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Abstract 1. Introduction

Three factors are driving the demand for rapid FPGAThe success of CPLDs and FPGAs is in part due to the
compilation. First, as FPGAs have grown in logic capacityjnstant manufacturability of a programmable device. As
the compile computation has grown more quickly than th&evice sizes increase, however, increasing compile times
compute power of the available computers. Second, thefeve reduced the impact of instant manufacturing. This is
exists a subset of users who are willing to pay for very higlparticularly true among impatient hardware designers,
speed compile with a decrease in quality of result, anémulation/rapid prototyping system users who have many
accordingly being required to use a larger FPGA or use mofePGAs to compile, and users of FPGA-based custom
real-estate on a given FPGA than is otherwise necessagomputing machines who want compile times closer to those
Third, very high speed compile has been a long-standingf their competition, a microprocessor.

desire of those using FPGA-based custom computin S
g e complete end-to-end compile time of modern large

GAs (those with approximately 5000 or more LUT/Flip-
flop pairs) is threatening to become so long that it may take a
This paper focuses on the routing phase of the compilsignificant portion of a day to compile, or even to declare
process, and in particular on routability-driven routing (adailure of compilation. For a subset of designers, these large
opposed to timing-driven routing). We present a routingcompile times may reduce or eliminate the advantages of
algorithm and routing tool that has three unique capabilitieEPGAs.

relating to very high-speed compile:

machines, as they want compile times at least closer to tho
of regular computers.

In this paper we focus on the routing phase of the compile

1. For a “low stress” routing problem (which we define agprocess, and as a first step, explore ways of making a fast
the case where the track supply is at least 10% greatsvutability-driven router. Although it is clearly necessary to
than the minimum number of tracks per channel actuallgevelop a fast timing-driven router, it is first important to
needed to route a circuit) the routing time is very fastunderstand what “fast” means in the context of routability
For example, the routing phase (after the netlist idefore moving on to timing-driven routing.

parsed and the routing graph is constructed) for a 20,0 . . .
LUT/FF pair circuit with 30% extra tracks is only 23%e envision the following scenario as the context for fast

: compile: the user has just designed a circuit (to the netlist
seconds on a 300 MHz Sparcstation. level) and initially targets an FPGA of a particular size. He/
2. For low-stress routing problems the routing time is nearshe would like to quickly receive a routing (and subsequently
linear in the size of the circuit, and the linearity constant programming file) for that FPGér be told that the routing
is very small: 1.1 ms per LUT/FF pair, or roughly will take significantly more time (with a time estimate) or be
55,000 LUT/FF pairs per minute. told that the routing task is impossible. In the latter two cases
the designer has several options, depending on the
circumstances. Users of a rapid-prototyping system (such as

. . o o X Fhe Transmogrifier-2 [Lewi97] or the Aptix System Explorer
.mftTOd th%qullckly 'Qef‘“tfr']es and sgtbdwrl](jehs this d(.:flf‘?lssit[Apti96]) could reduce the size of the design by moving part
INto Wo sub-classes. (i) 0S€ CIrcults which are diflicUltye vha cireyit into a different FPGA. If the FPGA is designed
(but possible) to route and will take significantly more; "5 “socyet that can accept FPGAs with differing logic
tlrn_ec htgaz .I%WE)Str?t)SIS gogletrensl’niﬂd f('”) ttfcwsg t(;]'gcu"{anpacities, then the designer could choose to try routing the
Which ar€ impossible 1o route. € hirst cas US€lircuit on a larger FPGA. Alternatively, the designer could
can choose to continue or reduce the amount of logic; i

the second case the user is forced to reduce the amo ove part of the design, making it smaller, as this is
; > user | u Lf?;gfi]cally possible in the FPGA-based computing world,
of logic or obtain a larger FPGA.

where the amount of parallelism (and hence hardware) can

be parameterized. Note that this scenario also requires a fast
placement tool; another part of the Fast Compile Project at

the University of Toronto is currently at work on this issue.

