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Abstract

Signal probability calculation in circuits where sig-
nals are not independent is generally erpensive. We
show that some correlated signals may be mutually dis-
joint. In such cases, the probability calculation can be
as simple as it is for independent signals. For eram-
ple, two signals that cannot be stmultaneously true are
defined as OR-disjoini. If these signals feed an OR
gate, the probability of the output being true is simply
the sum of the probabilities of wnputs betng true. We
give an implication-based algorithm for wdentifying dis-
Jjoint signals. Ezamples of large adders illustrate how
the identification of disjoint stgnals simplifies the prob-
ability calculation.

1 Introduction

When random input patterns are applied to a com-

binational circuit, with each signal, we can associate a
Probability of assuming the “one” value. Signal proba-
bilities of digital circuits have several applications like
estimation of testability [1] and power dissipation [2].
Their exact calculation is complex and various approxi-
mations are used. Approximations normally amount to
assuming signals as statistically independent when, in
f‘-’_‘“; they are not so. The idea of the present work is to
BIve an alternative way to calculate signal probabilities
from mutually disjoint signals. A set of digital signals
18 mutually disjoint if at most one signal can be true at
2ny given time. Such signals are always statistically de-
Pendent. Yet, in many practical situations disjointness
of signals can be readily established and our formula
"&h compute exact signal probabilities.
) Let us first summarize the known case of independent
ignals. We will denote a Boolean variable by an upper
‘ase letter and its probability of assuming a value 1 by
he corresponding lower case letter. Consider an AND
jate C' = AB. If A and B are independent, then

CAND = ab (1)
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Figure 1: A multiplexer circuit

This formula is exact and is used to compute signal
probabilities for other gates as well. For example, con-
sider an OR gate C = A + B. From de Morgan’s law,
C = A B. Also, inversion does not alter the indepen-
dence property. That is, if two signals are mutually
independent, then their inversions will also be indepen-
dent. For independent A and B, we use the AND for-
mula of Equation 1 to obtain,

I—COR ::(1—a)(1~b)
and, therefore,
cor=a+b—ab (2)

The AND formulas of Equations 1 and 2 can be
used without difficulty whenever signals are indepen-
dent. However, reconvergent fanouts make signals de-
pendent on each other. For example, consider the mul-
tiplexer circuit in Figure 1. Both A and B depend on
Y. If we applied Equation 2 to compute ¢, ignoring
signal dependence, we get:

c=a+b-ab

zy+ (1 —y)z—zy(l — y)z
= zy+z—yz—zyz+zy’z (3)

Parker and McCluskey [3] have pointed out that this
approach would still work with a proper interpretation
of the powers of a probability variable. For example, in
Equation 3, y? represents probability of two instances
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Figure 2: Karnaugh map showing disjoint 4 and B

of the signal y being true, which is the same as the
probability that y is true. Thus, we obtain

(4)

This is the correct probability for the output. The pre-
ceding calculation shows that whenever signals are cor-
related, one must obtain an algebraic polynomial for
the probability in terms of the probabilities of inde-
pendent primary inputs. For large circuits, such ex-
pressions can become unmanageable. Sometimes, the
circuit can be partitioned in such a way that the inputs
to a partition are independent signals [1]. These parti-
tions, known as supergates, can also become too large
in extreme cases. Another method is to use binary de-
cision diagrams (BDDs) [2, 4]. This requires construc-
tion of a BDD for every signal, but the technique can
be applied where the size of BDDs is manageable.

c=zy+z—yz

2 New Result

We will derive an alternative exact formula for prob-
ability calculation. Consider the circuit of Figure 1
again. Since inputs, X, Y and Z, are independent vari-
ables, exact probabilities for 4 and B are obtained from
the AND formula. These are shown in Figure 1. Notice
in the Karnaugh map of the circuit (Figure 2) that A
and B are mutually disjoint signals. Since the OR gate
provides the union of logic events, the probability of C
isc=a+b=zy+z—yz.

