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Abstract

Unlike most research involving finite field multipli-
ers, this work targets a low-power multiplier through
the application of various power reduction techniques
to different types of multipliers and comparing their
power consumption among other factors, rather than
comparing complezity measures such as gate count or
area. Gate count is used as a starting point to choose
potential architectures, namely, polynomial and nor-
mal basis architectures. Power reduction techniques
employed are mainly concerned with Architecture- and
Logic-Level low-power techniques. They include sup-
ply voltage reduction, power cost estimations, using
low-power logic families and pipelining.

1 Introduction

Recently, finite field arithmetic has found wide use
in different applications such as error-control codes,
cryptography, switching theory, and digital signal pro-
cessing. However, its use in channel coding and cryp-
tography modules for wireless communications has
been the main motive for a low-power implementation.
Wireless devices are based on a rechargeable battery
supply. Obviously, the less the power dissipated, the
longer the battery life and the more operation time
the user gets from the wireless device before a bat-
tery recharge. Multiplication is at the heart of almost
all finite field operations. Consequently, a low-power
finite field multiplier is essential.

A mathematical background of the finite fields is
necessary to understand the design of the multiplier
and how it works [1]. A few definitions are in or-
der here. An abelian group G is a set of elements
together with a binary operation * satisfying the fol-
lowing mathematical properties: closure, associativ-
ity, having an identity element, having inverses and
commutativity. A field is a set F together with two
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operations, addition and multiplication such that F is
an abelian group under addition with 0 as the identity
element, the non-zero elements of F form an abelian
group under multiplication with 1 as the identity ele-
ment and the distributive law a(b+ ¢) = ab + ac holds
for all a, b, c in the field. A field with a finite number
of elements p is called a finite field of order p and is
usually denoted by GF(p), i.e., Galois Field, or finite
field, of order p. The order, p, must be a prime num-
ber to ensure that the field is a group under modulo-p
multiplication. The binary field GF(2) and its exten-
sion GF(2™) are the most used fields in computers and
comimnunications.

Finite field arithmetic operations are essentially im-
plemented in all architectures using XOR gates and
registers. In fact, addition in GF(2) is nothing but an
XOR operation. It is also worth noting that there is
no carry to propagate in finite field arithmetic opera-
tions which means a smaller critical path compared to
ordinary arithmetic operations. A building block for
almost all finite field operations is a finite field multi-
plier.

There are two parameters which are of central im-
portance for computer arithmetic finite field multiplier
implementations, the speed which is specified by the
maximum clock rate or the maximum delay, and the
complexity. The vast majority of the literature deal-
ing with finite field multipliers uses the critical path
as a measure of the delay and the gate count as a
measure of the area and complexity and tries to mini-
mize them [2, 3]. However, this work tries to minimize
power dissipation in the multiplier since we target a
Low-Power implementation suitable for wireless ap-
plications. At the same time, we will also consider
acceptable ranges for the other parameters, namely,
delay and gate count. The maximum delay is mea-
sured and optimized for single primitive gates and the
critical path is used to optimize the whole design us-
ing automatic synthesis optimization tools. Also, the




gate count is used among other properties to select
the initial architectures and their initial design styles,
and then these are optimized with respect to power
consumption.

In section 2, the gate count is used as a measure of
complexity to find a starting point for choosing archi-
tectures with potential for power reduction, namely,
polynomial and normal basis architectures. This sec-
tion also discusses signal distribution and pipelining
issues. Power reduction techniques that can be ap-
plied to finite field multipliers are discussed in section
3 and some of them are employed to reduce the power
consumption of the chosen architectures. The tech-
niques used include supply voltage reduction, power
cost estimations and use of low-power logic families.
Section 4 reviews the simulations and characterization
of the designs. Finally, results are summarized and
conclusions are drawn in section 5.

2 Low-Power Architecture Design

The architectures of the finite field multipliers are
usually classified according to their representation of
the field elements. There are three popular represen-
tations which have been utilized, namely the polyno-
mial (canonical or standard), the normal and the dual
basis representation. The different bases yield quite
different architectures [2].