3. For more difficult routing problems (where the track
supply is close to the minimum needed) we provide

To precisely define the notion of fast compile, we have set
the following goal for our router: to be able to route a 20,000
LUT/flip-flop pair circuit in 10 seconds on a modern
processor. We furthermore require a running time that is
linear in the size of the circuit, with a low linearity constant.
Finally, since some routing problems are inherently difficult



or impossible, we require that our router be able to quickly 2.2.1 Directed, Depth-First Search
identify both of these cases in order to alert the user. Most basic maze routers use a breadth-first search of the

Most previous work on FPGA routing [Brow92a] [Lemi93] routing graph to .make connections. Whllle this guarantees
[Wu94] [Betz97] has focussed on achieving routes within the best connections (for two-pin nets), it means the router
the fewest number of tracks per channel. To our knowledge,spenqS much of Its time explorllng path_s In Fhe wrong
there is no previous work which has a primary focus on fastdirection. A depth-first search (which we will caktizected

compile time and fast identification of hard routing S€arch as it is a more evocative term for the two-
problems. There has been various reports of techniques fofimensional routing problem) uses a narrower wavefront in

speeding up maze routing [Alle76] [Souk78] [Palc92], some O'der to expand in the direction of the target pin to be
of which we build on here. connected. Ideally, the directed search will simply start at

the source of the net and choose successively closer track
This paper is organized as follows: Section 2 describes thesegments until the target sink is reached.
routing algorithm and difficulty prediction approach. . _ . L
Section 3 compares the speed and quality of the new!Nere are two key issues in the design of this kind of
algorithm with those of VPR [Betz97], and Section 4 directed search: modifying the cost function to direct the

concludes expansion from the source towards a specific target, and
_ ' . choosing the correct target from the choices available in a
2. Routing Algorithm multi-terminal net.

In this section we give a brief overview of the previous work a form of directed search, known as the A* algorithm, was
upon which our algorithm is built. We assume that the yjeq as part of the Pathfinder algorithm [Ebel95]. Our
reader is familiar with the basic maze routing approach girected search algorithm is similar, but our choice of cost

[Lee6l]. We then describe modifications to the basiC fynction makes our directed search more aggressive in
algorithm to increase its speed and give a method to cIassﬁ;geeking the target.

each routing problem as low stress, difficult, or impossible.

2.1 Base Algorithm Cost Function

. : . . ... The following cost function is used to measure the cost of a
Our routing algorithm is based on the PathFinder algorithm ., ;e from the source node to a specific track segment:
[Ebel95], which is an iterative maze-type router [Nair87].
Nets are routed sequentially, and once a track segment has Cost = COgjey+ Co + A(AD) (1)
been used for one net, other nate allowed to use that
segment, but must pay a higher cost. Consequently, net§€ostye, is the cost of the previous track segments on the
tend to avoid overuse of a segment unless it is necessary gsath from the source to this track segment, i.e. the cost of
particularly efficient. At the end of the first iteration (after the track segments used to reach this one.
all nets have been routed), either there are no segment . .
overused and the routing is successful, or some segmentso 1S the base cost of using the segment under
are overused and more routing iterations are executed to trgonsideration. The base cost for a track segment is initially
and resolve the contention. In each of these subsequerfn€, but is made very large when the track segment has
routing iterations, every net is ripped up and re-routed. @lready been used. By increasing the base cost quickly, we
Since the cost Of Over_used track Segments is increase$duce the number Of router |ter:a.t|0ns to reSOIVe Congest|0n.
every routing iteration, they become increasingly expensive!n the original PathFinder algorithm [Ebel95], the base cost
and are less likely to be used by more than one net. Thids increased more gradually, requiring more iterations to
gradual reduction in routing violations is a very successful resolve congestion.