Thus, our new result is for an OR gate C = A + B:
If A and B are disjoint (in fact, disjoint events are
mutually dependent) signals, then

(3)

1s the exact probability of the output. Comparing the
formula with Equation 2, we note that, in general, the
signal probability at the output of an OR gate is larger
for disjoint than for independent input signals. From
duality, it can be shown that the opposite is true for
an AND gate. Also, inversions that preserve indepen-
dence, in fact, alter the disjointness property. The OR
formula can be applied to an AND gate, via the De

cor=a+b
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Figure 3: A carry circuit designed using a multiplexer

Morgan’s law, only when A and B are disjoint. Then,
for an AND gate C = AB = A+ B, we can compute

(6)

We refer to Equations 5 and 6 as disjoint formulas.
An important observation about the previous example
(Figure 1) is that Equation 5 holds for C even when
X and Z are not independent. We do require that Y
should be independent of X and Y. This is because the
inputs to the OR gate remain disjoint due to Y and Y.
Thus we can extend the disjoint formula to mux-based
implementations! of commonly used functions. As an
illustration, consider the implementation of the carry
function shown in Figure 3. The Boolean functions of
the two data inputs to the multiplexer are, respectively,
A+ B and AB, which are neither independent nor dis-
joint. However, the two input signals for the final OR
gate are still disjoint (as is evident from the Karnaugh
map) and hence the disjoint formula is applicable.

canp=1—-(l—a+1-b)=a+b-1

3 Determination of Disjointness

When input signals of a gate are disjoint, the out-
put signal probability is numerically calculated directly
from input probabilities. A similar property holds when
inputs are independent. Thus, if in a circuit all gates
can be classified as having inputs that are either disjoint
or independent, then signal probabilities can be com-
puted very easily. Independence of signals requires that
they should not depend on common primary inputs. An
efficient labeling algorithm can be devised for the cir-
cuit graph to establish independence of signals [1, 5].
We will now develop an algorithm for disjointness.

Definition 1: In a set of OR-disjoint signals at most
one signal can be {rue at any time.

!Mux-based implementations are efficient in CMOS and are
commonly employed in the design of FPGA cells.



Set a logic value v = 1 if G is OR or NOR, else v = 0
For each input of G
Set input to v and perform implications
If any input of G implied to v
Exit with “G not disjoint”
Else
If any input of G is unknown
Exit with “status of G undetermined”
End if
End if
End for
Normal exit: “G is disjoint”

Figure 4: Algorithm for classifying a gate G as disjoint

Clearly, the output probability of an OR or NOR
gate with OR-disjoint inputs is directly obtained as the
sum of input signal probabilities (see Section 2).

Property 1: If two signals are OR~disjoint, then
a 11 pattern on them is impossible (this follows from
Definition 1.)

Definition 2: In a set of AND-disjoint signals only
one signal can be false at any time.

According to the results of Section 2, if an AND or
NAND gate has AND-disjoint inputs, then the output
probability is directly computed from input probabili-
ties.

Property 2: If two signals are AND-disjoint, then
a 00 pattern on them is impossible (this follows from
Definition 2.)

Definition 3: We call an OR or a NOR gate disjoint
if its inputs are OR-disjoint. Similarly, an AND or a
NAND gate will be called disjoint if its inputs are AND-
disjoint.

To determine whether a gate is disjoint, we will use
an implication procedure. In this procedure, a set of
signals is set to some specified values and all back-
ward and forward implications are carried out. It is a
simulation-like procedure that completes in linear time.
[F has previously been used in redundancy identifica-
tion [6]. The algorithm of Figure 4 can in many cases
determine if a gate G is disjoint. Depending upon the
Bate-type, a logic value is placed on one input of G and
Implications are carried out. For example, if G is an
OR gate, we will set one of its inputs to 1. For G to
be disjoint, the implication should set all other inputs
of G to 0. This procedure is repeated for each input of
G. Specifically for two-input gates, a simpler algorithm
can be derived using properties 1 and 2. In that case,
for an OR gate, we will place a 11 pattern on inputs and
carry out implications. If we find a contradiction, i.e.,
k_l Pattern is impossible then G is disjoint. Contradic-
tion analysis can be very efficient and has been used for
test generation and redundancy identification [7]. The
algorithm of Figure 4 relies on finding implications. Di-
rect (or local) implications are easy and can be found
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Figure 5: A NAND implementation of exclusive-OR

Figure 6: A NOR/OR implementation of exclusive-OR

in linear time. However, such procedures will not find
all implications. Global implications require symbolic
analysis and have higher time and memory complex-
ities. Efficient techniques for global implications are
discussed by Kunz and Stoffel [8].

