An Architecture of Full-Search Block Matching for Minimum Memory Bandwidth
) Requirement

Jen-Chien Tuan”

Chein-Wei Jen®

Department of Electronics Engineering
National Chiao Tung University
Email: { tuan, *cwjen} @ee.nctu.edu.tw

ABSTRACT

In this paper an architecture of full-search block
matching motion estimation suitable for high quality video is
proposed. Minimum memory bandwidth is an important
requirement in motion estimation architecture especially
when dealing with high quality video such as large frame
size video. Memory bandwidth will increase to an
unrealistically high value without careful consideration,
which no cost efficient solution can afford it. This
architecture is designed for overcoming the frame memory
bandwidth bottleneck by exploiting the maximum data reuse
property. This is done by setting up local memory for storing
Sframe data. The size of local memory is also optimized to
near minimum value, only little overhead is introduced. Due
to the reduction of memory bandwidth, the costs of frame
memory modules, 1/0 pin count and the power consumption
can be reduced but 100% hardware efficiency is still
achieved. Simple and regular interconnections is featured to
ensure high speed operation by an efficient and distributed
local memory organization. '

1. INTRODUCTION

Motion estimation is widely adopted to be the basis of
video compression. Motion estimation essentially requires
high computation complexity and huge memory bandwidth.
Computation complexity requirement can be fulfilled by
multiple PEs implementation. Memory bandwidth problem
can be solved by careful scheduling the data sequence and
setting up on chip memories. In fact, motion estimation is an
I/O bound problem rather than a computation bound one in
straight forward implementation. A well designed motion
estimation architecture can reduce the memory bandwidth,
the required /O pin count, and interconnection complexity
but still maintain high hardware efficiency.

Full-search block matching algorithm (FS-BMA) is
one of the algorithms used in motion estimation process. FS-
BMA searches through every candidate locations to find the

This work was supported by National Science Council,
Taiwan , R.O.C. under contract NSC86-2221-E009-014.

0-8186-8409-7/98 $10.00 © 1998 IEEE

best match one. Various fast algorithms are proposed
[101[11] to reduce the computation complexity of FS-BMA
but the costs of irregular control and lower prediction video
quality must be paid. So FS-BMA is still widely adopted for
its simplicity and regularity and best prediction video quality.
Many architectures are proposed to implement the FS-BMA
[1]-[9][12]. These architectures use systolic array [1]-[8] or
tree structure {9] even 1D structure [12] to provide enough
computation power for solving the computation problem.
But all of them have only limited solution for overcoming
the frame memory bandwidth bottleneck,. That is, these
architectures can not satisfy the memory bandwidth
requirement of high quality video such as HDTV video
format. High quality video means large frame size, high
frame rate, and large search range. The required memory
bandwidth increases with the increasing of these parameters.
The total bandwidth required is the sum of bandwidth of
current frame and bandwidth of previous frame, which is
expressed as:

Bandwidth=f~W-H'RACcurr +:fWHRACprZV)]

previous frmae

~
current frame

where fis the frame rate, W and H are the width and height
of frame, RAC,,, and RAC,,., are the redundancy access
count (RAC) for both current frame and previous frame.
The RAC is defined to be the ratio of how many times the
same pixel is accessed from frame memory. For those
systolic array architectures [1)-[5], RAC,,, equals 1 but
RAC,., depends on the search range, i.e., each pixel in
previous frame is accessed more than once. This really
causes a memory bandwidth problem when the search range
becomes larger and larger. In the paper we propose an
architecture which features both the RAC,,, and RAC.,
equal 1. This is the minimum requirement of frame memory
bandwidth.

2. THE ARCHITECTURE

In our architecture, the mean absolute difference
(MAD) is used for the matching criteria of FS-BMA
because of its simplicity and suitable for hardware

implementation.

2.1. The PE module architecture

Fig 1 shows the architecture of a single PE module.
There are one ALU performing the absolute difference (la-
bl) operation, two registers (AR and PR registers)
propagating current block data, one three inputs multiplexer,
and one search area memory module (SAM) within each
PE module. There are totally seven I/O ports for each PE
module, each of them is one pixel wide. Three kind of data
run through each PE module, the current
block data, the search area data, and the absolute difference
data. In the following we describe this architecture by
considering the data path and interconnections according to
these three kind of data.

A_in_U SA

preload
register

active
register

Fig 1: Architecture of PE module.

5

Adder Tree

Fig 2: Data path of AD port.

—

22. Data path of AD port
The absolute difference (AD) port outputs the
lute difference of two pixels. These data are then
Summed to form the MAD of certain candidate location. The
$ummation operation in this architecture is implemented as
81 adder tree. This is shown in Fig 2. In Fig 2 only the
Interconnections of AD ports of PE modules are shown.
ter the adder tree a motion vector (MV) finder follows
for Sequentially comparing two MADs obtained from adder

153

tree and finds the smaller one and its corresponding motion

vector.