routing approach. AD is the change in the Manhattan distance remaining to the
In Order for the router to have a Very Short run time, two tal‘get sink for the track Segment Under. consideration. |fthe
conditions are necessary: all of the nets have to be routed iffack segment is closer to the target sink than the previous
as few iterations as possible (ideally one iteration). track segment, thehD is negative, reducing the overall cost
Secondly, each net has to be routed as efficiently asof using the track segment. A track segment that is further
possible, without exploring all of the possible paths from the target sink will have a positi®.

exhaustively. a is called the “direction factor”, it determines how
2.2 Speed Enhancements aggressively the router “drives” towards the target sink.
h§/ith a = 0 the search is equivalent to a breadth-first search.

. & . very largea, on the other hand, will often result in
speed of the basic breadth-first search maze router. The fir éxcessively long connections since the nearness to the target
is to employ a depth-first search which directs the router to.

head towards specific targets [Rubi74]. The second is to:cs considered much more important than wirelength. We

reduce the amount of activity on the routing expansion list ound experimentally that a direction factor of 1.5 produced

for gher-fanout nets by only placing seqments on the e e Teslsfor e crouls for L e uterlenot
expansion list that are in the neighborhood of the target. 9 '

We have implemented two enhancements to increase t



however, we have found that settimg- 1.5 leads to a large

speedup, with no measurable quality degradation. o o o o o
Target Selection sink 1 sink 2
The second issue in a directed search is target selection for H J U U !
multi-terminal nets. Since the directed search needs a

specific target (in order to calculate in the above oy o o o
equation), each sink of the net must be connected in a

separate routing step. We route to the targets in order from Ol O O O
the closest sink to the source, to the farthest sink from the

source. This avoids the creation of long trunks that are not source O 0O O 0O
well re-used, as illustrated in Figure 1. Figure 1 (a) shows

the net routing when the sink closest to the source is routed (a)

first. The further sink simply extends the existing net

further, without using extra wiring unnecessarily. Figure 1 O O O 0O 0O
(b) shows what often happens when the furthest sink is _ ;
routed first. The portion of the routing created to reach the sink 1 sink 2
furthest sink does not pass close by the other sink. L] 0 O
Consequently, the net in (b) uses more track segments than

the netin (a). Ol O oOolog
Figure 2 gives the pseudocode for routing a multi-terminal

net. After a sink is reached, each of the track segments O O galg
already assigned to the net is placed on the expansion list

with a cost equal to alpha times its distance to the target

sink. This gua?antees th%t the routing will continue from the sourceEJ O o o o
closest track segment that is already part of the net. (b)

Net Order Figure 1. Two methods of routing a multi-terminal

The nets are routed in order of decreasing fan out. The net: (a) closest sinks first; (b) furthest sinks first

highest fanout nets are routed first because they tend to span . o . )

the whole FPGA and are much easier to route when there i€-2-2 Reducing Activity on the Expansion List

no existing congestion. Low fanout nets tend to be localized,The above algorithm is somewhat inefficient because it

so routing them later in the routing process is not too places the entire net routed so far on the expansion list when

difficult even in the presence of congestion. starting to route to each sink of a net. This is often un-
necessary because for higher fanout nets most of the net is

Sort the sinks in order from closest to furthest from the source
Target = sink closest to source
Put tracks segments attached to source onto expansion list
Removelowest cost track segment from expansion list
While the target has not been reached
Put neighbors of this track segment onto expansion list with cost given by (1)
Removelowest cost track segment from expansion list
Endwhile
Empty the expansion list
While still more sinks to route for this net
Target = next closest (to source) unconnected sink.
Put the whole net created up to this point onto expansion list with cwBSt =
Removelowest cost track segment from expansion list
While the target has not been reached
Put neighbors of this track segment onto expansion list
Removelowest cost track segment from expansion list
Endwhile
Empty the expansion list
Endwhile