In the example of Figure 5, all shaded NAND gates
are disjoint. The unshaded gate has independent in-
puts. Thus probability calculation is straightforward.
We illustrate the calculation for input probabilities
a = 0.3 and b = 0.7. For gate C, inputs are inde-
pendent and ¢ 1 —ab = 0.79. For gate D, in-
puts are disjoint and d = (1 — a) + (1 — ¢) = 0.91.
Similarly, gates £ and F are disjoint and have out-
put probabilities, e = (1 - 8) + {1 —¢) = 0.51 and
f=(QQ-=d)+ (1 —¢€) = 0.58, respectively. While this
illustration shows the calculation of probabilities of sig-
nals inside an exclusive-OR block, for independent in-
puts A and B, the output probability can be found by
algebraic substitutions as:

(7)

Next, suppose the inputs A and B of an exclusive-OR
block were OR-disjoint. Considering the NOR/OR im-
plementation of Figure 6, we find that all four gates are
OR-disjoint. Thus, for OR-disjoint inputs the output
probability of an exclusive-OR block is simply given by,

(8)

feor = a+b—2ab

fEOoR =a+b

Figure 7 shows the probability calculation for a full
adder circuit with input probabilities a = 0.2, b = 0.3
and ¢ = 0.1. The gates found disjoint by the algorithm
of Figure 4 are shown in gray. The two unshaded gates



Figure 7: Probability calculation for a full-adder circuit
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Figure 8: A ripple-carry adder

have independent inputs. Once the gates are identi-
fied as “independent” or “disjoint”, probability calcu-
lation is done in one pass from left to right. For every
gate, whose input signal probabilities have been calcu-
lated, the output probability is computed directly as
explained in the previous paragraph.

4 Large Circuits

Such a calculation may be possible in arbitrarily
large circuits also. Consider the ripple-carry adder of
Figure 8. Suppose each full-adder block is implemented
by a circuit as shown in Figure 7. Now all but two gates
in each full-adder block will still be classified as disjoint
by the algorithm of Figure 4. The remaining two gates
have independent inputs. Thus, for any given input
probability values of A0, B0,CO, ..., An, Bn, probabil-
ities for outputs S0,...,Sn,Cn + 1, as well as for all
internal signals are calculated in one pass.

The ripple-carry adder is a special case of the cir-
cuits that can be partitioned into blocks (full-adders in
this case) that fully contain all the supergates (parti-
tions with mutually independent inputs) [5] in the cir-
cuit. The ripple-carry adder is also a special case of
a K-bounded circuit [9] that can be partitioned into
blocks enclosing all reconvergences and have a fan-in of
at most K. In either class of circuits, signal probabili-
ties for each block can be computed independently. The
computation for each block, however, could be difficult
if blocks are large or have complex signal dependencies.
The full-adder example shows that the disjoint compu-
tation model may greatly simplify probability compu-
tation in such cases.

Consider the carry look-ahead adder of Figure 9 as
discussed by Becker [10]. The modules gp, GP and S
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Figure 10: Modules used in Figure 9

are shown in Figure 10. We assume that the inputs
to the adder are independent signals. Reconvergences
exist only within the modules. All gp modules have in-
dependent inputs and their output probabilities are cal-
culated by Equations 1 and 7. We notice that the two
outputs of a gp module contain no common minterms.
These are, therefore, OR-disjoint.

Consider a GP module. It has two pairs of inputs.
The signals in one pair are independent of the signals
in the second pair. If we assume that the signals within
each pair are OR-disjoint, then the inputs of the OR
gate (shown shaded) are disjoint. Also, the two outputs
of the GP module are found to be OR-disjoint. Prob-
abilities for both AND gates are calculated by Equa-
tion 1 and that for the OR gate by Equation 6. The
output probability for each S module is calculated by
Equation 7 since its inputs are independent.

The above analysis of the three modules allows us
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> characterize each gate in the circuit of Figure 9 as
ither independent or disjoint. Thus, probabilities for
I signals can be locally calculated.