2.1 Architecture Selection

Table 1 shows some of the key parameters for dif-
ferent architectures of the finite field multipliers over
the extension field GF(2™) [3, 2, 4, 5, 6]. It can be
noted that the normal basis requires the least number
of gates, unfortunately this is for optimal normal ba-
sis multipliers which can be realized for only ~ 23%
of the fields GF(2™), 2 < m < 1200 [7]. Also, the
dual basis multiplier requires conversion of one of its
inputs to a representation different from the other in-
put which requires extra gates. Anocther point to con-
sider is that both the normal and dual bases are not
highly modular or expandable. Based on that com-
parison, the polynomial basis architecture seems to
be a good initial architecture [6]. This architecture
is highly modular and expandable so it can be imple-
mented as a 1-bit multiplier slice and then any field
order can be realized. Also, if we assume that we
will use only those orders that can be implemented
using an optimal normal basis architecture and if we
restrict our comparison to those specific field orders,
then we can use the normal basis architecture too.
The polynomial basis multiplier can be implemented
using different architectures in its turn [2], the most
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Figure 1: The SSR polynomial architecture with the
slices highlighted

common implementations are the Standard Shift Reg-
ister (SSR) and the Modified Shift Register (MSR)
shown in figures 1 and 3. Both implementations can
be divided into bit-slices and we can then replicate as
many of these bit-slices as we want and provide the
irreducible polynomial coefficients P; to produce the
required multiplier. Each bit-slice, as highlighted in
figures 1 and 3, is basically composed of an input reg-
ister, whether it is a normal register or an LFSR, an
output register that acts as a GF(2) accumulator and a
combinational logic block in between them. The com-
binational logic block, figures 2 and 4, will be called
the Leell. Since the gate count is almost the same,
the best implementation is the one that consumes less
power. Also, the MSR implementation has a slightly
shorter critical path in terms of gate count than the
SSR implementation. The normal basis architecture
shown in figure 5 is not as regular and modular as
the polynomial one and it does not render itself to
bit-slice implementations. Hence, we will use normal
multipliers implemented over GF(2%) [5] and 4 bit-

[ Basis Polynomial Yormal Dual ]
Complexity 4m/2m >3m-—1/2m 4m — 2/2m
Gates/Ragisters
Length of CP 4 > 3+ [logy m] | > 2+ [logy m]

> [log, m]
Regularity High Low Low
Expandability High Low Low

Table 1: The main properties of different architectures
of GF(2™) multipliers
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Figure 2: The Lcell structure for the SSR polynomial
basis multiplier

0 Ao Ay I— Am-y
13 b b
—d = e B
Lo I Lm-t
FB [FB
| |
D D D
i ‘ _..[ _q*
=1 i P Prm-t
] (-3 Cm-1

Figure 3: The MSR polynomial architecture with the
slices highlighted

slices of the polynomial multipliers to have a fair com-
parison. GF(2*) is hardly a useful field for encryption
purposes, however, it is very indicative with respect to
power consumption. Another reason for choosing that
field order will be discussed in section 2.2. Function f
in the normal multiplier is again not regular and de-
pends on the field order and the polynomial governing
it. Figure 6 shows the logic design of the f function
of a normal basis multiplier over the field GF(2%) and
using the trinomial p(z) = 1423+ z*, It is important
to notice that the polynomial architecture will require
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Figure 4: The Leell structure for the MSR polynomial
basis multiplier

21

fewer gates and hence dissipate less power if it uses a
trinomial and if the gates used in the Leell to provide
p; are eliminated.

We will compare the power costs of the Leells and
the f function based on the switching activity concept
as explained in section 3.1. The results shown there
endorse the use of the MSR.
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Figure 5: The normal basis multiplier architecture

Figure 6: The f function structure for the normal
basis multiplier over GF(2™) with p(z) = 1 + 23 + z*

2.2 Signal Distribution and Skewing

Signals that are distributed to all slices, such as the
clock, FB and b signals, are susceptible to degradation
due to their large capacitive loads. The long distribu-
tion interconnects of the signal contribute to this load,
also the load of the large node capacitances is usually
larger than tolerable limits. Most control signals suf-
fer from this problem, but the main obvious one is the
clock signal.




To solve this problem, multi-bit slices are proposed
for the polynomial basis architecture and buffers are
inserted between every slice and the next so as to el-
evate the problem and reduce the load on the sources
of these signals [8]. Figure 7 shows a cost function
computed as the prodcut of the delay and power dis-
sipation in the slice versus the number of bits per slice.
As shown, the cost function has a minimum at about
4 bits/slice and hence buffers are inserted every four
bits on the clock line and on the other control signal
lines. Since the normal basis architecture is not imple-
mented in bit-slices, it has this problem for the input
registers only. Having chosen 4 bit-slices for the poly-
nomial basis architectures, we will also use a normal
basis multiplier implemented over GF(2*) to be able
to have a fair comparison.