Figure 2. Pseudocode for Routing a Multi-terminal Net




unlikely to be involved in any particular connection. The between sinks can vary for different nets, our router
expansion list is essentially used to sort the track segmentsomputes the proper bin size to use for each net. Before a
in order of increasing distance to the sink, so that the firstnet is routed, the average area per sink is calculated as the
track segment removed from the expansion list is the closesarea of the bounding box of the net terminals divided by the
one to the sink. In the worst case, for an FPGA of containingnumber of sinks. We determined experimentally that
N logic blocks and a net with N sinks, the routing algorithm choosing a bin size of four times the average area per sink

would exhibit O(Nf) behavior. Since many circuits have at for each net provides the best results.
least a few extremely high fanout nets, this typically slows Empty Bins

the router significantly. ) . ) .

If the bin containing a sink does not contain any part of the
To overcome this effect, we devised a technique calledroute so far, then the portions of the net in its eight
binning The key idea is that only the portions of the net neighboring bins are added to the expansion list. The
routed so far which are closest to the current target sinkneighboring bins may contain parts of the route relatively
need to be placed on the expansion list. Figure 3 illustrates @lose to the target sink. If the neighboring bins are also
simple example of the binning technique. In this example empty, then the entire existing net is placed on the
there are four bins, each containing one quarter of the totakxpansion list.
track segments. A net with fanout three is being routed, and . L
two of the three sinks have already been routed. When?-3 Difficulty Prediction
routing the last sink, instead of placing the entire net on theA key aspect of high-speed routing is the ability to quickly
expansion list, only those parts of the net in bin 4 are placedredict when the routing problem is very hard (and hence
on the expansion list, thus reducing the number of will take a longer time to complete) or impossible. In both
expansion list operations. For relatively low fanout nets, of these cases, it is important to inform the user that the
binning does not save many expansion list operations.result will either be a long time coming, or simply isn’t
However, when used on very high fanout nets, binning possible to achieve. In order to predict these cases (after
significantly reduces the number of expansion list placement), we need to correlate routing difficulty with
operations. We determined experimentally that binning is parameters that we can quickly determine from the target

most effective for nets with fanout greater than 50. FPGA and the user circuit. For a given circuit, with a
__________ specific placement, we defing\\} as the minimum number
r H K f tracks per channel that ter would require in ord
| | of tracks per channel that our router would require in order
. |:B| 3|:| | u EBlin 4. | to successfully route the circuit. Let the number of tracks
| In per channel in the FPGA bepAg 5 Table 1 gives a reliable
[ I R N ! L1 prediction of routing difficulty in terms of W, and
I | | Wepga Typically, when Wpga is 10% greater than My,
I O 0o o o then the routing problem is not difficult and can be solved
F—f—— - H very quickly using the directed search approach. As the
rOlg oo o g number of tracks per channel decreases below this
Bin 1 | Bin2 | threshold, the problem rapidly becomes more difficult. Note
l that this 10% figure is a rough estimate of when the onset of
EE NN : O O O difficulty occurs, from experimental data.
I I
:_ Ig-_ E‘ _ E‘ _:_ E‘ _ E‘ _ E‘ JI Definition Predictor
Figure 3. The Binning Technique o Time JTypical Range_of Tracks
Classification | (seconds)] Per Channel in FPGA
There are two key issues that have to be addressed with Imoossible —
binning: the size of the bins, and what to do when a bin P Wepca< Whin
containing a sink does not contain any part of a net's o
routing. Difficult > 60 Wimin < Wepga
s < LAWy,
Bin Size min
The bin size is very important. If it is too small (in the Low Stress <60 Wepga 1.1Whin

extreme case the segments in just 1 logic block tile), then
the quality of the routing degrades since an insufficient
amount of the prior route is available as potential “start Since W,,;, is not known before-hand, we need a method
points” for the connection to the sink in that bin. If the bin for rapidly estimating W;, to make any useful difficulty

size is too large (in the extreme case the entire FPGA), the'&redictions from Table 1. We call aethe estimate of
unnecessary segments will be put on the expansion list an

the routing time will increase. Since the average distance

Table 1: Definition of Routing Classes



Whin- In order to calculate WimateWe Use a placement can typically use before congestion results in some

wirelength model based on the approach of [Chen94]. unroutable nets. We have determined experimentally that for