2.3. Data path of A_out, A_in_ L & A_in_U ports

There are two types of current block data in this
architecture, active data and preload data. Active data are
those current block data currently being used for calculating
MADs. A_out, A_in_L, and A_in_U ports are for this active
data type. These active data run through PE modules
following a ring like path in both horizontal and vertical
directions. The data path of active data is shown in Fig 3.
In Fig 3 only the interconnections of three active data ports
are shown. Almost all of these interconnections are
connections between neighboring PE modules, except for the
boundary ones. Each PE module receives active data
propagated from neighboring PE modules in two directions.
Multiplexer is used to select the correct one.

UG

Fig 3: Data path of A_out, A_in_L, and A_in_U ports.

search arez dalz iNPUl e
from previous frame

preiosd data input
from current frame

Fig 4: Data path of P_in, P_out and SA ports.

2.4. Data path of P_in, P_out & SA ports

Besides active data, preload data are also current block
data. But preload data are not currently used, they are
prefetched from frame memory for the preparation of next
macroblock task in order to achieve a fluept execution
during the transition between current task and next task. P_in
and P_out ports are for this preload data type. These preload

data are propagated in a single non-intersect path among PE
modules. This is shown in Fig 4. Preload data are normally
propagated through preload registers (PR) and pumped into
active registers ¢ AR) in parallel at the transition of two
tasks.

The search area data are inputted from previous frame
through SA ports and stored in SAMs within PE modules.
The data path of SA ports are shown in Fig 4. There are only
two input ports from external frame memory, one for current
block data and the other for search area data. Both of them
are shown in Fig 4.

* * * *

ipl | i | v

e o @

*
*
*
* Search Area #(k)
*
*

L]
v | ovi| vi] il '
»

ix { x | xi|xi
* []

Search Area #(k+1)

*y xiil | xiv | xv |xvi

pixels stored
in SAMs

* !z] obsolete pixels
* D pixels not yet
used

Fig 5: Execution operation example.

Top Boundary

i N * LLAS R BE
: I F Search Area #(k}
o[- pooen
R '
L o Search Area #(k+1)
° ° ,
pixels store!
[] ® 1™ sams
E] obsotbts pixels
D pixeis not yst
used
[
MR/ &2 viruai pixels
u

Bottom Boundary

Fig 6: Bottom boundary task.

2.5. Local memory organization

Search area data loaded from frame memory are
averagely distributed in SAMs without redundancy
placement. If each pixel is numbered with indexes (i),
where 0 < i < W, 0 = j < H, and there are N X N PE
modules, each of them is indexed by (p, g), where 0 = p, g
< N, both of the indexes are ordered from left to right, top

to bottom, then pixel (i, j) is fixed to be stored in SAM
within PE module (Res(-I{I—), Res(—1{7)), where Res() returng

the residual of operand. Under the scan-line block wise
execution order assumption the theoretical local memory
size = H X (SR-)+(S8R-1) X N. But N overhead are
introduced in our architecture. So the total size of loca}
memory is H X(SR-1)+SR X N, where SR is the search

range.

3. THE EXECUTION OPERATION

The execution operation is illustrated using a simple
example of N=SR=4 in Fig 5. Each little square represents a
pixel in previous frame. In Fig 5 we can see that in the
beginning there are 16 unloaded pixels marked from i to xvi,
While processing the upper left candidate block in the
beginning of task #(k), pixel i is required but not loaded. So
this pixel must be loaded on-the-fly serving as active data for
calculating MAD and stored into corresponding SAM at the
same time. While processing the second block (to the right
of last candidate block), pixel ii is again required but not
loaded. The same operations described above repeat for not
only pixel ii but all other 14 pixels. One pixel of previous
frame is loaded at each clock cycle. After 16 clock cycles alt
candidate location have been evaluated and those 16 pixels, i,
ii, ... xvi, have been loaded and stored. The task #(k) is
completed without idle cycles. The same situation applies to
all other tasks.

—_—
1]

Upper Right
Corner

Current
Previous Frame

Lower Right '
“*-._ Corner

Upper Left
Corner

Next
Previous Frame

Fig 7: Right boundary task.

Lower Right
Corner

Current
. Previous Frame

El

"

Upper Lefi
Corne,

[IE
|

[
[] Next
[Previous Frame
17
7/
Z/ Lower Left
= Corner
o

Fig 8: Lower right boundary task.

Some tricks must be considered in order to make sure

100% hardware efficiency while boundary tasks encountered.

These tricks are based on the concepts of loading real pixels
instead of virtual pixels. Real pixel pixels means those pixels
within W X H region in a frame. Virtual pixels means those
pixels outside frame, which are virtually existed due to the
extension of search range. When processing boundary tasks,
virtual pixels become part of the search area. The clock
cycles which are originally used to load these virtual pixels
€an now be used for load real pixels of next tasks. There are
three kind of boundary tasks, bottom boundary task shown in
Fig 6, right boundary task shown in Fig 7, and lower right
corner boundary task shown in Fig 8. With the consideration
of boundary tasks the hardware efficiency achieves 100%.

