses whose modes are affected until their mode managers
agree to it.

The synthesis steps for a distributed mode manager can
be divided into graph partitioning, control communication
synthesis, and local mode-manager synthesis. Local mode-
managers are centralized mode managers whose inputs are
their respective partitioned graphs. This section reviews the
graph partitioning algorithm that has been described previ-
ously and addresses the extensions to the mode managers
needed for distributed control coordination.

5.1 mode manager partitioning

In distributed implementations of a modal process system,
it isn’t necessary for all parts of the system to maintain the
complete constraint graph. In fact, each subsystem needs
only a projection of the constraint graph containing the por-
tions relevant to the processes in that subsystem. Specifi-
cally, these are the modes that occur within these processes
(the local modes), and the modes that appear as the source
end of a primitive constraint that terminates at a local mode
(see Figure 8b) andc)). For more information, see [5].

5.2 control communication

Upon completion of the partitioning step, the mode manager
residing on each subsystem is aware of whichvotedactiva-
tions and deactivations of modes need to be transmitted to the
rest of the system. Using mode synchronous semantics, the



requesting subsystem is not able to perform the changes until
each of the relevant subsystems acknowledges this request.
Assuming reliable communication between all mode man-
agers, there is a three phase handshake (request, acknowl-
edge, commit) such that the requester transmits the desired
activations and deactivations as a special vote to all relevant
mode managers and it waits for the remote subsystems to
acknowledge the requests.

The receiving subsystem mode managers include this vote
in calculating the next configuration (based on this subsys-
tem’s own version of steps). In considering this sort of vote
local mode managers must determine whether there were any
internally generated conflicting votes—and if there were and
they had higher priority than the remote vote, it must send a
request of its own to the original requester before acknowl-
edging the original request.

If it finds no such conflict, it simply acknowledges the re-
quest and places itself into a provisional state until it receives
the correspondingcommitmessage. From the perspective of
the requester, the actual transition to a new configuration is
blocked until all requests have been acknowledged. When
the requester receives acknowledgments from all subsystems
over all parts of the vote, it performs the action locally (pro-
vided there were no conflicts received before getting all ac-
knowledgments) and sendscommitmessages to all relevant
subsystems. If it received a conflict in the mean time, and
it decided that the conflict had higher priority, then it sends
abortmessages to each of the participants.

A B

C

a b d

e

c

A B

C

a b d

e

c
c

b

a

A B

C

a b d

e

c
c

a

e

c a

bd

a ba

Figure 8: Shown are the steps involved in partitioning the
constraint graph for individual mode managers (based on
a preexisting process partition), and in synthesizing control
communication.

To insure consistent choices in the event of several con-
current requests, there should be system wide total ordering
of priorities that allow all subsystems to independently but

A B

C

A

B

C

acks {(a, A)} 

commit {(a, A)} 

{(a, A)}

}

{(a, A)} 

a b d

e

c

{(a, A)} 

e

c a

bd

Figure 9: a) shows a system constraint graph, b) shows the
mapping of nodes from this to processes in a distributed im-
plementation and c) shows the control communication re-
quired to insure mode synchrony.

A

B

C
ack

abort
{(a,A)}

ack
commit

A B

C

{(a,A)}

c,A

{(a,A)}

a b d

e

c

{(c,A)}
e

c a

bd

Figure 10: This shows the control communication between
the processes in Figure 9 in the presence of an inter-process
vote conflict.

consistently choose from among conflicting requests.
Identification of the required control communication is

straightforward given the partitioning step. Any constraint
such that the source mode is on one subsystem, and the ter-
minal mode is on another implies a communication.

All subsystem mode managers are essentially centralized
mode managers, and can be synthesized as demonstrated in
the previous section, with some minor modifications.

5.3 Examples

In Figure 8 we show a system constraint graph, and the steps
required to build consistent distributed mode managers for
this. First the mode graph is partitioned across the subsys-
tems and then the control communication is synthesized.

Next we subject this system to various conditions that
might occur in choosing a new consistent configuration
(shown in Figures 9 and 10). In Figure 9 the system hosts



a single request for mode activation, and this is easily re-
solved. In Figure 10 case, there are two concurrent requests
for activation, where one request has a higher priority than
the the other. In this case, each of the requesting managers
must evaluate the relative priority of the requests, and inde-
pendently (but consistently) choose the winner. The subsys-
tem that requested the losing activation (subsystem A in this
case) is then responsible for sending abort messages to all
subsystems that received the original request.