) _ _ our router targeting the FPGA architecture described in
The wirelength needed to route each net is estimated fromsection 3.1, U'is 0.56.

the half-perimeter of the bounding box of the net terminals _ o
multiplied by a fanout-based correction factor. The Since we know Wpga before routing a circuit and we have
correction factor compensates for the fact that the boundinga method to calculate Mimateffom the placement, we can

box half-perimeter underestimates wiring for nets with more yse Table 1 to predict the difficulty of a routing problem.
than 3 terminals. The correction factor is 1 for nets with 2 or

3 terminals and slowly increases with net fanout, reaching3: Results

19 for nets with 3000 terminals. We can obtain an estimateln this section we describe several experiments comparing
of the total wirelength by summing the expected wirelength the new router with VPR [Betz97] and illustrate its speed,
of each net. near-linear complexity, the effectiveness of the

[Chen94] contains correction factors for nets with up to 50 enhancements, and difficulty prediction.

termina_lls; we re-print them in Table 2. To determine the 3.1 FPGA Architecture

correction factors for higher fanout nets, we routed the\ye employed an island style architecture with unit-length
larger MCNC benchmark circuits ignoring congestion, and 5k segments, connection block flexibility £ W and a

recorded the actual wirelength for each net. By dividing the _ . - . .
actual wirelength by the bc?unding box half p)(larimeterg,l we switch block flexibility of = 3. The logic block consists of

obtained average correction factors for nets with up to 30002 4-input look-up table and a single D flip-flop [Betz97].
terminals. Instead of storing discrete values for all the The switch block used was the Wilton switch block

correction factors for nets with 50 to 3000 terminals, we fit [Wilt97], which is a non-planar switch block that provides
equations (2) and (3) to the data. In (2) and (3), C is theimProved routability.

correction factor and k is the number of terminals. With 32 Benchmark Circuits

these correction factors, our estimate of total wirelength WaStp o penchmark circuits used are listed in Table 3. These

PN ;
within 5% of the actual wirelength for all of our benchmark come from three sources, two of which are the MCNC suite

circuits. Simply linearly extrapolating the [Chen94] [ ; ;
, : : Yang91], and the RAW benchmark suite [Babb97]. Since
correction factors led to estimates of total wirelength that we are principally interested in large circuits, we also used

p .
were up to 25% to high. the synthetic benchmark circuit generator developed at the
University of Toronto [Hutt97] to create several very large

Num Correction Num Correction benchmarks. Although the latter circuits are actually
Terminals Factor Terminals Factor somewhat more difficult than real circuits, we believe they
are perfectly reasonable test cases for the compile time
1~-3 1.00 15 1.69 issue.
4 1.08 20 1.89 Each of the MCNC and RAW benchmark circuits was
5 1.15 25 2.07 synthesized with the SIS [Sent92] package and technology
mapped using Flowmap [Cong94]. These were packed into
6 122 30 2.23 logic blocks using VPACK [Betz97]. The synthetic circuits
7 1.28 35 2.39 were only packed into the logic blocks using VPACK
8 134 20 554 [Betz97] as they are generated in technology-mapped form.
i i The circuits range in size from 3,556 logic blocks up to
9 1.40 45 2.66 19,600 logic blocks.
10 1.45 50 2.79 Each circuit was placed using the VPR tool, which uses a
Table 2: Correction Factors up to 50 [Chen94] Simulated-annea"ng algorithm [Bet297] Table 3 IiStS the
minimum number of tracks per channel required by the new
C(k) = 0.026-k + 1.49 for50 <k <85 (2) router and VPR. For both placement and routing, VPR was