4. COMPARISON

Table 1 and Table 2 are the comparisons between
Proposed architecture and other presented architectures. In
fbc comparisons the HDTV video format is used to show the
mpact of large frame size. In Table I N = 16 and SR = 16,
I Table 2 N = 16 and SR = 32 are used to show the
affection of large search range. The comparisons are focused
on _ffame memory bandwidth, input pin count and hardware
utilization. Each pixel is assumed to be 8 bits wide. The
Bandwidth is measured in megabyte per second.

From Table 1 and Table 2 we can see that our
architecture maintains the same low memory bandwidth and
DUt pin count when the search range changes but still
%leve 100% hardware utilization. This property is quite
Sutable for high quality video format.

Table 1. Comparison with N=16, SR=16.

Arch. | #of PE BwW Input Pin | Utilization
Count
[1] 256 188 24 100%
[2] 256 2,005 136 52%
[3] 256 298 16 28%
[4] 256 188 24 100%
6 2

Table 2. Comparison with N=16, SR=32

155

Arch. | #of PE BW Input Pin | Utilization
Count
[1] 1024 250 32 100%
[2] 256 5,954 136 68%
[3] 256 603 16 47%
{4] 1024 564 72 100%
[8] 256 64,235 2056 100%
5. CONCLUSION

In this paper we describe a new architecture of FS-
BMA. In summary, this architecture has the following
features: 1). Minimum memory bandwidth requirement. 2).
Minimum /O pin count. 3). 100% hardware efficiency. 4).
Power consumption reduction due to bus transition reduced.
5). Simple and regular interconnections. These features
enable this architecture to be suitable for high quality video
motion estimation. This is because high quality video motion
estimation demands unreasonable high memory bandwidth
without special design. The size of local memory is also
reduced to near minimum value. Besides, the costs of
external frame memory modules can also be reduced. In a
complete video compression system, other components can
obtain more bandwidth owing to the memory bandwidth
requirement of motion estimation is reduced.

REFERENCE

Luc De Vos, Michael Stegherr, “Parameterizable VLSI
Architectures for the Full-Search Block-Matching
Algorithm”, IEEE Transactions on Circuits and Systems,
vol.36, no.10, pp. 1309-1316, Oct 1989.

Thomas Komarek, Peter Pirsch, “Array Architectures for
Block Matching Algorithms”, IEEE Transactions on
Circuits and Systems, vol.36, no.10, pp. 1302-1308, Oct
1989.

Chaur-Heh Hsieh, Ting-Pang Lin, *VLSI Architecture for
Block-Matching Motion Estimation Algorithm”, IEEE
Transactions on Circuits and Systems for Video
Technology, vol.2, no.2 pp. 169-175, Jun 1992.

Hangu Yeo, Yu Hen Hu, “A Novel Modular Systolic
Array Architecture for Full-Search Block Matching
Motion Estimation”, IEEE Transactions on Circuits and

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(91

(10]

{11

[12]

Systems for Video Technology, vol.5, no.5, pp- 407-416,
Oct 1995.

Sung Bum Pan, et al., “VLSI Architectures for Block
Matching Algorithms Using Systolic Arrays”, IEEE
Transactions on Circuits and Systems for Video
Technology. vol.6, no.1, pp. 67-73, Feb 1996.

Jianhua Lu, Ming L. Liou, "A Simple and Efficient
Search Algorithm for Block-Matching ~ Motion
Estimation”, IEEE Transactions on Circuits and Systems
for Video Technology, vol.7, no.2, pp. 429-433, Apr
1997.

Shifan Chang, et al., “Scalable Array Architecture Design
for Full Search Block Matching”, IEEE Transactions on
Circuits and Systems for Video Technology. vol.5, no.4,
pp. 332-343, Aug 1995.

Yeong-Kang Lai, et al., “A Novel Scalable Architecture
with Memory Interleaving Organization for Full Search
Block-Matching Algorithm”, 1997 IEEE International
Symposium on Circuits and Systems, pp. 1229-1232, Jun
1997.

Yeu-Shen Jehng, et al., “An Efficient and Simple VLSI
Tree Architecture for Motion Estimation Algorithms”,
IEEE Transactions on Signal Processing, vol.41, no.2, pp.
889-900, Feb 1993.

Jaswant R. Jain, Anil K. Jain, “Displacement
Measurement and Its Application in [nterframe Image
Coding”, IEEE Transactions on Communications,
vol.COM-29, no.12, pp. 1799-1808, Dec 1981.

T. Koga, et al., “Motion compensated interframe coding
for video conferencing”, Proc. Nat. Telecommun. Conf.,
New Orleans, LA, pp. G5.3.1-5.3.5, Nov. 29-Dec. 3,
1981.

Kun-Min Yang, et al., “A Family of VLSI Designs for the
Motion Compensaton Block-Matching Algorithm”, IEEE
Transactions on Circuits and Systems, vol.36, no.10, pp-
1317-1325, Oct 1989.

156

	Main Page
	GLSVLSI98
	Front Matter
	Table of Contents
	Author Index