6 Results

In this section we present some results from a slightly dif-
ferent implementation of the wall-following robot from the
one described in this paper. We look at two implementa-
tions - one with a centralized mode manager and one with
a distributed mode manager. For the distributed mode man-
ager we look at the communication bandwidth consumed by
control communication, and for both we look at the percent-
age of computation required for maintaining mode consistent
modes.

The complete example required forty-five primitive con-
straints and on average, sixty-three percent of these were ig-
nored during the evaluation step because their priority was
less than that of their target mode. For a centralized imple-
mentation, on average thirty percent of each scheduling cy-
cle was spent in the mode manager, with occasional peaks
of up to fifty percent. It is important to note that this time
is not entirely overhead, since the mode manager replaces
some activity that would normally be included in the sched-
uled code.

For a distributed implementation with mode synchronous
communication, the average cycle time required by the mode
managers rose to approximately fifty percent, with occa-
sional spikes of up to ninety percent.

7 Conclusions

This paper describes a control generation technique for em-
bedded systems specified as a composition of modal pro-
cesses. Modal processes improve upon traditional program-
ming models in their ability to support control composi-
tion using high-level, user-definable operators called abstract
control types. The advantages include better re-use of intel-
lectual property and also greatly enhanced retargetability of
behavioral specification to heterogeneous distributed archi-
tectures. To support this design methodology, implementa-
tion techniques are developed for the automatic synthesis of
the composed control, called the mode manager, for both sin-
gle processor and distributed architectures, including all low-
level synchronization details. While many implementations
of the modal processes abstraction are possible, this paper
presented an approach based on a small set of well-defined
primitives, or a kernel-language, that can be composed to
build up the high-level, user-definable abstractions.

Future work must progress in several directions. The ap-
proach here is applicable tostatelessACTs, which cover a
large class of practical ACTs and enable the generation of
highly efficient runtime control, but a more powerful ker-
nel language is needed to represent those ACTs with internal
states, such as a mutex that queues requests for serial activa-
tion. The mode manager implements composed control by
interpretationof mode constraints. While this is adequate for
most distributed systems where communication cost domi-
nates the overhead, better code generation may be needed to
enable low-cost embedded systems to take full advantage of
this methodology. An improved user interface will greatly
enhance the usability of this methodology. Graphic primi-
tives corresponding to common ACTs can be used to provide
an environment where components can be composed and the
hierarchy and priority of ACTs can be more intuitively de-
scribed. Finally, this approach presents new opportunities
for formal verification, which may be able to take advantage
of the high-level knowledge explicitly specified within the
ACTs instead of rederiving it from embedded code. With
careful design of the kernel language, it may be possible to
extend the idea of composition from control to formal verifi-
cation.

References
[1] G. Berry and G. Gonthier. The ESTEREL synchronous pro-

gramming language: design, semantics, implementation.Sci-
ence of Computer Programming, 19(2):87–152, November
1992.

[2] R. A. Brooks and J. H. Connell. Asynchronous distributed con-
trol system for a mobile robot. InProceedings of the SPIE
- The International Society for Optical Engineering, volume
727, pages 77–84, 1987.

[3] P. Chou. Control Composition and Synthesis of Distributed
Real-Time Embedded Systems. PhD thesis, University of Wash-
ington, 1998.

[4] P. Chou and G. Borriello. An analysis-based approach
to composition of distributed embedded systems. In
Proc. International Workshop on Hardware/Software Codesign
(CODES/CACHE), 1998.

[5] P. Chou and G. Borriello. Modal processes: Towards enhanced
retargetability through control composition of distributed em-
bedded systems. InProc. Design Automation Conference,
pages 88–93, June 1998.

[6] D. Harel. StateCharts: a visual formalism for complex systems.
Science of Programming, 8(3):231–274, June 1987.

[7] B. Selic, G. Gullekson, and P. T. Ward.Real-Time Object-
Oriented Modeling. Wiley, 1994.

[8] B. C. Williams and P. P. Nayak. A model-based approach to
reactive self-configuring systems. InProceedings of AAAI-96,
1996.


	CDROM Home Page
	ICCAD98
	Front Matter
	Table of Contents
	Session Index
	Author Index