run using the “fast” to flag reduce the run-time while giving

C(k) = -0.0000018%+ 0.011-k + 2.79 for 85 (3) up a small amount of quality. VPR currently holds the world
o ) ) record for track count on a number of standard benchmark
An FPGA consisting of N logic blocks contains 2-Mpg/s circuits when run without the “fast” flag. Our router is
track segments. Consequently, we can estimate the requiredlearly of high quality, since it is on average only 2% worse
channel width to route as: than VPR for minimizing track count.

3.3 Routing Time

_ o _ In this section we establish the speed of the router over a
U is the “track segment utilization” -- the fraction of the range of track counts. Table 4 lists the track counts and the
total number of track segments in the FPGA that a routertime it took the new router to route each circuit. The track

Westimate= Ltbtal estimated wirelength / (2-N-{U) (4)



Circuit | Source] Num. New Router | VPR Min
Logic | Min. Track Track
Blocks| Count (W,,i,) | Count
beastl0k| GEN| 9800 22 22
beastl2k | GEN| 11760 23 23
beastldk | GEN| 13720 26 24
beastl6k | GEN| 15680 23 23
beastl8k| GEN| 17640 26 25
beast20k | GEN| 19600 30 29
bubble sorf RAW/| 12293 10 9
clma MCNC| 8383 12 12
elliptic | MCNC | 3604 12 12
ex1010 | MCNC| 4598 14 13
frisc MCNC | 3556 12 12
pdc MCNC| 4575 16 16
s38417 | MCNC 6406 9
s38584.1| MCNQ 6447 9
spla MCNC| 3690 14 14

Table 3: Benchmark Circuits Data
counts range from W, up to W, + 40%. Recall that

were measured on a 300 MHz UltraSPARC 3200 with 1
GByte of memory, and do not include the time to parse the
netlist and generate the routing graph. For the largest circuit
the parse and graph generation time was 20 seconds. The
largest circuit (beast20K) required 200 MBytes of memory.

Notice that we have not yet achieved our informal goal of a
10 second routing time for a 20,000 logic block circuit, as it

requires 23 seconds to route the circuit beast20k with 30%
extra tracks, but we're getting close.

It is instructive to observe how the routing time of the new
router changes as the available track countzpy),
increases. Figure 4 plots the routing time for the new router
and VPR versus the number of tracks available, for the 8383
logic block circuit clma. It is clear that once there are
sufficient tracks the new router completely routes the circuit
in about 6 seconds, independent of the number of tracks.
The speedup as Mg increases comes from two factors:
fewer routing iterations (eventually, only 1) are needed to
resolve congestion; and the directed search can more rapidly
route each net when there is little congestion to detour
around. Observe that the VPR router takes a great deal more
time, and the time increases agpyd, increases (for large

Wepgpa) because of the breadth-first search nature of the
VPR router.

3.4 Experimental Complexity Measurement
A key goal for the high-speed routing project is to achieve

Wi, is the minimum number of tracks per channel our linear time complexity for low stress situations, with a very

router needs to successfully route a circuit. Execution times

small linearity constant. Figure 5 shows a graph of thg,W
+ 40% routing times versus the number of logic blocks for

Whin Wpint10% Whin+20% Whin+30% Whin+40%
Circuit Track Time Track Time Track Time Track Time Track Time
Count (s) Count (s) Count (s) Count (s) Count (s)
beast10k 22 96 25 30 27 18 29 8 31 9
beast12k 23 372 26 41 28 24 30 12 33 12
beast14k 26 175 29 31 32 15 34 15 37 16
beast16k 23 291 26 63 28 30 30 14 33 14
beast18k 26 330 29 39 32 19 34 18 37 20
beast20k 30 430 33 83 36 50 39 23 42 24
bubble sort 10 56 11 16 12 10 13 11 14 5
clma 12 909 14 33 15 36 16 12 17 6
elliptic 12 34 14 7 15 4 16 2 17 2
ex1010 14 31 16 8 17 5 19 2 20 2
frisc 12 173 14 15 15 7 16 5 17 2
pdc 16 928 18 17 20 8 21 8 23 4
s38417 79 9 15 10 8 11 5 12 3
$38584.1 33 10 16 11 19 12 9 13 4
spla 14 91 16 11 17 5 19 2 20 2