A new problem occurs due to the insertion of these
buffers and that is the problem of skewed signals.
Signals arriving at slices far from their sources pass
through a larger number of buffering stages and hence
exhibit more delay than the signals arriving at nearer
slices. As a result, these signals arriving at different
gates or registers are not synchronized and are delayed
from each other. To solve this problem, these signals
should be distributed using a tree hierarchy of buffers
so that the delay would be equal on all paths of the
signal and the skew is eliminated. Also, we should
try to make the interconnect lengthes in the physical
layout as equal as possible, e.g., by making the tree
root physically located at the center of the chip and
the cells in symmetric locations around the center.
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Figure 7: Selecting the number of bits/slice

2.3 Pipelining within the Slice

The original design of the MSR polynomial multi-
plier used the same clock for the linear feedback shift
register (LFSR) and the accumulator which required
2 clock cycles to load a bit and calculate a partial-
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product. This is not a suitable solution since it halves
the throughput of the multiplier. To overcome this
problem, we require that the accumulator adds the
partial-product fast enough for the LFSR to compute
the next partial product within the same clock pulse
but this still requires one more clock pulse for the final
accumulation. To eliminate this extra cycle, it is bet-
ter to trigger the LFSR and the accumulator to on dif-
ferent clock edges, that is pipelining within the clock
cycle [9]. In our case, the LFSR and the Lcell work
within the clock pulse and the accumulator is trig-
gered by the inverted clock and works after the clock
pulse, as shown in figure 8. As for the normal basis
multiplier, it will be only limited by the critical path
through the f function and the registers. This critical
path is significant for large finite fields because it will
pass through log, mm gates of the XOR tree within the
f function.
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Figure 8: The timing requirements of the polynornial
basis clock

3 Logic Design for Low-Power

There are three main power dissipation components
in digital designs. These components are dynamic
power consumed in the charging and discharging of
the circuit capacitances and is the dominant one in
CMOS design styles, short circuit power consumed by
the direct current from supply to ground during the
switching transient and static power caused by leak-
age current and other static currents. Low-power ar-
chitecture techniques were discussed in the previous
section and this one will discuss gate-level techniques.
These are mainly choosing the design that exhibits
lower power cost and choosing the design style that
achieves the lowest power consumption.

3.1 Power Cost of Different Logic Designs

In this discussion, it is assumed that the main com-
ponent that contributes to the dissipation of power for
the design styles used is the dynamic power. Later,
simulations will take other power components into ac-
count. For the polynomial architectures, the Lcell
is the main part where reduction of power can be
achieved since the flip-flops are used from a standard



library and are already optimized for low-power oper-
ation. The dynamic power, Py, dissipated in a basic
inverter is expressed as

Py = CeViqfelk

where Cog is the total effective capacitance of all
nodes, V3, is the supply voltage and felk 1s the clock
frequency. From the above expression, it is obvious
that reducing the supply voltage reduces the dynamic
power dramatically. The targeted supply voltage for
our multiplier is 2.5 V. Reducing the supply voltage
below that would require special technology consider-
ations.

To choose the proper implementation of the Leell,
the switching activity [8] is computed for both designs,
SSR and MSR, to compare the dynamic power cost for
each design style. It is also computed for the f func-
tion of the normal basis multiplier. The power cost
is equivalent to the total effective capacitance of all
nodes, Cefr: where the effective capacitance of a node
is the actual total capacitance at that node weighted
by the probability that this node switches, thus affect-
ing the dynamic power dissipation. The power cost
function for the static CMOS is the summation over
all nodes i as follows,

Power cost = Z Py ,1:C;
f

where Py, is the probability that node i switches
from logic 0 to logic 1 and C; is the capacitance of
node i. On the other hand, for the Domino logic, the
power cost function is as follows,

Power cost = Z FPo,i C;

where Py, is the probability that node i evaluates to
logic 0 and C; is the capacitance of node 1.