Next, consider a carry-select adder as shown in Fig-
re 11 [11]. It contains an array of carry-select adders
ith a carry signal flowing from right to left. Figure 11
ives an expanded view of an adder in the array. It
»atains two SUM blocks, each of which can be either
[ the ripple-carry or carry look-ahead type. Probabil-
ies for all signals in these blocks can be computed as
iscussed before. The outputs SUM and COUT pro-
uced by these blocks are not independent. However,
lese are combined in multiplexers, using an indepen-
ent signal C; generated by the previous stage. C; is
idependent of the data signals of multiplexers. Ac-
rding to the analysis of Section 2, all gates in mul-
Plexers can be classified as either independent or dis-
int. Thus, the probabilities for all gates, including
10se producing adder outputs and C5 can be directly
dculated.

Another type of adder, known as the conditional-
im adder, is similar to the carry-select adder in that
wh stage computes SUM and SUM + 1, indepen-
:ntly for a bit position. A multiplexer tree is used to
:nerate the final result. It can be verified that such a
‘mditional-sum adder [10] is also amenable to the sim-
e signal probability calculation using the independent
ud disjoint properties.

Other Applications and Remarks

We should point out that the ease of computation
‘Pends on the circuit structure. Figure 12 shows an-
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Figure 2. 4n alternative circuit for carry function

other implernentation of the carry function. Here prob-
abilities for 7*. E and F are obtained by independence
formulas. Ho-wever. the two inputs of the last OR gate,
D and F =zr= neither independent (since both involve
commcr sigzuls A and B) nor disjoint (since they con-
tain a samm oo minterm ABC; see Figure 3). Thus, an
exact cal~uizmion of signal probability for I will require
a more comiex analysis of the previously published
methods T 0

There zre known methods that determine whether
or not z set =f internal signals is a mutually indepen-

dent se:. Siziilarly. algorithms, such as the one shown
in Figir= 4. ~an be effective in identifying mutually dis-
joint s=ts  tmother method is to verify that the func-

tional subes not pecessarily minimized) of the signals
are disioint A lecal analysis of the circuit can also
establisz dis.ointness. As an example, notice that the
signals a7 th= output of the two AND gates in Figure
1 remair dis oint even if the three primary input sig-
nals wers der-ved from an arbitrary combinational logic
block. Other algorithms may be possible.
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Figure 13: A computation model for circuit of Figure 12

Sometimes, local changes in the circuit can be ap-
plied to facilitate probability calculation. In Figure 13
an inverter is added to the carry circuit of Figure 12.
This makes signals D and F disjoint without chang-
ing the function and the probability of I is obtained
according to Equation 6. The inverter here carries a
primary input (signal C) and has been added to cre-
ate a computation model. Using both independence
formula and the disjoint formula, appropriately where
one is applicable, can simplify probability calculation
for a circuit.

One can also use disjoint cube extraction (there
are fast PODEM-based algorithms) to compute signal
probability. Since each cube is a product of primary
input literals and the primary inputs are assumed to
be independent, the probability of the cube is obtained
by the AND formula of Equation 1. The cube proba-
bilities are then summed according to the disjoint for-
mula of Equation 6. This procedure has been applied
to the characteristic polynomial method of logic ver-
ification [12, 13]. In that method, two logic functions
are found identical if, for randomly selected input signal
probabilities, the output probabilities coincide. The re-
ported results show that exact output probabilities for
all 17 outputs of two 16-bit adders (one a truth table
specification and the other a 197-gate multilevel im-
plementation) were calculated in 0.5 second on a Sun
Sparc 2 workstation. This adder was implemented for
optimized area and delay and used neither the ripple-
carry architecture of Figure 8 nor the carry look-ahead
or carry-select schemes of Figures 9 and 11.

6 Conclusion

Similar to the K-bounded circuits we mentioned in
Section 4, there are other generalized structures with
polynomial-time test generation complexity [14]. Since
the exact signal probability calculation has a similar
complexity as test generation, it would be interesting
to explore such circuits. Another application of the dis-
Joint property might be in logic design. For example,
in a two-level implementation, if one selects cubes that
are nonoverlapping, then probabilities of all signals can
be directly computed by independence and disjoint for-
mulas. The design, however, will be costlier since it

312

may require smaller, and sometimes more, cubes, Spe.
cific testability advantage of such circuits is a topic yet
to be fully explored.
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