Table 4: Routing Times
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Figure 4. Routing Time vs. Available Tracks for
clma (8383 Logic Blocks)

all of the benchmark circuits. The dashed line shows the
least-squares line that best fits the data. The fitted equation
of the line is:

run time = 0.0011-N -1.2 (5)

where N is the number of logic blocks. The correlation
coefficient for this linear approximation is 0.95, strongly
suggesting that the run time is indeed essentially linear. If
we use the time-constant of (5), 0.0011, we can effectively
route 55,000 logic blocks per minute.
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Figure 5. Compile Time vs. Circuit Size

Algorithm Average Minimum
Track Count
Breadth-first Search 15.5
Directed Search 15.5
15.8

Directed Search with Binninq;

Table 5: Average Minimum Track Count Results

3.5 Effectiveness of Enhancements

In order to measure the effectiveness of the two router
enhancements, directed search and binning, each of th

U

Algorithm

Average Low
Stress Routing Time (S

~—

benchmark circuits was routed using three different routers:
(i) the VPR breadth-first router, (i) the new router with

directed search only, and (iii) the new router with directed

search and binning (the version used to get the timing
results in previous sections).

Breadth-first Search 731
Directed Search 14
7

Directed Search with Binning};

The two metrics used to compare the three routers were the Taple 6: Average Low Stress Routing Time Results

minimum track count needed to route the circuit and the low

stress routing time. Experimental results, geometrically 3.6 Difficulty Prediction

averaged across all fifteen benchmark circuits, are given inT

Tables 5 and 6. In terms of average minimum track count
all the routers performed almost equally well; the directed
search with binning requires only 2% extra tracks per
channel. The low stress routing times were measured b
routing each circuit with W, + 30% tracks. Most of the
speedup is obtained from the directed search, which is 5
times faster than the breadth-first search. The addition o
binning provides an extra speedup of 2 over the directed
search.

he final important feature of the new router is its ability to
'detect the difficulty of the routing task. To test the difficulty
prediction scheme, we ran the router for each circuit to get
)}he estimated tracks per channel using (43siWate 100K

less than less than one second to calculate for the largest
éJenchmark circuit, providing the user with feedback on the
fproblem classification very quickly. Table 7 lists the actual
minimum tracks per channel and the estimated tracks per
channel for each benchmark circuit.



Circuit Whin | Westimate| Difference
beastl0k | 22 22 0
beast12k 23 24 1
beastldk | 26 25 -1
beastl6k | 23 23 0
beast18k 26 26 0
beast20k | 30 29 -1

bubble sort| 10 8 -2
clma 12 13 +1

elliptic 12 11 -1
ex1010 14 12 -2

frisc 12 13 +1
pdc 16 16

s38417 8

s38584.1 9 8 -1
spla 14 14 0

Table 7: Track Count Estimates

In order to illustrate the effect of the inaccuracies in
predicting difficulty, we ran the router on each benchmark
circuit using five different track counts: the minimum
required by the circuit Wi, Wmint1, Wmin1, Wmin-2, and
Whin-3. We chose these values because it is within this
range that inaccuracies inWmateWill affect the routability
predictor. Table 8 lists for each circuit: the correct (Crct)
difficulty level for each circuit based on the definition from
Table 1, the reported (Rpt) difficulty by the router using
Westimate@Nd applying the predictor from Table 1, and the
routing time. The following key is used: LS=low stress,
DF=difficult, and IM=impossible.