3.2 Selection of the Design Style

The basic gates are implemented as static CMOS,
a mixture of static CMOS and transmission gates
(TGs), and Domino logic gates. Domino logic and
dynamic logic styles in general provide smaller area
than fully static gates, smaller parasitic capacitances
and glitch free operation if designed carefully [9]. The
Domino logic implementation will be chosen if these
advantages outweigh the amount of power consumed
during the precharge phase. The mixed style is basi-
cally static CMOS AND gates and TG based XORs.
Using the TGs to implement the AND gates consumes
a larger area than the static CMOS case and is not Jus-
tifiable. However, a TG XOR uses only six transistors
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static CROS I CEOS+TG Domine logic

ASR Lcell 89.625 fF I 74.625 fF 198.5 fF
SSR Lcell 95.062 fF | 87.126 fF 227.5 fF

Table 2: Dynamic power costs for the Leells
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Figure 9: Comparison of power dissipation in different
implementations

which is a better implementation than static CMOS
implementations in terms of power and area. After-
wards, the capacitances are extracted from the corre-
sponding layouts. Since the inputs can take any value
and the registers produce all possible outputs over a
sufficient period of time, the inputs to the GF(2%)
Leells and f function are assumed to be equally prob-
able. Table 2 shows these power costs and it is obvious
that even without considering any other type of power
dissipation except the dynamic one, the Domino logic
design is outperformed by the other logic styles and
the MSR design is superior to the SSR design.

The f function could be implemented using a PLA
to reduce the design area although that will increase
the power dissipation in the standby mode [8].

To select the proper design style for the multiplier,
different types of power dissipation components are
estimated for the different designs using simulations.
The simulations are performed for a 0.8um technology,
at the targeted supply, V4g=2.5v, a nominal load of 2
units, i.e., 0.05 pF and a test frequency of 100MHz.
The bar graph in figure 9 shows the power in all of
these cases. Again, the obvious candidate is the MSR
based polynomial multiplier implemented using the
mixture of TGs and static CMOS [8]. Next to the
MSR polynomial multiplier comes the normal basis
multiplier implemented using the same design style.

4 Simulation and Characterization of
the Design :

A gate-level simulation uses delay models to ver-
ify the correctness of the functionality of the circuit




and its implementation. It also sets a starting point
for the frequency of the clock, 10ns clock period i.e.,
100MHz. Later, simulation is used to determine the
maximum clock frequency that can be used. Also, a
fifth clock cycle is used in this simulation to reset the
accumulator with every multiplication. This would
not be necessary when the multiplier is integrated in
an application since there will be an external register
to collect the result.

Next, the multipliers are simulated using
parametric-simulation and different curves are
compiled to characterize their design space with
respect to other parameters such as delay and power-
delay product. As shown in figure 8, the pulse width
of the clock for the polynomial basis multiplier is
specified by the delay time of the LFSR plus the delay
time of the Leell and the setup time of the flip-flops,
assuming that the flip-flops of the LFSR and the
accumulator have the same timing characteristics and
that the hold time of the flip-flops, approximately
0.42 nsec, is smaller than the sum of the delay times
of the LFSR and the Lcell. Similarly, the delay time
of the accumulator and the setup time of the LFSR
specify the remainder of the clock period. From figure
10 and at the targeted supply voltage of 2.5v, the sum
of LFSR and Lcell delays is approximately 3.6 nsec
and the delay of the accumulator is approximately
1.6 nsec while the setup time of the flip-flops is 0.75
nsec. Therefore, the minimum clock peried is 6.7
nsec which corresponds to a maximum frequency of
approximately 150 MHz. This shows that the clock
period used in the gate-level simulations, which was
10 nsec, was a valid one. A similar analysis is used to
derive the clock period for the normal basis multiplier.
Table 3 includes the results of that analysis.

The compiled curves in figures 10-13 are very useful
in determining the proper operating point for differ-
ent applications. They help the designer to choose
the clock frequency, trigger the different parts of the
multiplier at the appropriate clock edges, choose the
proper supply voltage and have estimates of the power
dissipated and the power-delay product in the design.

5 Summary

This work has shown that with careful application
of low-power design techniques, finite field multiplier
designs customized for the power requirements of wire-
less applications can be attained. Among the designs
discussed, the MSR polynomial basis multiplier imple-
mented in static CMOS and transmission gates dissi-
pated the least amount of power. It is also a highly
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Figure 10: Accumulator, LFSR and Lcell delays vs.
Vua @C = 0.05pF for the MSR polynomial architec-
ture
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Figure 11: Registers and f function delays vs.
Viqa @CL = 0.05pF for the normal basis architecture

modular and regular design that can be customized to
the number of bits required by the application within
a smaller chip area. The MSR polynomial basis mul-
tiplier is also the fastest. The normal basis multiplier
implemented using the same logic style comes next. It
has a little higher amount of power dissipation and de-
lay. Its main disadvantages are its low modularity and
regularity which means larger chip area and more de-
sign time and effort. A set of characterization curves
has also been used to help defining the design space.
Table 3 summarizes the specifications and characteri-
zations of those two designs.
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