There are two types of errors in Table 8, difficult/impossible

errors and low-stress/difficult errors. We only concern

ourselves with the difficult/impossible errors because they
can cause the user to think that their circuit can be routed
even though it is impossible. The worst outcome of a low-

stress/difficult error is that the user ends up waiting a few
minutes for a circuit to route, even though the router

classified the problem as low stress. The difficult/impossible
errors are highlighted with shading in Table 8. Out of the 75

test cases, 11 were difficult/impossible errors, resulting in
an accuracy of 84%.

We can reduce the severity of the difficult/impossible errors

The last column in Table 7 shows the difference betweenby providing the user with fuzzy feedback whegg\atds
Wegtimate @nd Wi, For thirteen of the circuits, the within -1 to +2 tracks per channel ofddg 5 Table 9 shows

estimates were withintl track per channel, for the

how we can redefine our difficulty prediction scheme. When

remaining two circuits the estimates were under by two Wgpga is less than Wimatsl. We can say with near

tracks per channel. These inaccuracies will result in somecertainty that the problem is impossible. Whepp@a is
mistakes by the prediction scheme of Table 1.

Circuit Whintl Whin Win-1 Win-2 Whin-3
Crct Rpt Time (s| Crct Rpt Time(§) Crct Rpt Timels) Crct Rpt Timg(s) Crct Rpt Time (S)
beastiok| LS| DH 57 | N VTV
beastl2k] DF| DH 61 - M IM -
beastl4k] DF| DH 140 - M |IM -
beastl6k] DF| DH 95 -- IM| IM --
beast18k] DF| DH 181 - IM[ IM -
beast20k] DF| DH 326 - M |IM -
bubble sory LS| LS 16 -- IM | IM --
clma DF | DF 191 - M IM -
elliptic LS | LS 25 - M |IM -
ex1010 LS| LS 5 - IM | IM -
frisc LS | DF 39 - M IM -
pdc DF | DF 99 DF| DF 928 I M| IM - M| IM - IM | IM -
s38417 LS| LS 15 DR DR 79 - IM| IM -- IM| IM --
s38584.1] LS| LS 16 LY LS 33 - IM [ IM - M |IM -
spla LS| DF 22 DF| DH 91 - M| IM - IM | IM -

Table 8: Correct and Reported Difficulty (LS=low stress, DF=difficult, IM=impossible)



equal to Wgimatsl, We can classify the problem as

to acknowledge funding from Lucent Technologies and

impossible, but inform the user that the problem may be MICRONET.

difficult. When Wepga is at least equal to Yimatebut less
than Wisiimatd 2, We can classify the problem as difficult,

but warn the user that the problem may be impossible.

Definition Predictor
Time Typical Range of Tracks
Classification| (seconds)] Per Channel in FPGA
Impossible - Wepea< (Westimate- 1)
_Probably -- Wepga= (Westimate™ 1)
impossible,
but could be
difficult.
Probably dif-| > 60 Westimate= WrpGA
ficult, but
could be < (Vvestimate+ 2)
impossible
Difficult > 60 (Westimate™ 2) < Wepga
< 1-1(\Nestimate+ 2)
Low Stress <60 \NFPGA2 1-1(\/\@stimate+ 2)

Table 9: Fuzzy Definition of Routing Classes

When a routing problem is given a fuzzy classification, it is

up to the user to decide whether to try and route the circuit
or to stop and change the circuit or the target FPGA. We

expect that in most cases}¥ will lie somewhere outside
the fuzzy prediction region. In such cases, wherg, Vi
considerably greater than or less thagp@), our predictor
is highly accurate.

4. Conclusions and Future Work
We have presented a fast routability-driven router for

FPGAs. The router is of particular interest to users who are

willing to accept slightly lower quality results in exchange
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